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1. Introduction. In [Rob65], Raphael Robinson made a study of small
cyclotomic integers, namely, cyclotomic integers α all of whose conjugates
lie in |z| ≤ R for R = 2 and R =

√
5. Robinson made a sequence of

five conjectures concerning these numbers, four of which were proved by
Schinzel [Sch66], Cassels [Cas69], and Jones [Jon68, Jon69]. In this paper,
we resolve the final outstanding conjecture. First, we recall the following
definition:

Definition 1.1 (House). For a cyclotomic integer β, let the house of β,
denoted β , be the largest absolute value of all conjugates of β.

Our main result is as follows:

Theorem 1.2 (Robinson’s Conjecture 4 [Rob65]). If β is a cyclotomic
integer with β 2 ≤ 5, then β has one of the forms

2 cos(π/N),
√

1 + 4 cos2(π/N),

where N is a positive integer, or else is equal to one of the two numbers√
5 +
√

13

2
,

√
7 +
√

3

2
.

Note that these values do actually occur as β for some cyclotomic inte-
gers (with the exception of N = 1 in the first equation), specifically, for β as
follows: ζN + ζ−1N , ζ4 + ζN + ζ−1N , 1+ ζ13 + ζ413, and ζ−984 + ζ−784 + ζ384 + ζ2784 . The
first and last numbers on this list are totally real, so β = β in these cases.
In studying this problem, we follow the approach of Cassels [Cas69], as well
as the recent paper of Calegari, Morrison, and Snyder [CMS11], where a
version of this theorem is proven for totally real β.

We actually prove the following stronger statement:

2010 Mathematics Subject Classification: Primary 11R18.
Key words and phrases: cyclotomic integers.

DOI: 10.4064/aa160-4-2 [317] © Instytut Matematyczny PAN, 2013



318 F. Robinson and M. Wurtz

Theorem 1.3. If β is a cyclotomic integer with β 2 ≤ 5 + 1/25, then
either β is a number on the list above, or

β = |1 + ζ70 + ζ1070 + ζ2970 |, where ζ70 = e2πi/70.

The main result of Cassels [Cas69] implies Theorem 1.2 with at most
finitely many exceptions. The methods of Cassels, however, do not lead to a
practical algorithm for determining what those exceptions might be. Indeed,
it is noted in [CMS11] that any exception must lie in Z[ζN ] for

N = 4692838820715366441120 = 25·33·5·7·11·13·17·19·23·29·31·37·41·47·53.

The motivation for this project is twofold. Most naturally, it was desir-
able to answer Robinson’s conjecture. Robinson was motivated in part by
understanding the relationship between the house of a cyclotomic integer α
and the “complexity” of such an integer, as for example measured by the
number of roots of unity required to represent α. Although this problem was
qualitatively answered by Loxton [Lox72], those arguments are not effective.
Another motivation is to the interaction between the algebraic number the-
ory of cyclotomic fields and the numerology of subfactors of small index, as
occurring (for example) in [Jon83] and more recently in [IJMS]. This was
also the motivation for the recent paper [CMS11]. Although there is no direct
application of our result to the indices of subfactors, it is intriguing that the

square of the “exotic” case
√

(5 +
√

13)/2 of Theorem 1.2 is also the index

of the first exotic subfactor constructed by Aseada and Haagerup [AH99].

1.1. Some notation. The following is well known:

Lemma 1.4 (Cyclotomic integer). A number β ∈ Q(ζN ) is a cyclotomic
integer if and only if β ∈ Z(ζN ) for some N , i.e. if β can be written as a
finite sum of roots of unity.

In light of this, the following definition makes sense:

Definition 1.5 (N ). For a given cyclotomic integer β, N (β) is the
minimal number of roots of unity whose sum is β.

Note that given α and β, we have N (α)−N (β) ≤ N (α±β) ≤ N (α)+
N (β).

Following Cassels, we also make the following definition:

Definition 1.6 (M ). For a given cyclotomic integer β, M (β) is the
arithmetic mean of |β′|2 for all conjugates β′ of β.

Note that |β|2 = ββ is a cyclotomic integer. Since the Galois group of
a cyclotomic extension is abelian, complex conjugation commutes with any
automorphism. In particular, M (β) = M (β′) for any conjugate β′ of β, and
moreover M (β) is the (normalized) trace of |β|2, and hence lies in Q.
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Definition 1.7 (Equivalence). Two cyclotomic integers α and β are
equivalent if α = ζβ′ for some ζ a root of unity and β′ a conjugate of β. We
write α ≡ β.

Since every root of unity has absolute value one, it follows that M (ζγ) =
M (γ) for any root of unity ζ. In particular, if α ≡ β, then M (α) =
M (ζβ′) = M (β′) = M (β).

Definition 1.8 (Minimal cyclotomic integer). A cyclotomic integer β is
minimal if β ∈ Q(ζN ), and there is no equivalent β′ ∈ Q(ζN ′) with N ′ < N .

Since β = β′ , to prove the theorem it suffices to consider all minimal
cyclotomic integers.

Definition 1.9 (ζN ). We always mean by ζN a primitive Nth root of
unity, not any Nth root of unity.

2. Some preliminary results

2.1. Properties of M

Remark 2.1. N (β) = 1 if and only if M (β) = 1. This follows from
[Kro37].

