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The image of the natural homomorphism of Witt rings
of orders in a global field

by

BeEATA ROTHKEGEL (Katowice)

1. Introduction. Every homomorphism ¢: R — P of commutative
rings (with identity elements) induces a homomorphism ¢: WR — WP
between their Witt rings in the following way. If (M, a)) € WR is the
similarity class of an inner product space (M, «), i.e.

e M is a finitely generated projective R-module,
e o: M x M — R is a nonsingular bilinear form,

then

(M, ) = (M, o)),
where M’ = P®r M and o’ : M’ x M’ — P is the nonsingular bilinear form
defined by

(1.1) d(z@m,2’ @m') =x2'o(a(m,m’)) forall z,2’ € P, m,m' € M.

The homomorphism ¢: WR — WP is said to be natural if it is induced by
an embedding R < P. If R is a Dedekind domain and P = K is its field of
fractions, then the natural homomorphism ¢: WR — WK is injective (cf.
[Kl, Satz 11.1.1]). This allows us to treat W R as a subring of W K.

Let K be a global field, R be a Dedekind domain and K be its field of
fractions. Let O < R be an order, i.e.:

e (O is a one-dimensional noetherian domain,
e R is the integral closure of O in the field K,
e R is a finitely generated O-module.

We will examine the image of the natural homomorphism ¢: WO — WR.

Since the homomorphism ¢: W R — W K is injective, it is easy to observe
that it is enough to examine the image of the composition ¢op: WO — W K.
In [C1) [C2] that image is examined in the case of orders in the rings Rx
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of algebraic integers of some quadratic number fields K = Q(v/D). Ciemala
has proved that there are infinitely many orders O < Rg such that the
natural homomorphism p: WO — W Ry is surjective. In Sections [3] [}
we will formulate necessary and sufficient conditions for the surjectivity of
the natural homomorphisms in the case of all nonreal quadratic number
fields, all real quadratic number fields K = Q(v/D) such that —1 is a norm
in the extension K/Q, and all quadratic function fields.

If R is a commutative ring, then we write U (R) for the group of invertible
elements of R. If a1,...,a4; € U(R), then (ay,...,q;) will denote both a
diagonal quadratic form and its class in the Witt ring W R. We write (a1, a2))
for the 2-fold Pfister form (1,a1) ® (1,a2) = (1,a1,a2,a1a2).

Let R be a Dedekind domain and K be its field of fractions. We define
the group E(R) of singular elements of R to be

E(R) ={g € K : ordy g = 0 (mod 2) for every maximal ideal § <I R}.

Every maximal ideal B of R determines a ‘B-adic valuation on the field K
with residue class field K. According to [MH, (3.3) Corollary] we have the
Knebusch—Milnor exact sequence

0—WR%S WK % WKy,
B
where the direct sum extends over all maximal ideals 3 of R. The additive
group homomorphism 9 is the direct sum of the second residue homomor-
phisms Op: WK — Wfqg. Directly from the sequence and the definition of
Oy we obtain

PROPOSITION 1.1. If g € K, then
(9) € 6(WR) & g€ E(R).

Let K be a global field of characteristic different from 2. Let S be a
Hasse set on K (i.e. a finite nonempty set of primes of K containing the
set of all infinite primes). Let R = Ri(S) be the ring of S-integers of the
field K (the Hasse domain),

Rk (S)={g € K : ordp g > 0 for all primes ‘P ¢ S}.

From [Cz3, Theorem 4.2] it follows that if K is a nonreal field, then the
group ¢(W Rk (S)) is additively generated by some rank one forms (g),
g € E(Rk(S)), and some 2-fold Pfister forms ((f,d)). If K is formally real,
then ¢(WRk(S)) is generated by forms (g), g € E(Rx(S)), 2-fold Pfister
forms ((f,d)) and some forms (z, —ez), e € E(Rk(S)) (cf. [Cz3, Theorem
4.7]). In Sections [2] and [6] we formulate necessary and sufficient conditions
for

(9), (f, d)), (2, —ez) € im(¢ 0 )
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to hold in the case of any Dedekind domain R and its field of fractions K
(a global field of characteristic not necessarily different from 2).

If (a1,...,a)) € WK (ie. ai,...,a; € K), then we often assume that
ai,...,a; € O, thanks to the following observation. For every i € {1,...,1}
there exist x;,y; € O\ {0} such that a; = z;/y;. Then z;y; € O. Moreover,
aiKQ = xiyif(z, SO

(a1,...,a1) = (x1y1,...,;y) in WK.

Throughout the paper, ¢ and ¢ will denote the natural homomorphisms
¢: WR - WK and ¢: WO — WR for a suitable Dedekind domain R,
respectively. Whenever we write “R < K”, we mean “R is a Dedekind
domain and K is its field of fractions”.

2. Forms of rank 1. Assume K is a global field, R < K is a Dedekind
domain and O < R is an order.

LEMMA 2.1. Let ((N,B)) € ¢(WR) and let det B be the determinant of
the form 3 in a fived basis of the space N over K. If (N, 3)) € im(¢ o ),
then there exists an ideal I of the order O and an element k € K such that

I? = (det 8- K*)O
Proof. Assume
¢O(p<(M,O¢)> - <(N,B)>,
where M =1 @® O™ n>1,and I is an ideal of O such that I? = pO for
some 0 # p € O (cf. [W], Chapter I, Propositions 3.4, 3.5], [CS| Theorem

2.6]). Moreover, a: M x M — O is a nonsingular O-bilinear form defined
by

a((xvyla v 7yn—1)7 (xla yll) B y'/n 1))

n—1
Cis
fm + Z (wir' +2y)) + > Ly

ij=1 P

"]
for all (z,y1,...,Yn—1), (&', 41, Y,_1) € M, wherea € R, b; € I, ¢;j = ¢j;
€ I? are uniquely determined (cf. [Ro, Proposition 2.8]). The determinant
of

a b1 by .- bn—1

b1 c11 12+ Clp—1

A= | b 21 C2 -+ Cap—1
(b1 Cn—11 Cno12 o Cnmin—1)

is equal to p"~! - u for some invertible u € O (cf. [Ro, Theorem 2.9]).
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Consider the basis
B=(1®(p,0,...,0),...,1®(0,...,p,...,0),...,1®(0,...,0,p))

of the linear space M’ = K ®» M over K. Then the form o/: M’ x M' — K
(defined as in (|1.1))) has matrix pA in the basis B. Moreover,

(M, a")) = ¢ o p((M, ) = (N, B)),
so there exist metabolic spaces (Mj, 1) and (N1, 51) over K such that
(M',a/) L (My, 1) = (N, B) L (N1, Br).
Therefore
det(pA)K? = +det - K2, ie. p*" ' uK?=+detp K2
There exists k € K such that
pu = +det 8- k>,
so I? = pO = puO = (det 3 - k?)O. m

We give a necessary and sufficient condition for (g) € im(¢ o ¢) for any
g € E(R).

PROPOSITION 2.2. Let R < K be a Dedekind domain, g € E(R) and
O < R be an order. Then (g) € im(¢ o @) if and only if there exists a
fractional ideal I in the field K such that

I? = 4O.

Proof. (=) From Lemma[2.1]it follows that there exists an ideal J of O
and an element k£ € K such that

J? = gk*0.
For the fractional ideal I = .J - k=1 we have
I? = 40.

(<) The map a: I x I — O defined by
1
a(z,y) = —-zy forallz,yel
g

is a nonsingular bilinear form (cf. [CS, Theorem 3.1]). Hence ((I,«)) € WO.
Consider the basis B = (1® g) of the space M’ = K ® I over K. Then the
form o/: M’ x M’ — K (defined as in (|1.1))) has matrix [g] in the basis B,
S0

¢ op((I,a)) = (g),
ie. (g) €im(pop). m
Now let § be the conductor of the order O, i.e.
f={reR:zRC O}
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(f is the greatest ideal of R lying in O). Denote by J;(R) and J;(O) the mul-
tiplicative monoids of all invertible ideals of R and O, respectively, relatively
prime to the conductor f, i.e.

Ji(R) = {I < R : I is invertible, I +f = R},
Ji(0) ={I <O : 1 is invertible, I +§= O}.
We will use the following fact.
ProprosiTIiON 2.3 ([GHK] Lemma 3(i)]). Let I be an invertible ideal of
the order O. Then I has a unique decomposition
I=1 -1,
where Iy € J;(O) has a unique representation as a product of powers of

pairwise distinct maximal ideals p <1 O such that p +§f = O, while Iy is a
product of primary ideals ¢ < O such that q 4§ # O.

