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The terms Cxh (h ≥ 3) in Lucas sequences:
an algorithm and applications to diophantine equations

by

Paulo Ribenboim (Kingston)

1. Introduction. For each prime p, we denote by vp the p-adic valu-
ation. Let h ≥ 2. The positive integer n is said to be h-power free when
0 ≤ vp(n) ≤ h − 1 for every prime p. The symbol ♦ shall represent any
positive integer which is an hth power (and this includes the integer 1). If
h = 2, it is customary to use the symbol �.

Let P > 0, Q 6= 0 be coprime integers such that D = P 2 − 4Q 6= 0.
We define the Lucas sequences of the first kind , respectively of the second
kind , with parameters (P,Q), denoted by U = U(P,Q) = (Un)n≥0 and
V = V(P,Q) = (Vn)n≥0, as follows:

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2,

V0 = 2, V1 = P, Vn = PVn−1 −QVn−2

(for n ≥ 2).
D is called the discriminant of these sequences. We shall henceforth

assume thatD > 0, hence the sequences (Un)n≥0 and (Vn)n≥0 are increasing.
Noteworthy examples of Lucas sequences are the following:

1) P = 1, Q = −1. Then D = 5 and U is the sequence of Fibonacci
numbers, while V is the sequence of Lucas numbers.

2) P = 2, Q = −1. Then D = 8, U is the sequence of Pell numbers of
the first kind and V is the sequence of Pell numbers of the second kind.

3) Let a > b ≥ 1 with gcd(a, b) = 1, and let

Un =
an − bn
a− b , Vn = an + bn

(for all n ≥ 0). Then U , V are Lucas sequences with parameters P = a+ b,
Q = ab and discriminant D = (a− b)2. A special case is when a = 2, b = 1,
giving Un = 2n − 1, Vn = 2n + 1.
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We shall be concerned with terms in Lucas sequences of the first kind of
the form Un = Axh, where x ≥ 1, h ≥ 2 and A ≥ 1 is given and h-power
free. We first recall some known results. Cohn (and Wyler independently)
proved:

The only square Fibonacci numbers are U1 = U2 = 1, U12 = 144.

Cohn proved also the following results:

The only Fibonacci numbers of the form 2� are U3 = 2, U6 = 8. The
only square Lucas number is V3 = 4. The only Lucas numbers of the form
2� are V0 = 2, V6 = 18.

The above results are equivalent to the determination of the solutions of
the diophantine equations

x2 − 5y4 = ±4,

x2 − 20y4 = ±4,

x4 − 5y2 = ±4,

4x4 − 5y2 = ±4,

respectively.
These results were extended in [11].

(1.1) Let PQ be odd.

1) If Un = � then n ∈ {1, 2, 3, 6, 12}; for each pair (P,Q) there are at
most three induces n (including n = 1) such that Un = �.

2) If Un = 2� then n ∈ {3, 6}.
3) If Vn = � then n ∈ {1, 3, 5}.
4) If Vn = 2� then n ∈ {0, 3, 6}.
If PQ is even, the squares and double squares are only known for special

sequences. Without attempting to review all known results, we just quote
the remarkable results of Ljunggren [1] about Pell numbers.

(1.2) For Pell numbers (P = 2, Q = −1):

1) Un = � if and only if n = 1 or 7.
2) Un = 2� if and only if n = 2.
3) Vn 6= � for all n ≥ 0.
4) Vn = 2� if and only if n = 0.

Much less is known about terms of the form xh where x > 1, h ≥ 3. We
quote (see London and Finkelstein [2] and Pethő [4]):

(1.3) 1) U1 = U2 = 1 and U6 = 8 are the only cubes in the sequence of
Fibonacci numbers.

2) V1 = 1 is the only cube in the sequence of Lucas numbers.
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About the terms of the form Axh, the following important theorem will
be relevant (Shorey and Stewart [12] and Pethő [3]):

(1.4) For any given Lucas sequence U = (Un)n≥0 and any integer A ≥ 1,
there exists C > 0 (depending on P , Q and A and effectively computable)
such that if Un = Axh with x > 1, h ≥ 2, then n, h, x < C.

The bound C provided by the proof of the theorem is far too large
for any practical use. In the paper [7] we gave an algorithm to deter-
mine (for given parameters P , Q and given square-free integer A > 1) the
set {n ≥ 1 | Un = A�} provided one already knows the squares in the se-
quence. A somewhat simpler version, with additional precisions, may be
found in [10].