Lemma 2.2. If N (β) = 2, then either M (β) ≥ 15/8, or M (β) =
3/2, 5/3, 7/4, 9/5, or 11/6. The first four values occur only when β is equiv-
alent to 1 + ζN for N = 5, 7, 30, or 11 respectively, and 11/6 occurs only
for N = 13 or 42.

Proof. The sum of two roots of unity is equivalent to 1+ζN for some N .
One computes directly that M (1+ζN ) = 2(1+µ(N)/ϕ(N)), where µ is the
Möbius µ-function and ϕ is Euler’s totient function, from which the result
follows (cf. [CMS11, Remark 9.0.2]).

Remark 2.3 ([Cas69, Lemma 3]). If N (β) ≥ 3, then M (β) ≥ 2.

Remark 2.4 ([Cas69, Section 3]). If β ∈ Z(ζN ), and pn exactly di-
vides N , then we can write β as a sum of products of pnth roots of unity with
ηj ∈ Z(ζN/p). Write β =

∑p−1
j=0 ζ

j
pnηj , and let X be the number of non-zero

terms in the summation. Let αi, 1 ≤ i ≤ X, refer to the X non-zero ηj .

If p exactly divides N , note that this representation is unique up to
adding a constant to all ηi. We have the equality

(2.1) (p− 1)M (β) = (p−X)

X∑
i=1

M (αi) +
∑

1≤i<j≤X
M (αi − αj).

On the other hand, if n > 1, then this representation is unique. In this case,
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we have the equality

(2.2) M (β) =
X∑
i=1

M (αi).

2.2. Conjugation. Throughout the paper, in many cases we will need
to show, for β the sum of two given cyclotomic integers, that β 2 > 5+1/25,
and thus β is not an exception to the theorem. One common method of
proving this is as follows:

Lemma 2.5. Suppose β is equivalent to α+ ζpnγ, where α ∈ Q(ζM ′) and
γ ∈ Q(ζM ′′). Let m be the largest integer such that ζpm ∈ Q(ζM ′) or Q(ζM ′′).
Then if m < n,

(2.3) β 2 ≥ |α|2 + |γ|2 + 2|α| · |γ| · cos(θ)

where

θ =

{
2π/pn if m = 0,

π/pn−m if m > 0.

Moreover, if (M ′,M ′′) = 1, then

(2.4) β 2 ≥ α 2 + γ 2 + 2 α · γ · cos(θ).

Proof. By assumption on m and n, there exists a Galois automorphism
sending ζpn to ζipn and fixing α and γ as long as (i, p) = 1 and ζpm = ζipm , i.e.
when i ≡ 1 mod pm. If m = 0, we may conjugate ζpn to any other primitive
pnth root of unity. The largest angle between two adjacent primitive pnth
roots of unity is 2 · 2π/pn, so we can place the argument of ζipnγ to within
2π/pn of the argument of α. If m > 0, then there are pn−m equally spaced
primitive pnth roots of unity that are congruent to 1 mod pm. We can then
guarantee that some conjugate of β is α + ζipnγ, where the difference in

arguments between α and ζipnγ is at most π/pn−m.

For the second claim, if (M ′,M ′′) = 1, then we may simultaneously
conjugate α and γ to their largest conjugate, and then apply the first part
of the lemma.

2.3. A note on computational accuracy. In several places we have
verified results through the use of a computer. For example, given β, we
wish to know if β is equal to some γ from the list of Theorem 1.3. We show
that by computing β to a necessary degree of accuracy, we can claim that
β is equal to γ, and not just very near to it.

Lemma 2.6. Suppose β is a cyclotomic integer, γ is on the list of The-
orem 1.3, and k = [Q(ζN ) : Q] = ϕ(N), where β, γ ∈ Q(ζN ). If | β − γ| <
(10 + 1/25)−k, then β = γ.
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Proof. Let δ = | β − γ|. Then δ is also a cyclotomic integer in Q(ζN )
and δ has at most k conjugates. Denote the conjugates by δ1, . . . , δi with
δ1 = δ. As all conjugates of β and γ have magnitude at most 5 + 1/25,
all conjugates of δ have magnitude at most 10 + 2/25. Then |Norm(δ)| =
|δ1 · · · δi| ≤ δ(10 + 2/25)k−1 < 1. We have |Norm(δ)| < 1 if and only if
Norm(δ) = 0 = δ, so β = γ.

2.4. Theorem 1.3 when N (β) ≤ 3. In this section, we recall known
results that allow us to deduce Theorem 1.3 in the special case when N (β)
≤ 3:

1. If N (β) = 1, then β = 1 = 2 cos(π/3).

2. If N (β) = 2, then β ≡ 1 + ζn for some n and β = 2|cos(π/n)|.
3. If N (β) = 3, Jones’ [Jon69, Theorem 2] states that if β ≤ 1 +

√
2,

then β is equivalent to (a) 1 + ζn − ζ−1n , (b) 1 ± i + ζn, or (c) one of 15
numbers that he lists.

In case (a), β is equal to
√

1 + 4 cos2(π/M) where the value of M
depends on n in a slightly subtle way. In particular,

M(n) =


2n if n is odd,

n if n/2 is odd,

n/4 if n/4 is odd,

n/2 if n/4 is even.