From [GHKI proof of Proposition 4(ii)] it follows that an ideal p of O is
maximal if and only if there exists a maximal ideal 3 of R such that
p=PNO.
Let
f:QIIQ:Ln7 Tl,...,T’nGN,

where 91, ..., 9, are pairwise distinct maximal ideals of R. By [GHK, p. 93]
an ideal 0 # I < R is relatively prime to the conductor f if and only if it has
a unique representation as a product of powers of pairwise distinct maximal
ideals PR, P ¢ {Q1,...,9,}.

Also, by |[GHK! proof of Proposition 4(ii)] an ideal p of O is a maximal
ideal relatively prime to f if and only if there exists a unique maximal ideal
B < R relatively prime to f (i.e. P ¢ {Q1,...,Q,}) such that

p=PNO.
Moreover, the map F': J;(R) — J;(O) defined by
FI)=InO for all I € J;(R)
is an isomorphism of monoids.

THEOREM 2.4. Let K be a global field and R < K be a Dedekind domain.
Moreover, let O < R be an order, f be the conductor of O and g € E(R)NO.
If gO+§= 0, then (g) € im(¢ o p).

Proof. First we show that
gRNO = g0O.
Since gO + § = O, we have
(2.1) gO =pit---pim sy, 8m EN,
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for some pairwise distinct maximal ideals py,...,py < O relatively prime
to f. There exist maximal ideals 1, ..., B, of R relatively prime to § such
that

plzmlmov EE) pm:mmﬂo

Fix ¢ € {1,...,m} and observe that p; R = B;. Indeed, p; R C B;, so

P CPpRNOCH;,NO =p;, ie. pRNO=P,NO.
Since p; R,B; € J;(R) and

F: J{(R) — J;(0), F(I)=1nO,
is an isomorphism, p; R = ;. Therefore by ,
gR =By

Using the map F' we get

gRNO = (B1NO)* - (P N O)*™ = pi* -+ pp = gO.

From the assumption it follows that ¢ € E(R) N R, so gR = J? for some
J < R. Tt is easy to observe that J is relatively prime to f. Using again the
isomorphism F we get

gO=gRNO=J’N0O=(JN0O)?
so (g) € im(¢ o ¢) by Proposition .
We will prove that the existence of h € O such that
hK? = gK? and hO+f=0
is a necessary and sufficient condition for (¢g) € im(¢ o ¢).

LEMMA 2.5. Let q be a primary ideal of the order O such that q+§f # O.
Then the radical rad q of the ideal q is a maximal ideal in O such that

radq+§# O.

Proof. Since q is a primary ideal, radq is a prime ideal. But O is a
one-dimensional domain, so rad q is a maximal ideal.

Suppose radq + f = O. We know that f C radf, so radq + radf = O.
Hence q+ §f = O, a contradiction. =

LEMMA 2.6. Let f = Q' ---Ql», ri,...,m, € N, be the representation
of the conductor | of the order O as a product of powers of pairwise distinct

mazimal ideals of the Dedekind domain R. Moreover, let q be a primary
ideal in O such that q 4+ # O. Then

R =Q; Q7

for some s1,...,8m € N and pairwise distinct i1,...,i,m € {1,...,n}.
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Proof. First observe that qR # R. Indeed, since q # O, there exists a
maximal ideal 8 N O of O such that

CRSRURLE
(*B is a maximal ideal of R). If qR = R, then
R=qRC(PNO)RCP,

which is impossible.
Suppose that in the decomposition of the ideal qR there is a maximal
ideal P < R such that P ¢ {Q,...,Q,} (i.e. P+f= R). Then qR C P, so

qCqRNO CPNO.
The ideal N O is a maximal ideal of O relatively prime to f. Moreover,
(2.2) radg Crad(PNO) =PNO.

From Lemma 2.5 it follows that rad q is a maximal ideal such that rad q + f
# O. However, by (12.2)), rad g = B N O, which leads to a contradiction. m

COROLLARY 2.7. Let I be an invertible ideal of the order O. Then
I+§f=0 < IR+f=R.

Proof. The implication “=" is obvious.

Assume IR+ f = R. Suppose I +f # O. From Proposition [2.3] it follows
that in a representation of the ideal I there is a primary ideal q of O such
that q + f # O. However, Lemma [2.6] shows that qR C 9 for some ideal
9 < R in the decomposition of §. Hence IR C 9, i.e. IR+ f # R, which is
impossible. u

Now we prove a lemma which is true for any integral domain, not nec-
essarily an order.

LEMMA 2.8. Let P be an integral domain, I be an invertible ideal of P
and p1,...,9pm <P be pairwise distinct maximal ideals. Then

I#IpyU---Ulpy,.

Proof. Of course Ip; U---U Ip,, C I. We show by induction on m that
I¢ IpiU---Ulpy,.

For m =1, if I C Ip;, then
It rcrt.ip,

i.e. P C py, a contradiction.
Suppose
ICIpyU---Ulppy_1 Ulpy,.

By the induction assumption

Ig[plU--'UIpmfl.
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Choose an element
(2.3) € Ipm \ (Ip1 U~ U Ipp—1).

We prove that

Ipl n---N Ipm—l SZ Ipm
Indeed, if Ipy N - N Ipyp—1 C Iy, then
I- (plm"'mpm—l) nglm"'mIpm—l ngmy
ie. piN---NPm—1 C ppy- Since pq, ..., pym—1 are pairwise distinct (so relatively
prime) maximal ideals,
P Pm—1=p1N - NPm—1 € Pm.

Hence p; = pyy, for some i € {1,...,m — 1}, which is impossible.

Choose an element

yeUpiN--NIpm_1)\ Ipm.

Because I is an ideal, x + y € I. There exists ¢ € {1,...,m} such that
x+y € Ip;.

Ifi e {1,...,m— 1}, then x € Ip;. This contradicts (2.3). If i = m, then
y € Ipy,. This is also impossible. =

THEOREM 2.9. Let K be a global field and R < K be a Dedekind domain.
Moreover, let O < R be an order, f be the conductor of O and g € E(R)NO.
Then (g) € im(¢ o ) if and only if there exists h € O such that

hK?=gK? and hR+f§=R.

Proof. (=) From Lemma[2.1]it follows that there exists an ideal .J of O
and an element £ € K such that

J? = gk*0.
Since k = k1 /ky for some ki, ky € O\ {0},
(2.4) I? = gki0,

where I = Jk9 is an invertible ideal of O.

From [GHK| proof of Proposition 4(ii)] it follows that there are only
finitely many maximal ideals in O which are not relatively prime to f. Let
P1,-..,pm be all the pairwise distinct maximal ideals of O such that

pi+f#0O foreachie {1,...,m}.
There exists an element
(2.5) x eI\ (IprU---Ulpy).

Obviously z # 0 and O C I. Moreover, zI~' C O is an invertible ideal
of O.
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Notice that zI~! + § = O. Indeed, otherwise by Proposition there
exists a primary ideal q <t O such that

q+§#0 and zI ' Cy.

But g C rad q and Lemma[2.5] shows that rad q is a maximal ideal in O such
that rad q + f # O. Therefore

al7' CqCradg=yp;
for some i € {1,...,m}. Hence xO C Ip;, i.e. z € Ip;. This contradicts

(2.5).

Proposition implies that the ideal zI~! has a unique representation
as a product of powers of maximal ideals of O relatively prime to f.

Since 22 € 12, by (2.4)) there exists a nonzero h € O such that

(2.6) z? = gk2h.

Of course hK? = gK2. We show that h©® + f = O. Indeed, otherwise by
Proposition [2.3] there exists a primary ideal q; <t O such that

g +f#0O and hO Cq;.

Therefore by (2.6)),
220 = gk?0 - hO C I*qy,

i.e. (zI71)% C q;. But the ideal (zI~!)? is a product of powers of maximal
ideals of O relatively prime to f, so

(zI™H2 +§=0.
Hence q; + f = O, a contradiction.
Thus, hO+§f= 0, so hR+§=R.
(<) By assumption, hK? = gK?2 so h € E(R)NO and (g) = (h) in the
Witt ring W K. Corollary 2.7 yields hO +f = O, so (g) = (h) € im(¢ o ),
by Theorem n

COROLLARY 2.10. Letf=9Q7"---Q*, r1,...,r, €N, be the representa-
tion of the conductor § of the order O as a product of powers of pairwise dis-
tinct mazximal ideals of the Dedekind domain R. Moreover, let g € E(R)NO.
Then (g) € im(¢po @) if and only if there exists h € O such that hK? = gK?
and the ideal hR has a unique representation as a product of powers of
pairwise distinct mazimal ideals P ¢ {Q1,...,Q,}.

3. Quadratic number fields. As an example we examine the surjec-
tivity of the natural homomorphism ¢: WO — W R in the case when K is
some quadratic number field and R = Ry is the ring of algebraic integers
of K.