In this paper we extend the preceding algorithm. Precisely: let U =
(Un)n≥0 be a given Lucas sequence of the first kind, let h ≥ 2, and let A ≥ 1
be given. We assume that the set N0 = {n ≥ 1 | Un = xh with x ≥ 1} is
known. We describe an algorithm to determine all terms Un = Axh (with
x ≥ 1).

If Q = ±1, the knowledge of N0 is equivalent to the solution of the
diophantine equations x2−Dy2h = ±4. The algorithm allows us to determine
the solutions of each one of the equations x2 −DA2y2h = ±4.

2. Preliminaries. The terms of Lucas sequences satisfy many identities
and possess numerous interesting divisibility properties. We single out below
a few of these properties.

Let α = (P+
√
D)/2, β = (P −

√
D)/2 be the roots of X2−PX+Q = 0.

Then

Un =
αn − βn
α− β , Vn = αn + βn

for every n ≥ 0.
For every n ≥ 0:

V 2
n −DU2

n = 4Qn,

U2n = UnVn,

U3n = Un(DU2
n + 3Qn),

gcd(Un, Um) = Ud,

where d = gcd(n,m).
Let 1 ≤ n < m; then Un |Um if and only if n |m.
The prime p is said to divide the sequence U if there exists n > 1 such

that p |Un. Let P(U) denote the set of all primes which divide U . If p divides
U , the smallest n such that p |Un is called the rank of appearance of p in U
and it is denoted by %(p). It follows that p |Un if and only if %(p) |n.
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For p = 2 we have the following facts: if Q is even then 2 does not divide
U ; if P is even and Q is odd then %(2) = 2; if P and Q are odd, then
%(2) = 3.

For any odd prime p, if p |Q then P does not divide U ; if p |P but p -Q
then %(p) = 2; if p |D but p -PQ then %(p) = p; if p -QPD then %(p) divides
p−

(
D
p

)
where

(
D
p

)
denotes the Legendre symbol.

We observe that if PQ is even, or if PQ is odd and p 6= 2, then every
prime factor q of %(p) is at most equal to p.

The following result was established in [7]:

(2.1) Let n = rm with 1 < r. Then Un = UmZ where gcd(Um, Z)
divides r.

3. The algorithm. Let U = (Un)n≥0 be a Lucas sequence of the first
kind, and let P(U) be the set of primes dividing U . A subset H of P(U) is
said to be saturated when the following condition is satisfied: if p ∈ H and
if the prime q divides %(p) and q ∈ P(U) then q ∈ H.

The empty set is saturated. If H is a non-empty finite set we denote by
p[H] the largest prime in H. [The above definition of a saturated set is a
variant of the one given in [7].]

(3.1) For every finite set of primes H ⊆ P(U) there exists the smallest
saturated set H∗ containing H. H∗ is finite and if H 6= ∅ then p[H∗] = p[H],
except when H = {2}, PQ is odd and 3 -Q; in this case H∗ = {2, 3}.

Proof. First we note that ∅∗ = ∅. So we assume that H 6= ∅. The proof
is by induction on p[H].

Let p[H] = 2, that is, H = {2}. Since 2 ∈ P(U), Q is odd. If P is even
then %(2) = 2 so H∗ = {2}. If P is odd then %(2) = 3. If 3 |Q then 3 -P(U)
so H∗ = {2}. If 3 -Q then 3 ∈ P(U). If H ′ is a saturated set containing {2}
then it contains {2, 3}. We show that {2, 3} is saturated, so H∗ = {2, 3}. If
3 |P then %(3) = 2 so {2, 3} is saturated. If 3 -P and 3 |D then %(3) = 3
so {2, 3} is saturated. If 3 -PD then %(3) divides 3 −

(
D
3

)
so 2 is the only

prime dividing %(3), hence again {2, 3} is saturated.
Now let p[H] = q ≥ 3, and let H = {q} ∪H ′ with q 6∈ H ′; so if H ′ 6= ∅

then p[H ′] < q. By induction, we have: if H ′ = ∅ then H ′∗ = ∅; if H ′ =
{2} then p[H ′∗] ≤ 3 ≤ q; if 2 < p[H ′] then p[H ′∗] = p[H ′] < q. From
q ∈ H ⊆ P(U) the set H1 = {p prime | p divides %(q)} is non-empty and
contained in H∗. As already indicated, if p ∈ H1 and q -D then p < q, so
p[H1] < q, so p[H ′ ∪ H1] < q. By induction (H ′ ∪ H1)∗ has been defined.
If p[H ′ ∪ H1] = 2 then p[(H ′ ∪ H1)∗] ≤ 3 ≤ q. If p[H ′ ∪ H1] > 2 then
p[(H ′ ∪ H1)∗] = p[H ′ ∪ H1] < q. The set {q} ∪ (H ′ ∪ H1)∗ is saturated, it
contains every saturated set containing H, so H∗ = {q} ∪ (H ′ ∪ H1)∗ and
p[H∗] = q = p[H].
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If q |D then %(q) = q so H1 = {q}. The set {q} ∪ H ′∗ is saturated,
it contains H and it is contained in any saturated set containing H. So
H∗ = {q} ∪H ′∗ and p[H∗] = p[H].