In case (b) Lemma 2.5 proves that if n does not divide 24 · 3 · 5 · 7, then
β >

√
5 + 1/25 (by letting α = 1+i). There are then 40 divisors of 24 ·3·5·7

that were checked computationally.

We checked each number in case (c), and all were equal to a form from
Robinson.

3. An upper bound for M (β). Many of our arguments are based on
the following lemma:

Lemma 3.1. If β is a cyclotomic integer with β 2 ≤ 5 + 1/25, then
M (β) < 13/4 or β =

√
1 + 4 cos2(π/N) for some N .

Remark 3.2. One should compare this with Lemma 5.1.1 of [CMS11],
where, assuming the slightly weaker condition β ≤ 76/33, it is shown that
M (β) < 23/6. The significant improvement (23/6 = 13/4 + 7/12) in our
upper bound for M (β) (at the cost of a stronger bound on β ) is what
allows us to push the methods of Cassels and [CMS11] to prove Robinson’s
conjecture.

Proof of Lemma 3.1. Let Pi and αi be as below (note that all Pi are
irreducible over Z, and their roots are real and positive):
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i Pi 1000αi N

1 x− 3 110 4

2 x− 4 530 6

3 x− 5 620 1

4 x2 − 6x+ 6 18 12

5 x2 − 6x+ 7 28 8

6 x2 − 7x+ 11 194 10

7 x3 − 10x2 + 31x− 29 130 14

8 x4 − 13x3 + 58x2 − 98x+ 41 45 –

9 x4 − 13x3 + 59x2 − 107x+ 61 40 15

Let f(x) = 13/4−x−
∑
αi log |Pi(x)|. We claim that f(x) is positive for

all values of x in [0, 5+1/25] where it is defined (there are many asymptotes
where f(x)→ +∞). Note that f is defined everywhere that is not a root of
some Pi.

0 1 2 3 4 5
x

0.001

0.005

0.010

0.050

0.100

0.500

1.000
f HxL

The derivative of f(x) has 20 real zeroes in [0, 5+1/25], at which all of f
is positive. Also, f is positive at 0 and 5 + 1/25. So f is positive everywhere
on [0, 5 + 1/25] where it is defined.

Now take any non-zero cyclotomic integer β with ββ̄ = β 2 ≤ 5 + 1/25.
If β 2 is equivalent to a root of some Pi, note two things: it cannot be P8,

as that has a non-abelian Galois group D8 which would imply that β is not
a cyclotomic integer. Furthermore β 2 is the largest root of Pi. All largest
roots of Pi, i 6= 8, are squares of

√
1 + 4 cos2(π/N) for N as shown in the

above table.
If ββ̄ is not equivalent to a root of any Pi, let xj , 1 ≤ j ≤ n, be the con-

jugates of ββ̄. Note that the conjugates of ββ̄ are β′β̄′ for β′ the conjugates
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of β. Then 0 < xj ≤ 5 + 1/25 and Pi(xj) 6= 0 for any i, j, so we have
n∑
j=1

f(xj) > 0,

n∑
j=1

(
13
4 − xj −

∑
i

αi log |Pi(xj)|
)
> 0,

13
4 n−

n∑
j=1

xj −
∑
i

(
ai

n∑
j=1

log |Pi(xj)|
)
> 0,

13
4 n− nM (β)−

∑
i

ai log
∣∣∣ n∏
j=1

Pi(xj)
∣∣∣ > 0,

13
4 n− nM (β) >

∑
i

ai log
∣∣∣ n∏
j=1

Pi(xj)
∣∣∣,

13
4 n− nM (β) >

∑
i

ai log |Norm(Pi(ββ̄))|,

13
4 n− nM (β) > 0,
13
4 > M (β).

4. If β ∈ Q(ζN ), then N or N/2 is squarefree

Lemma 4.1. Suppose β ∈ Q(ζN ) is an exception to Theorem 1.3 and is
minimal in the sense of Definition 1.8. If p2 divides N , then p = 2 and 4
exactly divides N .

Suppose towards a contradiction that pn exactly divides N , with n ≥ 2
and pn 6= 4. Write β =

∑p−1
j=0 ζ

j
pnηj , with ηj ∈ Q(ζN/p). We refer to this

as the p-decomposition of β. Let αi be the X non-zero ηj . We know by
Cassels [Cas69] that M (β) =

∑
M (αi), so by Lemma 3.1,

∑
M (αi) <

13/4. Moreover, X must be 2: indeed, X = 1 would mean N is not minimal,
X = 3 would mean N (β) = 3, and X > 3 would mean M (β) ≥ 4.

Let β = α + ζpnγ, and assume without loss of generality that M (α) ≤
M (γ). Then M (α) ≤ 13/8, so M (α) = 1 or 3/2.

4.1. M (α) = 1. Recall that N (β) > 3, so N (γ) ≥ 3.
Assume without loss of generality (by multiplying β by a root of unity)

that α = 1. We know that 2 ≤M (γ) < 9/4.

• First assume that γ 2 > 2, then by [Cas69, corollary to Lemma 5], we
have γ 2 ≥ 3. If p ≥ 3, then by Lemma 2.5, β 2 ≥ 4 +

√
3.