Let K = Q(v/D), where D is a square-free integer. Assume py, ..., ps are
all the pairwise distinct prime divisors of the discriminant of the field K (if



358 B. Rothkegel

D = 3 (mod 4), then we assume p; = 2). From [Czl} pp. 110, 116-117] it
follows that in the case when K is a nonreal field (D < 0) the set

{(1),(p1),--.,(ps—1)} when D # —1,
{(1),(2)} when D = —1,
generates the group ¢(W Rk).

Assume K is a real field (D > 0). Then K has two real infinite primes
001, 002. From [CzIl pp. 114, 117-119] it follows that the set

{(1), (1), -, (ps—1)}

is contained in the set of generators of the group ¢(W Rk).

Let Ng/g(K) denote the norm group of the extension K/Q. If —1 €

NK/@(K), then there exists b € F(Ry) that is positive at oo and negative
at oog (cf. [Cz2, proof of Proposition 3.2]). Moreover, the class (b) belongs to
the set of generators of the group ¢(W Rk ). In particular, if D # 1 (mod 8),

then the set
{0, 1)y (ps—1), (B)}
generates (W Rg) (cf. [Czl, pp. 114, 117)).
Let K = Q(v/D) be any quadratic number field. It is known that
_ (z]VD] when D # 1 (mod 4),
B {Z[(l ++vD)/2] when D=1 (mod 4).
Moreover, O < Rk is an order if and only if there exists m € N such that
[ ZmVD] when D # 1 (mod 4),
B {Z[m(l ++v/D)/2] when D =1 (mod 4)
(cf. [BC, p. 151]). The conductor f of O is then the principal ideal generated
by m, f = mRg.

PROPOSITION 3.1. Let K=Q(v/D) be a quadratic number field, O < Ry
be an order and f = mRg be its conductor. Let p € E(Rk) be a prime
number satisfying one of the following two conditions:

(i) ptm,
(ii) p|m and p|D.
Then (p) € im(¢ o ).
Proof. (i) Since ged(p, m) = 1, there exist z,y € Z such that
pxr+my = 1.
In particular pRg + f = Rk, so (p) € im(¢ o ).
(ii) Assume m = p" - m/ for some r,m’ € N and p { m'. Consider the

element
zi=p T m+m'-mVD e O.
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Then
D
22— pm?. |:<p27“+1 Lom2. > 1 om ﬁD] — pm? - h.
p

Moreover, h € O and hK? = pK?2. Since p ' m’ and D is a square-free
integer, it is easy to observe that

ng(p2r+1,m/2 . D> — 1.
p

Hence D
PR +m” - B = Rec.

We show that hRx + f = Rx. Indeed, otherwise there exists a maximal
ideal £ in the representation of the conductor f = mRy which is also in
the representation of the ideal hRyx. Then hRx C 9, i.e. h € Q. But
2my/D € §C Q, so

D
(31) p27“+1 4 m/2 .~ c D
p
Because p" - m' = m € Q, either p € Q or m’ € Q. In both cases, by (3.1)),
D
p e and m?-=eQ.
p

Therefore D
Rg =p* 'R + m”? - —Rg C Q,
p

which is impossible.
Finally, from Theorem [2.9|it follows that (p) € im(¢ o ). =

Observe that every prime divisor p;, i € {1,...,s}, of the discriminant
of the field K = Q(+/D) is a divisor of the integer D (except for p; = 2 in
the case when D =3 (mod 4)).

COROLLARY 3.2. Let K = Q(v/D) be a nonreal quadratic number field
with D # 3 (mod 4). Moreover, let O be an order. Then the natural homo-
morphism o: WO — W Ry is surjective.

COROLLARY 3.3. Let K = Q(v/D) be a nonreal quadratic number field
with D = 3 (mod 4). Moreover, let O = Z[m~/D] be an order such that
2t m. Then the natural homomorphism ¢: WO — W Ry is surjective.

PROPOSITION 3.4. Let K = Q(v/D) be any quadratic number field with
D =3 (mod 4). If O = Z[mv/D] is an order such that 2| m, then
(p1) = (2) ¢ im(d 0 ).
Proof. First assume m = 2. Denote O; := Z[2v/D] and suppose that
(2) € im(¢ o 1), where ¢1: WO; — W Rk is the natural homomorphism.
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In the same way as in (2.4), from Lemma it follows that there exists
an ideal I of O; and an element k; € O; \ {0} such that

I? = 2K20.
Multiplying the above equality by the principal ideal of O; generated by the
element conjugate to k?, we obtain
% = 2n*0y
for some ideal T of @7 and n € N. We will show that this is impossible.
Assume 2 { n. Then for every z 4 2yv/D € T, where .,y € Z, we have

2| (z + 2yV'D)>.

Hence 2|z, so in particular the rational part of every element of the ideal
T? is divisible by 4. But 2n? € T2 NN and 2 { n, a contradiction.
Assume n = 2" - n/ for some r,n’ € N and 2 {n’. Then

(3.2) T2 =227t p20.
Since 2r 4+ 1 > 3, for every = + 2yv/D € T we have
22| (z +2yvD)? in O = Z[2V D).
Hence
23| (x® +4y*D) and 2% |xy.
By assumption, D = 3 (mod 4), so 2|z and 2 |y. Therefore
2| (z+2yVD) in O.
There exists an ideal T} of O; such that
T =20 T1,
i.e. by ,

T12 — 227"—1 . n/201

where 2r — 1 > 1.

Repeating this procedure until 2r — 1 = 1, we prove that there exists an
ideal T" of ©; such that

T = 2n0;.

But 2 {7/, so this is impossible.

To sum up, we have shown that if O = Z[2v/D], then (2) ¢ im(¢ o ).

Assume that O = Z[m+/D] is any order such that 2|m. Suppose that
(2) € im(¢ o ). By Theorem [2.9| there exists h € O such that

hK?=2K? and hRy +mRgx = Rk.

But
ZIm\/D] C Z[2v/D] = Oy,
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so h € O;. Moreover,
Ry = hRg +mRig C hRg + 2Ry, ie. hRg + 2Rk = Rg.

Using again Theorem we get (2) € im(¢ o ¢1), a contradiction. Thus,
(2) ¢im(pop). =
COROLLARY 3.5. Let K = Q(v/'D) with D = 3 (mod 4). Moreover, let

O = ZImv/D] be an order such that 2|m. Then o: WO — W Rk is not
surjective.

Now assume K = Q(v/D) is a real field with —1 € NK/@(K). Ifpi,...,ps
are all the pairwise distinct prime divisors of the discriminant of K, then
the condition —1 € NK/@(K) can be replaced by p; = 1,2 (mod 4) for
1=1,...,s.

We give a necessary and sufficient condition for (b) € im(¢ o ¢), where
be E(Rk)N O is positive at co; and negative at cos.

In elementary number theory the following fact is known.

PROPOSITION 3.6. Let ¢ = 2"qy - - - q;, where r € NU {0} and q1,...,q
are odd prime numbers. Then the equation X? + Y? = ¢ has a solution
(z,y) € Z x Z with ged(x,y,¢) = 1 if and only if r € {0,1} and ¢; = 1
(mod 4) for everyi e {1,...,1}.

PROPOSITION 3.7. Let K = Q(vD) be a real quadratic number field
with D =1 (mod 4) and —1 € NK/Q(K). Let O = Z[m(1 + /D) /2] be an
order with m = 2"qy - - - q;, where r € NU {0} and q1,...,q are odd prime
numbers. Moreover, let b € E(Rg)NO be positive at ooy and negative at cos.
Then (by € im(¢ o ) if and only if r € {0,1} and ¢; = 1 (mod 4) for every
ie{l,...,1}.

Proof. (=) By Theorem there exists h = = + ym(1 ++vD)/2 € O
such that ' .
hK? =bK? and hRg +f= Rg.

Because N /g(h) <0 and h € E(Rk) N O, we have

Ngjg(h) = —t?  for some t € N.

Observe that

2
—t? = Nk yo(h) =hh=a>4+m- :L‘y+yzm(1—D) ,

where h denotes the element conjugate to h. Since D =1 (mod 4),

Y2
a:= a:y+zm(1—D) €Z.

Hence

(3.3) 22 +1?> = —ma, where —ma € N.
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We assume ged (22,12, a) is a square-free integer (if n? | ged(z2, 2, a) for some
n € N, then we divide by n?).

Suppose either r > 1, or ¢; = 3 (mod 4) for some i € {1,...,[}. By Propo-
sitionthere exists a prime number p such that p |z, p| ¢ and p? | ma. Since
ged(22, 12, a) is a square-free integer, p | m. Hence p | (z +ym(1 4+ vD)/2) in
the ring R, i.e.

hRx +f=hRx + mRg # Ry,
a contradiction.
(<) Let
{ m when 2 {m,
my =
m/2 when 2|m.
Obviously mj =1 (mod 2).