We deduce easily:

(3.2) 1) Let H be a non-empty finite saturated set , H 6= {2, 3}, with
p[H] = q, and H = {q} ∪H ′ with q 6∈ H ′. Then H ′ is a saturated set.

2) The following conditions are equivalent :

(a) H = {2, 3} is saturated but {2} and {3} are not saturated ,
(b) 2 -Q, 3 -Q, 2 -P and either 3 |P or 3 -PD.

Proof. 1) Let H 6= {2, 3}, p[H] = q, H = {q} ∪ H ′ with q 6∈ H ′. If H ′

is empty then H ′ is saturated. If p[H ′] = 2 then H ′ = {2} so H = {2, q}.
If H ′ is not saturated then by (3.1), H ′∗ = {2, 3}. From H ′∗ ⊆ H∗ = H
we have H = {2, 3}, which is absurd. So H ′ is saturated. If p[H ′] ≥ 3 then
p[H ′∗] = p[H ′]. If H ′ is not saturated then H ′ ⊂ H ′∗ ⊆ H∗ = H so H ′∗ = H
so p[H ′] = p[H] = q, which is absurd. So H ′ is saturated.

2) (a)⇒(b). Since {2, 3} ⊆ P(U) we have 2 -Q and 3 -Q. If 2 |P then
{2} is saturated; so 2 -P . If 3 -P but 3 |D then %(3) = 3 so {3} is saturated.
Thus either 3 |P or 3 -PD.

(b)⇒(a). First {2, 3} ⊆ P(U). From 2 -P we have %(2) = 3, thus {2, 3}
is saturated but {2} is not saturated. If 3 -PD or if 3 |P then 2 is the only
prime dividing %(3); but 2 6∈ {3}, so {3} is not saturated.

Let h ≥ 2, and let H be a finite saturated set. Let T (H) = {t ≥ 1 | t is
h-power free and if p is any prime dividing t then p ∈ H}. So T (∅) = {1}
and T (H) is a finite set.

Let NH = {n ≥ 1 | Un = t♦ for some t ∈ T (H)}. Thus N∅ = {n ≥ 1 |
Un = ♦}. We denote this set by N0. We introduce the following sets. Let
f ≥ 1, and let H0, H be finite saturated sets such that H0 ⊂ H. Let

Mf,H0,H = Mf

=
{
m ≥ 1

∣∣∣ m ∈
( ∏

p∈H\H0

%(p)ep
)
NH0 and

∑

p∈H\H0

ep = f
}
.

In particular, M0 = NH0 . We shall require the lemmas below. Let

S = {s ≥ 1 | if p 6∈ H then vp(s) ≡ 0 (modh)}.
(3.3) Lemma. 1) Let s = s1s2 with gcd(s1, s2) = 1. Then s ∈ S if and

only if s1, s2 ∈ S.
2) Let d ≥ 1 be such that if p | d then p 6∈ H and let s be a multiple of d.

Then s ∈ S if and only if s/d ∈ S.

Proof. 1) We have vp(s) = vp(s1) + vp(s2) and min{vp(s1), vp(s2)} = 0
for every prime p. The assertion follows at once from the definition of S.
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2) For every prime p 6∈ H, vp(s) = vp(s/d) so the assertion follows at
once.

(3.4) 1) There exists the smallest l ≥ 0 such that (NH \NH0)∩Ml+1,H0,H

= ∅.
2) NH \NH0 ⊆

⋃l
f=1 Mf,H0,H .

Proof. 1) For every t ∈ T (H) the set {n ≥ 1 | Un = t♦} is finite, by
(1.4). Since T (H) is finite, the sets NH and also NH \NH0 are finite.