In the case of 2n, n > 2, write γ = γ′ + ζ2n−1γ′′, with γ′, γ′′ ∈ Q(ζN/4).
Since M (γ′) + M (γ′′) = M (γ) < 21/4, either both γ′ and γ′′ are roots of
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unity and β is 3 roots of unity, or one of γ′ or γ′′ is 0. The latter case implies
β ≡ 1 + ζi2n(γ′ + γ′′), and by Lemma 2.5, β 2 ≥ 4 +

√
6.

• The other case is if M (γ) = γ 2 = 2. By [Cas69, Lemma 6], γ is
equivalent to one of (−1 +

√
−7)/2 ≡ 1 + ζ7 + ζ37 or (

√
5 +
√
−3)/2 ≡

ζ3 − ζ5 − ζ−15 . We break down into cases as follows:

(a) pn = 32 and γ ≡ 1 + ζ7 + ζ37 . Then θ ≤ 2π/9 and β 2 > 5.1667.

(b) pn = 32 and γ ≡ ζ3−ζ5−ζ−15 . Here, we have γ = ζm ·(ζj3−ζk5 −ζ
−k
5 ),

and so, after multiplying β by some root of unity, we may assume β is of
the form 1 + ζi32 · ζ

l
m · (ζ

j
3 − ζk5 − ζ

−k
5 ) for some values of i, j, k, l. If 24, 52,

or any prime greater than 5 divides m, we may conjugate β by Lemma 2.5.
We may also assume (by changing i) that 3 does not divide m. This limits
m to eight possible values. We may conjugate ζm so that l = 1. There are
then 384 = 2 · 4 · 6 · 8 possibilities for β. Computation reveals that all of
these have β 2 > 5.094.

(c) pn = 23 and γ ≡ ζ3 − ζ5 − ζ−15 or γ ≡ 1 + ζ7 + ζ37 . Then β is of the
form 1 + ζi23 · ζ

l
m · γ′ for some i, l, and γ′ a conjugate of ζ3 − ζ5 − ζ−15 or

1+ζ7+ζ37 . Reasoning as above, m divides 32 ·5 ·7. There are then 12 possible
values for m. There are 672 = 4 · 12 · (8 + 6) possibilities for β. Computation
reveals that all of these have β 2 > 5.0489.

(d) In all other cases, θ ≤ π/5. Hence β 2 ≥ 3+2
√

2 cos(π/5) ≈ 5.28825.

4.2. M (α) = 3/2. Note that M (γ) < 13/4− 3/2 = 7/4.

• M (γ) = 3/2. Then α and γ are both equivalent to 1 + ζ5. Let ζ5 =
e2πi/5. Then by conjugating and multiplication by a root of unity, assume
without loss of generality that β = (1 + ζ5) + %(ζi5 + ζj5) for some root
of unity %. If the difference between i and j (mod 5) is 2 or 3, then β is
equivalent to (ζ5 + ζ45 ) + %′(ζ25 + ζ35 ). If (i − j) mod 5 is 1 or 4, then β is
equivalent to α + ζpnγ with |α| = |γ| = (1 +

√
5)/2. Then by Lemma 2.5,

regardless of pn we have θ ≤ π/4, and β 2 ≥ (2 +
√

2)(3 +
√

5)/2 ≈ 8.93853.

• M (γ) = 5/3. Then α is equivalent to 1 + ζ5, and γ is equivalent to
1 + ζ7. Again by Lemma 2.5, regardless of pn we have θ ≤ π/4, and β 2 is
even larger than in the preceding case.

5. If β ∈ Q(ζN ), then N divides 420

Lemma 5.1. If β 2 < 5.3, then either β is on the list of Theorem 1.3,
or β ∈ Q(ζ420).

First we establish some facts that we use throughout. Recall that X
refers to the number of non-zero terms in the p-decomposition of β.

From [Cas69, (3.5)] and Lemma 3.1 we have

(5.1) p ≥ 11 ⇒ X ≤ (p− 1)/2.
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By (2.1), and since M (β) < 13/4 by Lemma 3.1, we have

(5.2) 13
4 (p− 1) > (p−X)

X∑
i=1

M (αi) +
∑

1≤i<j≤X
M (αi − αj).

Now let β ∈ Q(ζN ) be a minimal cyclotomic integer that is an exception
to Theorem 1.3. Let p be the largest prime dividing N , and suppose p > 7.
By Lemma 4.1, p exactly divides N . We proceed by considering different
combinations of p and X.

5.1. p = 11. Note that by (5.1), X ≤ 5.

5.1.1. X = 2. By (5.2),

65
2 > 9(M (γ) + M (α)) + M (γ − α).

Assume without loss of generality that M (α) ≤M (γ). We have

M (α) ≤ 65
36 ⇒ M (α) = 1, 32 ,

5
3 ,

7
4 or 9

5 .

We consider each possible value of M (α) below:

• M (α) = 1. As N (β) > 3, N (γ) > 2 and thus M (γ) ≥ 2. By con-
jugating we can assume |γ| ≥

√
2; then by Lemma 2.5 we have β 2 ≥

3 + 2
√

2 cos(2π/11) ≈ 5.37942.

•M (α) = 3/2. If N (γ) > 2 the inequality is false, since M (γ −α) ≥ 1
and M(γ) ≥ 2. If N (γ) = 1 then N (β) = 3. So let γ be equivalent to
1 + ζn.