Since D = 1 (mod 4) and —1 € NK/Q(K), every prime divisor of D is

congruent to 1 modulo 4. By Proposition there exist x,y € Z such that

We assume y = 1 (mod 2).
Consider

(x —m1) +m(1++vD)/2 when 2|m.
Observe that g € O and

Nijolg) = g9 = 2> = miD = —y°.
Moreover, ged(Ng/g(g),m) =1, so
gRg +f=gRx + mRg = Ri.

We show that g € E(Rk).

If g € U(Rk), then g € E(Rk). Assume g ¢ U(Rk). Let B be a maximal
ideal in the decomposition of the ideal g Ry . The ideal 3 lies over some prime
number p.

(a) If p ramifies in K (pRx = PB?), then p| D. Moreover, p | Ngo(g), so
ged(x,y,miD) > 1, a contradiction.

(b) If p remains prime in K (pRx = B), then p|g in Rg. It is easy
to observe that p|2m and p| Ng/g(g). If p|ma, then ged(z,y,miD) > 1,
which is not the case. If p = 2, then 2|y, which is not the case either.

(c) Hence p splits in K, pRi = PP. Observe that the ideal ¢ does not
belong to the decomposition of the ideal gRx. Otherwise, p|g in Ry, which
is a contradiction. The ideal 8 belongs only to the decomposition of the
ideal gRk. Because

gRk -gRk = (yRk)?,

we have ordg g = ordgg =0 (mod 2). Finally, g € E(Rg) N O.
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Theorem [2.9] implies that

(3.4) (9) € im(¢ o).
Since Nk q(g) = —y2, from [Cz2, Proposition 3.2, p. 36] it follows that
bKQ — j:gpql .. .pzs—_lle’
where p1 ..., ps_1 are pairwise distinct prime divisors of the discriminant of
the field K and r; € {0,1}, i =1,...,s — 1. Hence
(b) = £{g)(p1") - (P
in the Witt ring W K. By (3.4) and Proposition (b) €im(po ). m
COROLLARY 3.8. Let K = Q(\/ﬁ) be a real quadratic number field with
D =5 (mod 8) and —1 € Ny q(K). Moreover, let O = Z[m(1+ v/D)/2]
be an order with m = 2"qy ---q;, where r € {0,1} and q1,...,q are odd
prime numbers such that ¢; = 1 (mod 4) for every i € {1,...,l}. Then
w: WO — W Ry is surjective.
Proof. This follows from statements on page and Propositions
and .
COROLLARY 3.9. Let K = Q(\/ﬁ) be a real quadratic number field with
D =1 (mod 4) and —1 € Ngg(K). Moreover, let O = Z[m(1 + VD) /2]
be an order with m = 2"qy - - - q;, where r € NU {0} and qi,...,q are odd
prime numbers. If either r > 1, or ¢; = 3 (mod 4) for some i € {1,...,1},
then p: WO — W Rk is not surjective.

PROPOSITION 3.10. Let K = Q(v/D) be a real quadratic number field
with 2| D and —1 € NK/Q(K). Let O = Z[m+\/D] be an order with m =
2"q1 -+ - qi, wherer € NU{0} and q1, ..., q are odd prime numbers. Moreover,
letb € E(Rk)NO be positive at oo1 and negative at 0oy. Then (b) € im(¢oyp)
if and only if r =0 and ¢; = 1 (mod 4) for every i € {1,...,1}.

Proof. (=) Theorem m yields h = z + ym\/D € O such that
hK?=bK? and hRg +f= Rxk.
As in the proof of the implication “=" of Proposition we notice that
Ngg(h) = —12 for some ¢ € N. Hence
22 +t2 = m?y°D.
We assume ged(z, t,y) = 1.
If either > 0, or ¢; = 3 (mod 4) for some i € {1,...,1}, then by Propo-

sition there exists a prime number p such that p|xz, p|t and p? | m?D.
Since D is a square-free integer, p| m. Then p|h in R, so

hRix +f=hRg + mRg # Rk,

a contradiction.
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(<) Since —1 € N K/@(K ), every odd prime divisor of D is congruent
to 1 modulo 4. Proposition [3.6| gives x,y € Z such that
22 +y*> =m?D and ged(z,y,m?D) = 1.
Consider ¢ := z +mv/D € O. Obviously,
Nicglg) = 2% —m?D = —,
Moreover, ged(Ng/g(g),m) =1, so
gRKk +f=gRx +mRg = Rg.

As in the proof of the implication “<” of Proposition we show that
g € E(Rk). Hence (g) € im(¢ o ¢) and finally,

(b) = (g)(p1") -+ (p°7') € im(po ). m

COROLLARY 3.11. Let K = Q(v/D) be a real quadratic number field
with 2| D and —1 € NK/Q(K). Moreover, let O = Z[m~/D) be an order with
m = 2"qy ---q, where r € NU{0} and q1,...,q are odd prime numbers.
Then ¢: WO — W Rk is surjective if and only if r =0 and ¢; = 1 (mod 4)
for every i € {1,...,1}.

Proof. This follows from page and Propositions [3.1] and .

4. Quadratic function fields. Assume F is a finite field of character-
istic # 2. Assume € is a generator of the group F. Let F = F(X) be the
rational function field over F and cor be the prime of F' with uniformizing
parameter 1/X.

Let D € F[X] be a square-free polynomial of degree > 1 and a4 be the
leading coefficient of D. We assume ag is either 1 or €. Let K = F(v/D).

THEOREM 4.1 (Rl Proposition 14.6]).
(i) If deg D =1 (mod 2), then cop ramifies in K.
(ii) If deg D =0 (mod 2) and ag = 1, then ocop splits in K.
(iii) If deg D =0 (mod 2) and ag = €, then oo is prime in K.
The field K is said to be real if cop splits in K, and nonreal otherwise.

Throughout this section we assume that S is the set of primes of K
which lie over cop. Let

Di(S) ={g9 € E(Rk(S)) : (—1,9)p = 1 for every P € S},
where (-,-)p denotes the PB-adic Hilbert symbol. Let ug(S) denote the
2-rank of the group E(Rk(S))/Dk(S) (cf. [Cz3| p. 607], [RC| p. 196]).
Assume py,...,ps € F[X] are all the pairwise distinct monic irreducible

polynomials which divide D. From [RC, Proposition 6.2] it follows that
€ € Ni/p(K) if and only if each p; has even degree. If € € N, p(K), then
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there exists b € F(R(S)) such that Ny p(b) € eF? (cf. [RC, Lemma 1.12]).
By [RC p. 208] and [Cz3, Theorem 4.2] the set of classes

{<1>7 <6>7 <p1>7 A <ps—1>7 <b>} when € € NK/F(K)7

{<1>,<6>,<]31>,-..,<p5_1>} WhenegéNK/F(K)?

is contained in the set of generators of the group ¢(W Rk (S)). In particular,
if K is either a nonreal field, or a real field and ug(S) # 0, then the set

generates ¢(W Rk (S)).

It is known that

(4.1)

Ri(S) = F[X][VD].
Moreover, O < Rg(S) is an order if and only if there exists 0 # m € F[X]
such that
O = F[X][mVD]
(cf. R p. 248, Proposition 17.6]). The conductor f of O is the principal ideal
generated by m, f = mRg(S).

PROPOSITION 4.2. Let K = F(\/D) be a quadratic function field, let
O < Rk(S) be an order and let f = mRg(S) be its conductor. Suppose
that p € E(Rk(S)) NF[X] is an irreducible polynomial satisfying one of the
following two conditions:

(i) ptm,
(ii) p|m and p| D.

Then (p) € im(¢ o ).
Proof. This is proved similarly to Proposition .

The element € is invertible in @. Hence

(4.2) (€) € im(¢ o ).
COROLLARY 4.3. Let K = F(v/D) be a nonreal quadratic function field

with € ¢ Ng/p(K). Moreover, let O < Ry (S) be an order. Then the natural
homomorphism ¢: WO — W Rk (S) is surjective.

COROLLARY 4.4. Let K = F(V/D) be a real quadratic function field with

€ ¢ Ng/p(K) and ug(S) # 0. Moreover, let O < Rk (S) be an order. Then
0: WO — WRk(S) is surjective.

Assume € € N/ p(K). We give a necessary and sufficient condition for
(t) € im(g 0 ).
LEMMA 4.5. Let ¢ = q1---q, where q1,...,q € F[X] are irreducible.

Then the equation X2 — €Y? = ¢ has a solution (z,y) € F[X] x F[X] with
ged(z,y,¢) ~ 1 if and only if degq; = 0 (mod 2) for everyi € {1,...,1}.
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Proof. (=) Suppose degg; = 1 (mod 2) for some i € {1,...,l}. Ob-
viously, 22 — ey? = 0 (mod ¢;). Because ged(z,y,¢) ~ 1, we have y # 0
(mod ¢;). Then (z/y)? = € (mod ¢;), i.e. € is a square modulo ¢;. This is
impossible (cf. [R, Propositions 3.1 3), 3.2]).