If NH \NH0 = ∅ the statement is true with l = 0. Now let NH \NH0 6= ∅.
For each n ∈ NH \ NH0 the set Fn = {f ≥ 1 | n ∈ Mf} is finite. Indeed,
assume that there exist f1 < f2 < . . . in Fn. So for every i ≥ 1 there exist
(epi)p∈H\H0 with

∑
p∈H\H0

epi = fi and
∏
p∈H\H0

%(p)epi divides n. Then
there exists p0 ∈ H \ H0 such that the sequence (ep0i)i≥1 has an infinite
subsequence ep0i1 < ep0i2 < . . . so n is divisible by an arbitrarily large power
of %(p0), which is absurd. Therefore Fn is finite for every n ∈ NH \NH0 . Let
l = maxn∈NH\NH0

{maxFn}. It follows that (NH \ NH0) ∩Ml+1,H0,H = ∅
and that l is the smallest such index.

2) The statement is trivial when NH \NH0 = ∅. Now assume that NH \
NH0 6= ∅ and that there exists n such that n ∈ NH \NH0 but n 6∈ ⋃lf=1 Mf .
We choose n minimal. Since Un = t♦ with t ∈ T (H) \ T (H0) there exists
p ∈ H\H0 such that p divides Un. Therefore %(p) |n and we write n = m%(p).
Then by (2.1), Un = UmZ with d = gcd(Um, Z) | %(p). We have

Un
d2 =

Um
d
· Z
d
.

Let q be any prime dividing d, so q |Um, hence q ∈ P(U). Thus q ∈ H
because H is saturated. By hypothesis Un = t♦ ∈ T (H)♦ ⊆ S. By (3.3),
Un/d

2 ∈ S, hence Um/d ∈ S and so Um ∈ S, that is, Um = t1♦ ∈ T (H)♦,
so m ∈ NH .

If m ∈ NH0 then n = %(p)m ∈M1, which is contrary to the assumption.
If m 6∈ NH0 , since n is minimal and m < n, we have m ∈ ⋃lf=1Mf , so

n = %(p)m ∈ ⋃l+1
f=2 Mf . But (NH \NH0)∩Ml+1 = ∅, so this is also absurd.

The above results are the basis for the algorithm.

Description of the algorithm. Let h ≥ 2, C ≥ 1. We wish to determine
the set N∗ = {n ≥ 1 | Un = C♦}. Writing C = A♦ where A ≥ 1 and A is
h-power free, we have N∗ = {n ≥ 1 | Un = A♦}. We assume that the set
N0 = {n ≥ 1 | Un = ♦} is known. If there exists a prime p such that p |A
and p 6∈ P(U) then N∗ = ∅. Now we assume that if p |A then p ∈ P(U). Let
H be the smallest saturated set containing all the prime factors of A.

Let H0 = ∅, and let H1 = {2, 3} if {2, 3} ⊆ H, {2, 3} is saturated but {2}
and {3} are not saturated. Otherwise let H1 = {q1} where q1 is the smallest
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prime in H. Let q2 be the smallest prime in H \H1 and let H2 = H1 ∪{q2}.
Define H3, . . . in a similar way. Let r be such that Hr = H. So 3 < q2 or
q1 < q2 and q2 < q3 < . . . < qr. By the preceding results if H1 = {2, 3} then

NH1 \N0 ⊆
l⋃

f=1

Mf,∅,{2,3}

where
Mf,∅,{2,3} = {m = %(2)e2%(3)e3N0 | e2 + e3 = f}.

By direct calculation we may determine the elements of

(N{2,3} \N0) ∩M1,∅,{2,3}, (N{2,3} \N0) ∩M2,∅,{2,3},

etc. until we determine l such that

(N{2,3} \N0) ∩Ml+1,∅,{2,3} = ∅.
We note that l depends on {2, 3}. This determines N{2,3} \N0.

Let i ≥ 1 and Hi = Hi−1 ∪ {qi}, where we may take i = 1 when H1 =
{q1}, so H0 = ∅. Similarly, by direct calculation we may determine the sets

(NHi \NHi−1) ∩M1,Hi−1,Hi , (NHi \NHi−1) ∩M2,Hi−1,Hi ,

etc. until we reach the smallest l such that

(NHi \NHi−1) ∩Ml+1,Hi−1,Hi = ∅.
This determines the sets NHi \ NHi−1 for i = 1, . . . , r. Finally, we identify
by calculation the subset N∗ of NHr .

The implementation of the algorithm is usually very simple, as will be
illustrated in the next section.

4. Numerical examples. In this section we shall give numerical ex-
amples to show how the algorithm indicated in the preceding section may
be applied. We modify somewhat the notation used before to make it more
adapted to handle the examples. The following lemma will be useful to elim-
inate superfluous calculations.