If n = 5 then α ≡ γ ≡ 1 + ζ5. As we have previously argued, either
β ≡ (ζ5 + ζ45 ) + %(ζ25 + ζ35 ) for some root of unity %, or we can conjugate to
assume that |α| = |γ| = (1+

√
5)/2. Then β 2 ≥ (3+

√
5)(1+cos(2π/11)) ≈

9.64093.
If n is coprime to 5 then n ≥ 4, and by Lemma 2.5 with θ = 2π/11,

1 + ζ5 = (1 +
√

5)/2, and 1 + ζn ≥
√

2, we have β 2 ≥ 8.46802.
If n is divisible by 5 it must be at least 10. Conjugate β so |1 + ζn| =

1 + ζn ≥ 1 + ζ10 =
√

(5 +
√

5)/2. The smallest conjugate of 1 + ζ5 is

(
√

5− 1)/2. Thus by Lemma 2.5 with θ = 2π/11, β 2 > 5.9779.

•M (α) = 5/3. Again we have N (γ) = 2. Let γ be equivalent to 1 + ζn.
If n = 7 then both α and γ are equivalent to 1 + ζ7. We may conjugate

them simultaneously so neither is the smallest conjugate as follows. Let ζ7 be
e2πi/7. Assume without loss of generality that α = 1 + ζ7, and γ = %(1 + ζi7)
for % a root of unity. Then β = (1 + ζ7) + ζ11%(1 + ζi7). If i 6= 3, 4 we are
done, otherwise, β under the conjugation ζ7 → ζ27 is (1+ ζ27 )+ ζ11%

′(1+ ζ2i7 ),
which satisfies our requirement. We now have |α|, |γ| ≥ |e2πi2/7|, and then
by Lemma 2.5, β 2 > 6.09385.
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The case of n coprime to 7 easily follows from the previous case with
M (α) = 3/2, since 1 + ζ7 > 1 + ζ5 .

If n is divisible by 7, then similarly to before, conjugate γ to its largest
conjugate and then |γ| = γ ≥ |e2πi/14| and |α| ≥ |e2πi3/7|. We then have
β 2 > 5.66523.

• M (α) = 9/5. Then α ≡ 1 + ζ11, but this is impossible as ζ11 /∈
Q(ζN/11).

• M (α) = 7/4. Then M (γ) = 7/4 or 11/6. However, 11/6 makes the
inequality false with M (α− γ) ≥ 1, so M (γ) = 7/4.

Recall that M (ρ) = 7/4⇒ ρ ≡ 1 + ζ30. Conjugate α to 1 + e2πi/30. This
will fix γ to be some other conjugate, of which the smallest is 1 + e2πi13/30.
By Lemma 2.5, β 2 > 5.71638.

5.1.2. X = 3. By (5.2),

65
2 > 8

3∑
i=1

M (αi) +
∑

1≤i<j≤3
M (αi − αj).

If more than one αi is not a root of unity, the inequality is false. We may
assume that not all three αi are roots of unity, as the case N (β) = 3 is
done. Then notice that N (αi) > 2 again makes the inequality false. So
we may assume without loss of generality that N (α1) = N (α2) = 1, and
N (α3) = 2.

The respective M -values are either (1, 1, 3/2), (1, 1, 5/3), or (1, 1, 7/4).

We must calculate β with β of the form 1 + ζ11ζ
i
420 + ζj11ζ

k
420(1 + ζn) for

all i, j, k where n = 5, 7, or 30. Some computation shows that the smallest
such β is 1 + ζ77 + ζ1177 + ζ5577 and β > 5.761.

5.1.3. X = 4. By (5.2),

65
2 > 7

4∑
i=1

M (αi) +
∑

1≤i<j≤4
M (αi − αj).

If any αi is not a root of unity, this inequality is false.
Therefore each αi is a root of unity and

9
2 >

∑
1≤i<j≤4

M (αi − αj),

which implies there are at most two distinct roots of unity.
There remain three cases after conjugation, with (α1, α2, α3, α4) equiva-

lent to one of the following, for ζ some root of unity:

(1, 1, ζ, ζ) or (1, 1, 1, ζ) or (1, 1, 1, 1).

In both cases with ζ, we must have M (1 − ζ) = 1 or else the inequality is
false. Thus ζ = ζ6.
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The only such β with β 2 < 6 of the above form are given below:

(α1, α2, α3, α4) β β

(1, 1, 1, 1) 1 + ζ11 + ζ211 + ζ511
√

1 + 4 cos2(π/11)

(1, 1, 1, ζ6) ζ6 + ζ11 + ζ311 + ζ811
√

1 + 4 cos2(π/33)

(1, 1, ζ6, ζ6) ζ6 + ζ6ζ11 + ζ311 + ζ911
√

1 + 4 cos2(π/22)

5.1.4. X = 5. By (5.2),

65
2 > 6

5∑
i=1

M (αi) +
∑

1≤i<j≤5
M (αi − αj).

If any αi is not a root of unity it has M (αi) ≥ 3/2 and this inequality is
false. So all αi are roots of unity, and

5
2 >

∑
1≤i<j≤5

M (αi − αj).

However, if there exists αi 6= αj then the above inequality is also false, so
we may assume without loss of generality that αi = 1 for all i.