(<) We use induction on l. Fix i€{1,...,{}. Because deg ¢; =0 (mod 2),
we have

(67Qi)Qi =1 and (e Qi)OOF = 1.
For every prime p ¢ {g;,00or} of the field F' the elements €, ¢; are p-adic
units, so (e,¢;)p = 1. From the local-global principle it follows that the
form (e, g;) represents 1 over the field F. It is easy to observe that the form
(1, —€) represents g; over F. By [Pl 2.2 Theorem, Chapter 1] the form (1, —¢)
represents ¢; over the ring F[X]. Hence there exist z;,¢; € F[X] such that
22 — et? = g;. Obviously, ged(z;, i, ¢;) ~ 1.

Consider the equation X? — ¢Y? = q;---qq41. By the induction as-
sumption there exist x,y € F[X] such that

332_692 =q---q and ged(z,y,q1---q) ~ 1.

Observe that
(21412 + eti11y)” — e(z1y + tiaz)? = @ - Qg
(21412 — etry1y)” — e(zipy — tiz)? = - aq-
Using elementary arguments we prove that either
ged(zi1% + €t141Y, 2041y + L1 ®, 1 @) ~ 1, or
ged(zi412 — €1y, 211y — L%, i @Gier) ~ 1w
PROPOSITION 4.6. Let K = F(V/D) be a quadratic function field with
€ € Ng/p(K). Let O = F[X][mv/D] be an order with m = q1 ---q, where
q,- -, q € F[X] are irreducible polynomials. Moreover, let be E(Rx(S))NO
with Ngp(b) € €F?. Then (b) € im(¢ o @) if and only if deg q; = 0 (mod 2)
for every i € {1,...,1}.
Proof. Using Lemma |4.5| we prove the implication “=" similarly to “="
of Proposition [3.10L .
(«=) Since € € Ng,p(K), every monic irreducible polynomial which di-
vides D has even degree. Lemma yields z,y € F[X] such that
22 — ey  =m?D and ged(z,y,m?D) ~ 1.
Consider g := z+m+v/D € O. Similarly to the proofs of “<” of Propositions
and [3.10] we show that
(4.3) (9) € im(¢ 0 ).
Since Ng,r(g) = ey?, from [RC, p. 208] it follows that

bK2 — gerp71“1 . ‘pgs_flll'(&’
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where p1,...,ps—1 € F[X] are pairwise distinct monic irreducible polynomi-
als which divide D, and r,r; € {0,1},i=1,...,s — 1. Hence
(b) = (g} (e p1") -+ )
in WK. By (4.2), (4.3) and Proposition (b) € im(po ). =
COROLLARY 4.7. Let K = F(v/D) be a nonreal quadratic function field
with € € Ny p(K). Moreover, let O = F[X] [m\/D] be an order with m =
qi---q, where q,...,q € F[X] are irreducible polynomials such that

degg; = 0 (mod 2) for every i € {1,...,l}. Then the natural homomor-
phism p: WO — W Rk (S) is surjective.

COROLLARY 4.8. Let K = F(v/D) be a real quadratic function field with
€ € NK/F(K) and ug (S) # 0. Moreover, let © = F[X][m+\/D] be an order
with m = q1-- - q, where q1,...,q € F[X] are irreducible polynomials such
that deg g; = 0 (mod 2) for every i € {1,...,1}. Then ¢: WO — WRg(S)
18 surjective.

Corollaries and follow from statements on page (4.2) and
Propositions .2 and

COROLLARY 4.9. Let K = F(v/D) with ¢ € NK/F(K). Moreover, let
O = F[X][mv/D] be an order with m = qy - - - q;, where qu,...,q € F[X] are
irreducible polynomials. If degq; = 1 (mod 2) for some i € {1,...,1l}, then
v: WO — WRk(S) is not surjective.

5. Forms of rank > 1. Let K be a global field and R < K be a
Dedekind domain. Now we generalize Theorem

LEMMA 5.1. Let O < R be an order, { be its conductor and B be a
maximal ideal of R such that B+ f = R. Then the localisation of the ring R
at the ideal P is equal to the localisation of O at the maximal ideal P N O,

ng = Oq}mo.

Proof. “2” This inclusion is obvious.

“C” Let x/y € Ry. Then 2,y € R and y ¢ PB. Because P +f = R, we
have § ¢ 9B. Choose an element z € §\ PB. Then zz, zy € O and

T zT

—=—¢c0 .

y 2y BNO
Indeed, if zy € PN O, then zy € P, i.e. either z € P or y € P, which is not
the case. m

COROLLARY 5.2. Let M be an R-module and P be a mazimal ideal of
R such that P+ f = R. Then the localisation of the module M at the ideal
B is equal to the localisation of M over the order O at the maximal ideal
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PTNO<O:
ng = M‘WTO-
LEMMA 5.3. Let © < R be an order and My, ..., My C K' be O-modules,
l € N. Moreover, let p be a mazximal ideal of O. Then

(My)p M- N (M) = (My -+ 0 M)y

Proof. The inclusion D is obvious.
“C” Let x € (My)yN---N(Ms)y. Then

mi ms
Y1 Ys

for some my € My,...,ms € M and yi,...,ys € O\ p. Multiplying the
above equalities of vectors by y;---ys we get the existence of elements
21,.--.,25 € O\ p such that

zami =+ =zsmg € My N ---N M.

Hence " J
x:—lz ! lG(Mlﬂ-"ﬂMs)p.l

al Z1Y1

Let a: K!'x K! — K be a bilinear form. Assume that o has a nonsingular
diagonal matrix

aj -+ 0
A=
0 - q
in the canonical basis of K', i.e. (a1,...,a;) € WK. Moreover, assume that

(a1,...,a;) € p(WR), a; € O and a;R+f = R for every i € {1,...,1}. We
will generalize Theorem to the form (aq,...,a;).
Observe that
ordpa; =0 for every i c {1,...,1}

for all but a finite number of maximal ideals B <1 R.
(I) Fix such an B < R. Consider the free module @2:1 w?Rrp C K! over
the ring Ry, where

wP =(1,0,...,0), ..., w}=(0,...,0,1).

Consider the restriction of o to @221 w?ng X @221 w?ng. Then the form
a: @, w;-ang xP_, w?Rsp — Ry has matrix A in the basis (w},. .., w?3)
Since ordyg a; = 0 for every i € {1,...,1},

det A=ay---a; € U(Ryp).

Thus « is nonsingular over the ring Ryp.
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(IT) Let B <0 R be a maximal ideal R such that
ordpa; >0 for some i € {1,...,1}.

The localisation Ry is a B-adic valuation ring. If Fsp denotes the residue
class field, then from [MH) (3.3) Corollary] it follows that (ai,...,a;)
belongs to the kernel of the second residue homomorphism of Witt groups
Op: WK — WKgyg. By [MH, proof of (3.1) Theorem] there exists a free

module (Rgp-lattice) @2:1 w;-nR;p C K! over Ry such that the form
a: @2:1 w?Rm X @2:1 w?ch — Ry is nonsingular.
Denote by P; the set of all maximal ideals B of R such that P +f= R.
Let p1,...,pm be all the pairwise distinct maximal ideals of O such that
pi+§#0O forevery je{l,...,m}.
Let

M=) (éw?}zm) n ﬁ oL,
j=1

‘BG'Pf =1

where for every P € P; the vectors w?, e ,w;p are as in (I) and (II). It is
easy to observe that M is an O-module.

PROPOSITION 5.4. Let ay,...,a; € O and suppose a;R+f = R for every
i €{1,...,1}. Under the assumptions and notation of pages 368 and

(i) Mypno = @i-:l w;qug for every B € Py,
(ii) My, = Oéj for every j € {1,...,m}.

Proof. (i) Fix PBo € P;. It is easy to observe that

l
M C @w?Ongo.

i=1

From Lemma [5.1] it follows that Ry, = Og,no. Therefore

!
(5.1) Mspono € @w?OR‘ﬁO'
i=1
To show the opposite inclusion, let 1, ..., £, be all the pairwise distinct

maximal ideals of R such that
Q;+f#R foreveryie{l,...,n}

(these are all the maximal ideals in the decomposition of f). Consider the

module l
Ni= () (Pu¥re)n () B,
i=1

PeP; i=1
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over the ring R. Since

wf = (1,0,...,0), ..., w} =(0,...,0,1)
for all but a finite number of &B € Py, from [O], 81:14], [MH, (3.2) Lemma] it
follows that l
= @ w?gOngo.
i=1

Hence in particular

Dt rm < [ ) (@oPm)], -

i}?fEPf =1
Because by assumption PBo + f = R, Corollary yields

N@mw)],, = [N (@),

Py =1
i.e.
l 1
(5.2) @w?ongo Q [ ﬂ (@ w?gRq})}qs ﬂO.
i=1 peP; =1 0
We will show that also

@@U%R% C ﬂ )Fono-

Fix an ideal p;.
(I) Assume that By is an ideal such that

ordg, a; =0 for every i € {1,...,1}.

Then
=(1,0,...,0), ..., w}® = (0,...,0,1),
SO w?o, . ,w}no € (’)éj. Hence
l l
@w?ORmo = @w?o(%pomo c (Oé‘j)fnomo,
j= i=1
and finally

@wmoRmo - ﬂ PoNO-

(IT) Assume that
ordgp, a; >0 for some i € {1,...,1}.

Fix such an element a;,, ig € {1,...,{}.
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Since by assumption a;, R + f = R, observe that a;, € U(O,,). Indeed,
it is enough to prove that a;, ¢ p;. From Corollary it follows that
a;,O +§ = O. Therefore if a;, € p;, then

O=0a;,O+FCpj+f#0,

which is impossible.

Let m € Ry, with ordg, 7 = 1. Then a;, = 7" - u for some k € N and
uelU (R‘Bo)'

Observe that

l
(5.3) Pu'r=K"=(1,0,...,0Ka - ®(0,...,01)K.

i=1
For every vector w?o there exist x1,...,x; € K such that
wr® = (1,0,...,0)z; + -+ (0,...,0,1)a;.
Fix zg, s € {1,...,1}. Assume x4 # 0. Then x4, = 7" - v for some r € Z and
v E U(Rgpo).

If r > 0, then x5 € Ry, = Opyno, so
(0,1, 0)zq € (O3, )or0-

If r < 0, then choose ¢ € N such that » > —ck. Then
—c . ﬂ_r+ck . ,C

T
Ty =T -V =a u° v,

where ai_oc € Oy;, artek L ul v e Ry, = Opyno, so again

,..., g, .., 0)xg € (O;laj)%ﬂo'

We get
(5.4) w} € (0} )pno-
Hence
!
P w° Ry, < (O}, )pono:
i=1
and finally

l m
!
@W?OR% - m(opj)‘ﬁoﬂ@'
i=1 j=1

From (I), (II) and (5.2)) it follows that

e]l;w?(’R% <N (é w?Rm)}WO n ﬁ(of,j)%m@.
=1
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By Lemma
l
P wP Ry, < My,ro.
i=1

(ii) Fix jo € {1,...,m}. The inclusion My, C Oéjo is obvious. Observe
that

m
(1,0,...,0),...,(0,...,0,1) € (] O}
j=1
Hence
m
l !
(5.5) o, < (N Opj)p_ .
j=1 0

Denote by Pj, and P}, the sets of maximal ideals 3 € P; such that
ordpa; =0 for every i€ {1,...,1}
and of maximal ideals 33 € P such that
ordpa; >0 for some i € {1,...,1},

respectively. Obviously P, is a finite set.
Because for every P € Pj, we have

wF = (1,0,...,0), ..., wF =(0,...,0,1),
as in (5.5) we obtain
!
(5.6) o, (N Pulry) -
&EGPH =1 Pio

However, using (5.3)) for Py = P and applying similar arguments to those
for ((5.4) we prove that

l
(1,0,...,0),...,(0,...,0,1) € (@w?ng>
=1

pjo

for every ‘B € Py,, i.e.

(5.7) o, < N (e]lgw?Rm)

PEP;, =1 Pio

From ([5.5)—(5.7) and Lemma it follows that Oll“jo C My, =
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PropoOSITION 5.5. Let ay,...,a; € O and suppose that a;R+f= R for
every i € {1,...,l}. Moreover, let

= ) (@) n()0}
j=1

‘BEPf =1
under the assumptions and notation of pages and [369. Then the
O-module M 1is finitely generated and projective of rank [.

Proof. Fix a maximal ideal p of O. Assume p + f = O. There exists
a unique maximal ideal B € Pj such that p = P N O. Therefore from
Proposition [5.4] it follows that

l
Mp = M&Bﬂ@ = @ w?pr.
i=1
Hence M, is a free O, (= Ryp)-module of rank .

Let p+f # O (ie. p € {p1,...,pm}). Again Proposition yields
M, = Of,, so M, is a free Op-module of rank .

To sum up, the localisation of the module M at every maximal ideal of
the order O is a free module of rank [. Therefore it suffices to prove that M
is finitely generated over O.

Observe that we have at most finitely many vectors w;p such that

w;p ¢ O'. Every coordinate of a vector w?} has the form
av?/y?3 for some x? €0, y? € 0\ {0}.

Consider the following element z of the order O. If there does not exist a
vector w? such that w;n ¢ O, then we take z = 1. Otherwise, let z be the

product of the denominators y;n of all vectors w?‘; such that w?} ¢ O'. Then
zw?3 e O! for every P € Ps. Moreover,

M = ﬂ(ézw?l%p) ﬂz(’) C ﬂ quﬂol

‘ﬁEPf =1 7=1 ‘Bepf

But Ry = Opno for every B € Pj, so

m
l l
M C ) Opron (] O,
PP 7=1

Since {BPNO : P € Pj}, p1,...,pm, are all the pairwise distinct maximal
ideals of O (cf. [GHK|, proof of Proposition 4(ii)]), it is easy to observe that

N am@mﬂol =0
PeP;
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Hence zM C O is a submodule of the finitely generated O-module O!. But
O is a noetherian domain, so zM is a finitely generated O-module. It suffices
to notice that M = z M, i.e. M is finitely generated over O. u

THEOREM 5.6. Let K be a global field and R < K be a Dedekind domain.
Moreover, let O < R be an order, | be the conductor of O and suppose that
(a1,...,a;) € p(WR) with ay,...,a; € O. If

a;R+f=R foreveryie{1,...,1},
then (a1, ...,a;) € im(¢ o p).
Proof. Let a: K' x K! — K be a nonsingular bilinear form with matrix

ap - 0
A= :

0 - q

in the basis
B=((1,0,...,0),...,(0,...,0,1))

of K!'. Consider the finitely generated projective O-module M from Propo-
sition [5.5] and the restriction of a to M x M, and fix a maximal ideal p
of O.

Assume p + §f = O. Then there exists a unique maximal ideal B € P; of
R such that p =B N O. We have

!
Mp = M&BOO = @w;‘pRm.
i=1
Moreover, Ry = Op. From (I) and (II) on pages and it follows that
the localisation ayp: My x M, — O, is nonsingular over O.

Let p+f # O. Then M, = Of). Since a;R 4+ f = R, we have a; € U(Oy)
for every i € {1,...,1} (see proof of Proposition [5.4{i)). The localisation
ap: My x My, — O, has matrix A in the basis B of the free module M,.
Hence ay is nonsingular over Oy.

To sum up, the localisation of the form « at every maximal ideal p of O
is nonsingular. Hence by [Bl (1.4) Proposition| the form a: M x M — O is
nonsingular over O, so in particular ((M,«a)) € WO.

It is easy to observe that

(]50()0<(M,a)> = <CL1,...,CL[>,
ie. (a1,...,a;) € im(pop). m

6. Forms ((f,d), (z,—ez). Now we formulate some facts for integral
semilocal domains.
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ProprosITION 6.1. If P is an integral semilocal domain, then every ele-
ment of the Witt ring WP can be written in the form (ai,...,a;) for some
ai,...,aq € U(P)

Proof. Since P is an integral domain, every finitely generated projective
P-module is free (cf. [M, p. 26]). It suffices to use [M], 2.7 Corollary, p. 32]. =

Let P be an integral semilocal domain and K be its field of fractions.
Denote by I(K) the fundamental ideal of W K consisting of the Witt classes
of even dimensional forms over K. Denote by I?(P) the subgroup of the
second power I?(K) of the ideal I(K) additively generated by the set

{{a,b)) e WK :a,bc U(P)}.

We will write
(a1,...,a;) = (b1,...,b) mod I*(P)

if (al,...,al) — <b1,...,bk> EIZ(P).

PROPOSITION 6.2. Let (ay,...,a;) € WP with ai,...,a; € U(P) and l
odd. Moreover, let

. '2 =
al---alK2:{K. when | =3 (mod 4),
—K? whenl=1 (mod 4).
Then (1,a1,...,a;) € I*(P).

Proof. We use induction on [. If | = 1, then a; K2 = —K?2, so (a;) = (—1)
in WK. Therefore

(1,a1) = (1,-1) = (1,-1,1,-1) € I*(P).

Assume [ = 3. Then ajasasK? = K2, i.e. asK? = ajas K?. Hence

(6.1) (1,a1,a2,a3> = <1,a1,a2,a1a2> S IQ(P).
Let | = 5. Observe that
(6.2) (a1,a2,a3,a4) = (1,a1,a2,a1a2) + (1, a3, as, azas)

— (1,1, a1a2, a1az) + (a1az, —azayq)
in WK, so
<1,a1,a2,a3,a4,a5> = <1>a1a27 _a3a47a5> mod IQ(P)

Since (ajag, —agaq,as) € WP and —a1a2a3a4a5K2 = K2, analogously to

(6.1) we get
(1,a1a2, —a3a4,a5> S Iz(P).