One can compute every

β = 1 + ζ11 + ζa11 + ζb11 + ζc11

with a, b, c distinct and not equal to 0 or 1, and with β <
√

5 + .1. They
are all equivalent to

1 + ζ11 + ζ211 + ζ411 + ζ711,

which has

β = 2 cos(π/6) =
√

1 + 4 cos2(π/4).

5.2. X = 2. Let β = α+ ζpγ, with α, γ ∈ Q(ζN/p) and p ≥ 13. By (5.2),

13
4 (p− 1) > (p− 2)(M (α) + M (γ)) + M (α− γ),

13

4
· p− 1

p− 2
> M (α) + M (γ) +

M (α− γ)

p− 2
,

39
11 > M (α) + M (γ).

From here, the reasoning follows almost exactly as in Section 5.1.1. As
p > 11, any argument based on Lemma 2.5 is still valid, as θ will be smaller.
There are two cases where we need to change the argument: 1 + ζ11 can
appear, and the difference term M (α− γ) may be larger.

We can still assume M (α) 6= 9/5, now because 1
2 · 39/11 < 9/5.

In the M (α) = 7/4 case, M (γ) = 11/6 or 9/5 is still not possible: now
by the restriction on M (α) + M (γ) instead of the other reasons.
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5.3. p = 13

5.3.1. X = 3. By (5.2),

39 > 10
∑

M (αi) +
∑

M (αi − αj).

We may assume that the N -values (N (α1),N (α2),N (α3)) are (1, 1, 2). If
they are less, then N (β) = 3, and if they are more, the inequality is false.

The M -values must be (1, 1, 3/2) or (1, 1, 5/3) for the inequality to hold.

• (1, 1, 3/2). We have
∑

M (αi − αj) < 4. Neither N (α3 − α1) = 3 nor
N (α3 − α2) = 3. If so, then either α2 − α1 = 0 and 0 + 2 + 2 ≥ 4, or
N (α2 − α1) = 1 and 1 + 1 + 2 ≥ 4.

Assume without loss of generality that α1 = 1. Because N (α3−α1) ≤ 2,
there is some cancellation occurring in the difference α3−α1. In particular,
α3 must be equal to 1 + ζ5, ζ5 + ζi5, or ζ6 + ζ6ζ5. We divide into cases based
on N (α3−α1), and employ a result of Mann [Man65] (see also Poonen and
Rubinstein [PR98]). For small n, he classified vanishing sums of n roots of
unity. For n < 6, these must be sums of groups consisting of equally spaced
roots of unity.

If N (α3−α1) = 0, then we have a vanishing sum of three roots of unity,
which is impossible when two of them differ by a fifth root of unity.

If N (α3−α1) = 1, then we have a vanishing sum of four roots of unity,
and by Poonen, it must consist of two groups of two roots of unity each of
whose sum vanishes. Hence, α3 = 1 + ζ5.

If N (α3 − α1) = 2, then we have a vanishing sum of five roots of unity,
and by Poonen, it must be a primitive vanishing sum of five roots of unity,
or is two vanishing sums, one of two roots of unity and one of three roots of
unity. If we are in the five case and α3 = ζ5 + ζi5 or we are in the 2–3 case
and α3 = ζ6 + ζ6ζ5.

So, we may assume without loss of generality that (α1, α2, α3) is one of

the following: (1, ζ5, ζ
i
5 + ζj5), (1, ζ5, ζ6 + ζi5ζ

j
6), or (1, ζ6, ζ

i
6 + ζ5ζ

j
6) for some

i, j.

We compute the house of all β with restrictions from above, and in all
cases, β 2 > 5.66.

• (1, 1, 5/3). We have
∑

M (αi−αj) < 7/3. Since α1 = α2, and α3−α1

is a root of unity, we may assume that α1 = α2 = 1 and α3 = 1 + ζ7. The
smallest such β is 1 + ζ13 + ζ213(1 + ζ5) with β 2 > 10.

5.3.2. X = 4. We proceed as in Section 5.1.4. By (5.2),

39 > 9

4∑
i=1

M (αi)
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implies that αi are all roots of unity, and

3 >
∑

1≤i<j≤4
M (αi − αj)

implies that they are all the same root of unity. Thus β ∈ Q(ζ13) is a sum
of four roots of unity.

One can verify that the only such β with β <
√

5 + .1 is

β = 1 + ζ13 + ζ313 + ζ913,

with
β = 2 cos(π/6) =

√
1 + 4 cos2(π/4).

5.3.3. X ≥ 5. By (5.1), p = 13 implies that X ≤ 6. Now (5.2) gives us
13
4 · 12 > (13−X)X, which is false for X = 5, 6.

5.4. X = 3

5.4.1. p = 17. By (5.2),

52 > 14
∑

M (αj) +
∑

M (αi − αj).

So we may assume without loss of generality that α1 and α2 are both roots
of unity. Also, assume α3 is not a root of unity, since this case has been done
already. We may conclude that M (α3) = 3/2, otherwise the inequality is
false.

Now,
3 > M (α1 − α2) + M (α1 − α3) + M (α2 − α3).