Hence (1, a1, as,a3, a4, as) € I*(P).
Assume [ = 4k + 3 for some k € N. Using (6.2)) we obtain

(at,. . sa) = (br, .., ba) mod 12(P)
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for some by, ...,boy € U(P). Therefore
(Lay,...,a;) = (1,a1,..., a4k, Qak+1, Qak+2, Qak+3)
= (1,b1,.. ., bk, Qaks1, Qaky2, Aaky3) mod I7(P).
Observe that
bl'”b%KQ:{al'--aMK% when k& = 0 (mod 2),
—ay---agK? when k =1 (mod 2).
Assume k = 2s for some s € N. The form
(b1, .., bok, Qaky1, Qaky2, Qapy3) € WP
has rank 4s + 3 < I. Its determinant over K is equal to a; --- ;K2 = K2,
By the induction assumption,
<17 b17 sy b2k7 a4k+17 A4k+2, a4k+3> € 12(P)7
ie. (1,a,...,q) € I*(P).
Assume k = 2s + 1 for some s € NU {0}. The form
(b1, Dok, Qug+1, Aak42, Aagt3) € WP
has rank 4(s + 1) + 1 < I. Its determinant over K is —a; - -- ;K% = —K?.
By the induction assumption,
(1,b1, ... o, Qapy1, Qg Aakys) € 17 (P),
ie. (1,a,...,q) € I*(P).
Analogously to the case | = 4k + 3 we prove that (1,a1,...,a;) € I*(P)
forl=4k+1,keN. u

Let K be a global field and R < K be a Dedekind domain. Moreover,
let O < R be an order and f be its conductor. Let P = (J;_, p;, where
P1,-..,Ppm are all the pairwise distinct maximal ideals of O such that

pi+§f#O foreveryie{l,...,m}.

Denote by Op the localisation of the order O at the set O\ P. The ring Op
is an integral semilocal domain.

LEMMA 6.3. If a € O is nonzero, then
ac€U(Op) & aR+f=R.

Proof. (<) It suffices to observe that a ¢ p; for every i € {1,...,m}

(see proof of Proposition [5.4{1)).
(=) Suppose aR + § # R. Then there exists a maximal ideal Q in the
decomposition of § such that aR C Q (cf. [GHK] p. 93]). Hence

acQNO=yp; forsomeie{l,...,m}
(cf. [GHK, proof of Proposition 4(ii)]). This is impossible. =
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COROLLARY 6.4. The group I*(Op) is additively generated by the Pfister
forms ((a,b)) € WK such that a,b € O and aR+f= R, bR+ f= R.

Proof. Let ((c,d)) € WK and ¢,d € U(Op). Then ¢ = z1/y1, d = z2/y2
for some x1,z2,y1,y2 € O\ P. Moreover, we have a := z1y1 € O NU(Op),
b:=x2y2 € ONU(Op) and ((¢,d)) = (a,b)) in WK. =

THEOREM 6.5. Let K be a global field, R < K be a Dedekind domain
and O < R be an order. Moreover, let (a1,...,a;) € p(WR) with | odd and

al---alK2:{K2. when | = 3 (mod 4),
—K? whenl=1 (mod 4).
Then

(ay,...,q)) €im(pop) & (1,a1,...,a) € I*(Op).

Proof. (<) From Corollary it follows that
(Lat,...,a;) = (1,b1,c1,b1c1) + -+ + (1, bg, ¢, brcr) € ¢(WR)

for some by, c1,...,bg, c, € O such that

biR+f=R, c¢R+f=R foreveryie{l,... ,k}.

Since none of the maximal ideals in the decomposition of f belongs to the
decompositions of the ideals b; R, ¢; R, none of them belongs to the decom-
position of b;c; R. Therefore

bic;R+f=R foreveryie{l,... k}.
By Theorem

<1, at, ... ,al> = <1, b1, cq, b161> + -+ <1, b, i, bkck> S 1rn(¢ o (p), i.e.

<CL1, cee 7al> = _<1> + <1aala s ,CL[> € 1m(¢o SO)

(=) Let ¢1: WOp — WK be the natural homomorphism. Because
(ay,...,a;) € im(¢ o ), also {(a1,...,q;) € imey. By Proposition there
exist by, ...,br € U(Op) such that

(p1(<b1, ey bk>) = <CL1, e ,al>.
Then (by,...,bx) = (a1,...,q;) in WK. Moreover, k = [ (mod 2), i.e. k is
odd. Comparing the discriminants of these forms we get
(—1)2kk=Dp b K2 = (—1)21 0Dy o g K2
Therefore )
. 2 pr—
b1-~ka2:{K. when k& = 3 (mod 4),
—K? when k=1 (mod 4).
By Proposition [6.2]

(1,@1,...,al> = <1,b1,...,bk> S 12(073). ]
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COROLLARY 6.6. Let (f,d)) € (WR). Then

(f,d) € im(¢pog) & (f,d)) € I*(Op).
Proof. Notice that {(f,d)) € im(¢pop) < (f,d, fd) € im(dop). m
Let P, denote the set of all dyadic primes of the field K.

COROLLARY 6.7. Let K be a global field with charK # 2, S be a Hasse
set on K and O < Ri(S) be an order. Moreover, let § be the conductor of O
and {(f,d)) € 6(WRk(S)). If there exist f',d € O with the properties that
J'Ri(S) +f= Rk(S), dRk(S) +f= Rx(S) and

(i) (=f',=d)p = (—f,—d)yp for every P € PoUS,
(i) (=f,—d)p =1 for every P& PoUS,
then ((f,d)) € im(¢ o ).

Proof. Let P € S be a real prime of K. Denote by signg the signature
determined by B. From (i) it follows that

Sign&p <<f/> d/>> = Signm <<f7 d» :

Assume P € P, US is a finite prime. Denote by hy the P-adic Hasse-Witt
invariant. Also from (i) it follows that

hp((f'd) = (—f, =d)p = (= f, —d)p = hp((f, d).
If P ¢ PyUS, then (—f, —d)p =1 (cf. [Cz3, Lemma 3.4]), so by (ii),
hap{(f', d') = hep((f. d).

Finally, (f',d’)) = ((f,d)) over the PB-adic completion Ky of the field K for
every prime B of K. By the local-global principle, {(f’,d") = (f,d)) over K.
Hence ((f,d")) = (f,d)) in WK.

From Corollary [6.4] it follows that ((f’,d")) € I?(Op). By Corollary

(f,d) = (f.d) €im(¢op).

Theorem also has the following corollaries for the form (z, —ez),

e€ E(R)NO.

COROLLARY 6.8. Let K be any global field, R < K be a Dedekind domain
and O < R be an order. Moreover, let f be the conductor of O and (z, —ez) €
d(WR) withe € E(R)NO. Then (z, —ez) € im(¢oyp) if and only if (—e, z)) €
I2(Op) and there exists ¢’ € O such that

eK?=eK? and €¢€R+f=R.
Proof. By assumption, e € E(R), so (e) € $(W R). Hence
(—e,z,—ez) = —(e) + (z,—ez) € p(WR).
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(<) Since (1,—e, z, —ez) € I?(Op), from Theorem it follows that
(—e,z,—ez) € im(¢ o p). But (e) € im(¢ o ) (see Theorem [2.9)), so
(z,—ez) = (e) + (—e, z,—ez) € im(p o p).
(=) Since (2, —e2) € im(¢ o ¢), by Lemma there exists an ideal J
of O and an element k € K such that

J? = ek?0.
For the fractional ideal I = Jk~! we have
I? = eO.
By Proposition [2.2
(6.3) (e) € im(¢ o ).

Hence
(—e,z,—ez) = —(e) + (z,—ez) € im(P o ).
By Theorem
{(—e,2)) € I*(Op).
The second part of the conclusion follows from and Theorem "

COROLLARY 6.9. Let K be a global field with char K # 2, S be a Hasse
set on K and O < Rk (S) be an order. Moreover, let § be the conductor of O
and (z, —ez) € ¢(W Rk (S)) with e € E(Ry(S))NO. If there exist €/, 2" € O
such that € K? = eK?, ¢ Ri(S) + = Ri(S), Rk (S) +f = Rk (S) and

(i) (e,—2")p = (e, —2)yp for every P € P2 US,

(ii) (e, —2")p =1 for every P ¢ P, US,
then (z,—ez) € im(¢ o p).

Proof. Analogously to the proof of Corollary we show that

(—e,2) = (—e, ")
in WK. Because ¢ K? = eK?,
(e, 2) = (—e,2") = (€, 7).
From Corollary [6.4] it follows that
(—e,2) = (=€, 2") € I*(Op).
By Corollary (z,—ez) € im(¢p o). =

EXAMPLE 6.10. Let K = Q(v/3). There is one dyadic prime Py in K,
so P2 = {%PBo}. The ring Rk of algebraic integers of K is the ring Rx(S) of
S-integers of K, where S consists of the two infinite primes ooy, cos of K.

Assume /3 is positive at co; and negative at ooy. Since —1 ¢ NK/Q(K),
from [Cz1l p. 114, 118] it follows that the set

{(1),(2), (z,—e2)}
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generates the group ¢(W Rk ), where e = —1 and z € K is such that
(L 2)p, = -1, (—1,2)00, = =1, (=1,2)00, =1

(cf. [Cz1), p. 113]). Observe that

(_17 _Z)‘ﬁo = (_17_1)‘130<_172)‘I30 = -1,

(_17 _Z)OOI = (_1’_1)001(_172)001 =1,

(_L _2)002 = (_17 _1)002(_17z)002 =-1L
Consider the element a := 1 — /3 € Ry = Z[/3]. For n € N let

a" = Tn + yn\/§7 Tn,Yn € 7.

Analogously to [C2, Lemma 2] one can prove that there are infinitely many
prime numbers dividing the sequence (y2,+1)52 ;. Hence there are infinitely
many natural odd numbers m such that m divides (y25,+1). Choose such an
m and a number 2n + 1 such that m | yop4+1.

Consider the order O = Z[m+/3]. Obviously,

a?" = Ton4+1 + y2n+1\/§ c 0.

Because
NK/Q(G%L—H) — NK/Q(l . \/§)2n+1 — _22n+1’

we have ged(Ng/g(a® 1),

a2n+1RK +§= a2n+1RK +mRr = Rg.

m) = 1. Hence

Moreover,
(_17 _a2n+1)‘130 - <_17NK/Q(1 - \/5))2 = (_17 _2)2 =-1,
(_1’ _a2n+1)001 = (_13 -1+ \/5)001 =1,
(_17 _a2n+1)002 - <_17 -1+ \/5)002 = -1
For every 8 ¢ Py U S the elements —1, —a?"*! are -adic units, so
(—=1,—a®*"t)y = 1. By Corollary (z,—ez) € im(¢ o ¢). Hence and
from Proposition [3.1] it follows that ¢: WO — W R is surjective.
We have obtained the following observation.

There are infinitely many natural odd numbers m such that the natural
homomorphism p: WZ[m+/3] — W Ry is surjective.

7. Real quadratic global fields. Let K = Q(v/D) be a quadratic
number field, where D = 1 (mod 8) is a square-free positive integer. There
are two dyadic primes P, Po in K, so Py = {P1,P2}. Analogously to
Example the ring Ry of algebraic integers of K is the ring Rx(S) of
S-integers of K, where S consists of the two infinite primes oo, ooy of K.

Assume —1 € NK/Q(K) and choose b € FE(Ry) positive at oo; and
negative at ooo. Let p1,...,ps be all the pairwise distinct prime divisors
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of D. From [Czll, pp. 114, 118] it follows that the set
{(1),{p1), - -, (ps—1), (b), (£, d)}

generates the group ¢(W Rg), where f,d € K are such that —f is totally
positive and

(_f7 _d)ml = (_f7 —d)‘Bz =1
(cf. [Cz1l, p. 109]).

PROPOSITION 7.1. Let O = Z[m(1 ++/D)/2] be an order such that every
odd prime divisor of m € N is congruent to 1 modulo 4. Then

(f,d)) € im(¢ o).
Proof. For an odd prime number p denote by (5) the Legendre symbol.
By O] 65:17] there are infinitely many prime numbers p such that

() = ()

Fix such a p. From (%) = —1 it follows that p does not split in K. From
(_71) = —1 it follows that p =3 (mod 4). Hence p{m, so
pRx +f=pRx +mRr = Rk.
Let *B be the prime of K which lies over p. Then (—1,p)p = 1. Because
p =3 (mod 4), we have (—1,p)2 = —1, i.e.
(=L p)p, = (=1, p)p, = (=Lp)a = —1.
Moreover,

(_17p>001 = (_f7 _d)001 =1 and (—1,]?)002 = (-, _d)oo2 =L
For every prime t ¢ {1} UP2US of K the elements —1, p are r-adic units,
so (—1,p)e = 1. By Corollary [6.7, (f,d)) € im(¢ o).
COROLLARY 7.2. Let K = Q(v/D) be a real quadratic number field with

D=1 (mod4) and —1 € NK/Q(K). Moreover, let O = Z[m(1 ++/D)/2] be
an order with m = 2"qy - - - q;, where r € NU{0} and q1,...,q are odd prime
numbers. Then the natural homomorphism o: WO — W Rk is surjective if

and only if r € {0,1} and ¢; =1 (mod 4) for everyi € {1,...,1}.

Proof. This follows from Propositions and and Corollaries
B8 and B9 =

Now assume K = F (\/5) is a real quadratic function field as in Section .
The set S consists of two primes co1, 009 of K which lie over the prime cop
of F =TF(X) with uniformizing parameter 1/X. Assume ug(S) = 0.

Let € be a generator of the group F. If € € NK/F(K), then choose

b € E(Rk(S)) such that N, p(b) € e[2. Let p1,...,ps € F[X] be all the
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pairwise distinct monic irreducible polynomials which divide D. By [RC|
p. 208] and [Cz3, Theorem 4.2] the set

{<1>a <6>a <p1>7 AR <p871>7 <b>7 <<f7 d>>} when € € NK/F(K)a
{(1), (&), (p1)s -+ (s—1), (f.d)}  when e ¢ Nie/p(K),
generates the group ¢(W Rk (S)), where f,d € K are such that

(_f? _d>001 = (_fa _d)ooz =-1
(cf. [Cz3| p. 611)).

PROPOSITION 7.3. Assume € € NK/F(K). Let O = F[X][mv/D] be an
order with m = q1 - - - q;, where qi,...,q € F[X] are irreducible polynomials
with deg¢; = 0 (mod 2) for every i € {1,...,1}. Then ((f,d)) € im(¢ o p).

Proof. For an irreducible polynomial p € F[X] denote by (5) the quad-
ratic residue symbol (cf. [R] p. 24]).

By [O), 65:17] there are infinitely many irreducible polynomials p € F[X]

such that
(D> 41 and <6) A1,
p b

Fix such a p. From (%) # 1 it follows that p does not split in K (cf. [R]

Proposition 10.5]. From (%) # 1 it follows that degp = 1 (mod 2) (cf. [R],
Proposition 3.2]). Hence p t m, so
pRi(S) +f=pRk(S)+ mRk(S) = Rk (S).

Let B be the prime of K which lies over p. Then (¢,p)p = 1. Because
degp =1 (mod 2), we have (¢,p)oo, = —1, i.e.

(Evp)om = (Eap)ooz = (E,p)ooF = —1.

For every prime v ¢ {{} US of K the elements €, p are t-adic units, so
(¢,p)e = 1. By Corollary [6.7, (f,d)) € im(¢ o). u

COROLLARY 7.4. Let K = F(v/D) be a real quadratic function field
with € € NK/F(K). Moreover, let © = F[X][mvD] be an order such
that m = qi---q, where qi,...,q € F[X] are irreducible polynomials.
Then the homomorphism ¢: WO — WRg(S) is surjective if and only if
degq; =0 (mod 2) for everyi € {1,...,1}.

Proof. This follows from (4.2)), Propositions and and Corol-
laries 4.8 and .

PROPOSITION 7.5. Let K = F(\/D) be a real quadratic function field

with € ¢ Ng p(K) and uk(S) = 0. Moreover, let O < Rk (S) be an order.
Then (f,d) € im(¢ o ).
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Proof. From |[RC| Proposition 6.2] it follows that there is an irreducible
divisor p; of the polynomial D such that degp; = 1 (mod 2). It is easy to
observe that p; ramifies in K.

Analogously to the proof of Proposition we show that

(€, Pi)oor = (€, Pi)ooy = —1
and (e, p;)e = 1 for every prime t ¢ S of K.
Proposition implies that (p;) € im(¢ o ¢). By Theorem there
exists h € O such that
hK? = p;K?> and hRg(S)+§= Rk(S).
Obviously,
(€,1)oo; = (67 h)002 =-1
and (e, h), = 1 for every prime ¢t ¢ S of K. Now Corollary [6.7] implies that
(f,d) € im(¢o ). =
COROLLARY 7.6. Let K = F(v/D) be a real quadratic function field with

€ ¢ Ng/p(K). Moreover, let O < R (S) be an order. Then the homomor-
phism p: WO — W Rk (S) is surjective.

Proof. This follows from (4.2)), Propositions and and Corollary
44 =
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