For this to hold, we must have α1 = α2 and α3 − α1 a root of unity. We
may assume without loss of generality that (α1, α2, α3) = (1, 1, 1 + ζ5), and
then that β is equivalent to

β = 1 + ζ17 + ζj17(1 + ζ5)

for some j. One can verify that the smallest such β is 1 + ζ17 + ζ517(1 + ζ5)
with β 2 > 9.

5.4.2. p = 19. By (5.2),

117
2 > 16

∑
M (αi) +

∑
M (αi − αj).

As in the previous section, (M (α1),M (α2),M (α3)) = (1, 1, 3/2). Then
5
2 > M (α1 − α2) + M (α1 − α3) + M (α2 − α3)

and we may assume without loss of generality that (α1, α2, α3) = (1, 1,
1 + ζ5). Then β is equivalent to

β = 1 + ζ19 + ζj19(1 + ζ5)

for some j. One can verify that the smallest such β is 1 + ζ19 + ζ519(1 + ζ5)
with β 2 > 10.
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5.4.3. p ≥ 23. In this case, all αi must be roots of unity. Otherwise,
this contradicts (5.2). Thus N (β) = 3 and there are no exceptions to The-
orem 1.3.

5.5. X ≥ 4 and p ≥ 17. By (5.2),

13
4 (p− 1) > (p−X)X,

and by (5.1), X ≤ (p− 1)/2. We have

d

dX
((p−X)X) = p− 2X,

so for x < p/2, pX − X2 increases with X. Thus the minimal value for
(p−X)X in the region is at X = 4, but

13
4 (p− 1) > (p− 4)4

is false for p ≥ 17. Hence (5.2) is false when X ≥ 4 and p ≥ 17.

6. There are no exceptions in Q(ζ420)

Lemma 6.1. Theorem 1.3 holds for β ∈ Q(ζ420).

We have computed all β ∈ Q(ζ420) with N (β) ≤ 6 as follows: without
loss of generality we assume that the first root is 1, the second root ζi420 has

i dividing 420 (or equal to 0), and the other roots ζj420 have (420, j) ≥ i. The
results were consistent with Theorem 1.2, and all β with 5 < β 2 ≤ 5+1/25
are equivalent to 1 + ζ70 + ζ1070 + ζ2970 , as mentioned in Theorem 1.3. Thus we
know that any exceptions β must have N (β) > 6.

Write β as
∑4

i=0 ζ
i
5ηi with ηi ∈ Q(ζ84). Let X be the minimal number of

non-zero ηi that can represent β in this way, and let αi be these non-zero ηi.

In the cases below we make use of several facts about α ∈ Q(ζ84):

• If N (α) = 2, then M (α) ≥ 5/3, as 1 + ζ5 cannot appear.
• If N (α) = 4, then M (α) ≥ 5/2, by [CMS11, 7.0.8].
• If N (α) ≥ 5, then M (α) ≥ 17/6, by [CMS11, 7.0.8].

In each of the following cases, we demonstrate a contradiction to (5.2),
which now reads

13 > (5−X)

X∑
i=1

M (αi) +
∑

1≤i<j≤X
M (αi − αj) = S.

6.1. X = 1. In this case, β ∈ Q(ζ84). We can write β = α + ζ4γ with
α, γ ∈ Q(ζ21). We know that M (α) + M (γ) < 13/4, so we may assume
without loss of generality that M (α) ≤ 13/8. Then α is a root of unity. But
then M (γ) < 9/4 and N (γ) ≥ 6, a contradiction by [CMS11, 7.0.5].
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6.2. X = 2. M (αi) ≥ 23/6 contradicts (5.2). So by [CMS11, 7.0.9],
N (αi) ≤ 5.

In the following table and throughout we list lower bounds on the values
of M and S. In all cases, S ≥ 13, contradicting (5.2).

N (αi) M (αi) M (α1 − α2) S

≥ 2 5 5/3 17/6 2 151/2

≥ 3 4 2 5/2 1 141/2

6.3. X = 3. The column M (αi − αj) is listed in the order α1 − α2,
α1 − α3, α2 − α3.

N (αi) M (αi) M (αi − αj) S

1 1 ≥ 5 1 1 17/6 0 2 2 132/3

1 2 ≥ 4 1 5/3 5/2 1 2 5/3 15

1 ≥ 3 ≥ 3 1 2 2 5/3 5/3 0 131/3

2 2 3 5/3 5/3 2 0 1 1 122/3∗

2 2 ≥ 4 5/3 5/3 5/2 0 5/3 5/3 15

2 ≥ 3 ≥ 3 5/3 2 2 1 1 0 131/3

≥ 3 ≥ 3 ≥ 3 2 2 2 1∗∗ 0 0 13

∗ See that M (α1 − α2) = 0 and M (α3 − α1) = 1, or else S > 13. But
then β can be written as a sum of five roots of unity: take η′i = ηi−α1.

∗∗ This results from assuming at least one pair is different. If all αi are
equal, then β can be represented with X = 2 by taking η′j = ηj − α1.

6.4. X = 4. No two αi are equal. If αj = αk, then there is another
representation with X < 4 given by η′i = ηi − αj for all i.

The column M (αi−αj) is listed in the order α1−α2, α1−α3, α1−α4,
α2 − α3, α2 − α4, α3 − α4.

N (αi) M (αi) M (αi − αj) S

1 1 1 ≥ 4 1 1 1 5/2 1 1 2 1 2 2 141/2

1 1 2 ≥ 3 1 1 5/3 2 1 1 5/3 1 5/3 1 13

1 1 ≥ 3 ≥ 3 1 1 2 2 1 5/3 5/3 5/3 5/3 1 142/3

1 2 2 2 1 5/3 5/3 5/3 1 1 1 1 1 1 12†

1 ≥ 2 ≥ 2 ≥ 3 1 5/3 5/3 2 1 1 5/3 1 1 1 13

2 2 2 2 5/3 5/3 5/3 5/3 5/3†† 1 1 1 1 1 131/3

≥ 2 ≥ 2 ≥ 2 ≥ 3 5/3 5/3 5/3 2 1 1 1 1 1 1 13

† If any of the differences is more than a single root of unity, it increases S by at
least 2/3, so at most one difference is more than a single root of unity. Thus we
may assume without loss of generality that M (α2 − α1) = M (α3 − α1) = 1. Then
N (β) ≤ 6, as evidenced by η′i = ηi − α1 for all i.

†† If every difference is a single root of unity, then N (β) = 5: put η′i = ηi−α1 for all i.
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6.5. X = 5. This is not minimal, there is always a representation with
X < p: put η′i = ηi − α1 for all i.

Acknowledgements. This research was undertaken as part of a sum-
mer research experience at Northwestern University, funded in part by NSF
Career Grant DMS-0846285. We would like to thank F. Calegari for sug-
gesting this problem and making some useful suggestions.

References

[AH99] M. Asaeda and U. Haagerup, Exotic subfactors of finite depth with Jones in-
dices (5 +

√
13)/2 and (5 +

√
17)/2, Comm. Math. Phys. 202 (1999), 1–63.

[CMS11] F. Calegari, S. Morrison, and N. Snyder, Cyclotomic integers, fusion categories,
and subfactors, Comm. Math. Phys. 303 (2011), 845–896.

[Cas69] J. W. S. Cassels, On a conjecture of R. M. Robinson about sums of roots of
unity, J. Reine Angew. Math. 238 (1969), 112–131.

[IJMS] M. Izumi, V. F. R. Jones, S. Morrison, and N. Snyder, Subfactors of index less
than 5, part 3: quadruple points, Comm. Math. Phys.

[Jon68] A. J. Jones, Sums of three roots of unity, Proc. Cambridge Philos. Soc. 64
(1968), 673–682.

[Jon69] A. J. Jones, Sums of three roots of unity. II, Proc. Cambridge Philos. Soc. 66
(1969), 43–59.

[Jon83] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–25.
[Kro37] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten,

J. Reine Angew. Math. 53 (1857), 173–175.
[Lox72] J. H. Loxton, On the maximum modulus of cyclotomic integers, Acta Arith. 22

(1972), 69–85.
[Man65] H. B. Mann, On linear relations between roots of unity, Math. 12 (1965), 107–

117.
[PR98] B. Poonen and M. Rubinstein, The number of intersection points made by the

diagonals of a regular polygon, SIAM J. Discrete Math. 11 (1998), 135–156.
[Rob65] R. M. Robinson, Some conjectures about cyclotomic integers, Math. Comp. 19

(1965), 210–217.
[Sch66] A. Schinzel, On sums of roots of unity. Solution of two problems of R. M.

Robinson, Acta Arith. 11 (1966), 419–432.

Frederick Robinson
Department of Mathematics, UCLA
Box 951555 Los Angeles, CA, U.S.A.
E-mail: frobinson@math.ucla.edu

Michael Wurtz
Microsoft Corporation

1 Microsoft Way miwurtz 36/3511
Redmond, WA 98052, U.S.A.

E-mail: miwurtz@microsoft.com

Received on 10.6.2012
and in revised form on 28.1.2013 (7093)

http://dx.doi.org/10.1007/s002200050574
http://dx.doi.org/10.1007/s00220-010-1136-2
http://dx.doi.org/10.1007/s00220-012-1472-5
http://dx.doi.org/10.1017/S0305004100043346
http://dx.doi.org/10.1017/S0305004100044704
http://dx.doi.org/10.1007/BF01389127
http://dx.doi.org/10.1137/S0895480195281246
http://dx.doi.org/10.1090/S0025-5718-1965-0180545-X

	1 Introduction
	1.1 Some notation

	2 Some preliminary results
	2.1 Properties of M
	2.2 Conjugation
	2.3 A note on computational accuracy
	2.4 Theorem 1.3 when N() 3

	3 An upper bound for M()
	4 If Q(N), then N or N/2 is squarefree
	4.1 M() = 1
	4.2 M() = 3/2

	5 If Q(N), then N divides 420
	5.1 p = 11
	5.1.1 X=2
	5.1.2 X=3
	5.1.3 X=4
	5.1.4 X=5

	5.2 X=2
	5.3 p = 13
	5.3.1 X=3
	5.3.2 X=4
	5.3.3 X5

	5.4 X = 3
	5.4.1 p=17
	5.4.2 p=19
	5.4.3 p 23

	5.5 X 4 and p 17

	6 There are no exceptions in Q(420)
	6.1 X=1
	6.2 X=2
	6.3 X=3
	6.4 X=4
	6.5 X=5

	References