(4.1) Lemma. Let l > 1 be such that every prime factor of l belongs
to H. If m 6∈ NH then lm 6∈ NH .

Proof. We have Uml = UmZ with d = gcd(Um, Z) dividing l. From
m 6∈ NH there exists a prime p 6∈ H such that vp(m) 6≡ 0 (modh). If
ml ∈ NH then vp(ml) ≡ 0 (modh), therefore vp(l) 6≡ 0 (modh), so p | l,
which is a contradiction.

(4.2) Determination of the Fibonacci numbers of the form 25 · 7x3. We
have P = 1, Q = −1, D = 5. The ranks of appearance of 5, 7 are %(5) = 5,
%(7) = 8. So the smallest saturated set containing {5, 7} is H = {2, 3, 5, 7}.
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It was recalled in (1.3) that N0 = {n | Un is a cube} = {1, 2, 6}. Let

N1 = N{2,3} = {n ≥ 1 | Un = 2♦, 3♦, 4♦, 6♦, 9♦, 12♦, 18♦, 36♦}.
For f ≥ 1 let

M1,f = {2e23e3N0 | e2 + e3 = f}.
So N1 ⊆M1,1 ∪M1,2 ∪M1,3 ∪ . . . Now

M1,1 = 2N0 ∪ 3N0 = {2, 4, 12, 3, 6, 18}.
By direct calculation, or looking at tables, N1 ∩M1,1 = {3, 4, 12}. Next

M1,2 = 4N0 ∪ 6N0 ∪ 9N0 = {4, 8, 24, 6, 12, 36, 9, 18, 54}.
We observe that 6, 8, 9 6∈ N1, hence by (4.1), 12, 36, 24, 18, 54 6∈ N1, so
N1 ∩M1,2 = {4}.

Next M1,3 = 8N0∪12N0∪18N0∪27N0. As already said 8, 12, 18, 9 6∈ N1,
hence N1 ∩M1,3 = ∅, by Lemma (4.1).

In conclusion, N1 = {3, 4, 12}.
Let

N2 = {n ≥ 1 | Un = 5♦, 10♦, 15♦, 20♦, 30♦, 45♦, 60♦, 90♦}.
[In the preceding notation, N2 = N{2,3,5} \N{2,3}.]

Hence N2 ⊆ M2,1 ∪ M2,2 ∪ . . . where M2,1 = 5N1,M2,2 = 25N1, . . .
with N1 = N0 ∪N1 = {1, 2, 3, 4, 6, 12}. Now we observe that 3, 10 6∈ N2, so
25, 45, 20, 30, 60, 90 6∈ N2 by (4.1). We have M2,1 = {5, 10, 15, 20, 30, 60}, so
N2 ∩M2,1 = {5}. Next M2,2 = {25, 50, 75, 100, 150, 300} and again by (4.1),
N2 ∩M2,2 = ∅. Thus N2 = {5}.

Let N2 = N1 ∪N2 = {1, 2, 3, 4, 5, 6, 12}. Let

N3 = {n ≥ 1 | Un = 2i3j5k7l♦, 0 ≤ i, j, k ≤ 2, l = 1, 2}.
Since %(7) = 8 we have N3 ⊆ M3,1 ∪M3,2 ∪ . . . where M3,1 = 8N2, M3,2 =
64N2, . . .

Explicitly M3,1 = {8, 16, 24, 32, 40, 48, 96} and by calculation and (4.1),
N3 ∩M3,1 = {8}. By similar considerations N3 ∩ 64N2 = ∅. Thus N3 = {8}.

The set N∗ is contained in N3. But U8 = 21 6= 25 · 7♦. So N∗ = ∅.
We deduce that the diophantine equations

X2 − 55 · 72Y 6 = ±4

do not have solutions in non-zero integers.

(4.3) Determination of the Pell numbers of the form 20x3. We have P =
2, Q = −1, D = 8. Pethő showed in [5] that N0 = {n ≥ 1 | Un is a
cube} = {1}. Since %(2) = 2, %(5) = 3, %(3) = 4 the saturated set containing
{2, 3} is H = {2, 3, 5}. We note that {2} is saturated. Let N1 = {n ≥ 1 |
Un = 2♦, 4♦}. Then N1 ⊆ 2N0∪4N0∪. . . But N1∩2N0 = {2}, N1∩4N0 = ∅.
Thus N1 = {2}.
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Let N1 = N0 ∪N1 = {1, 2}, and

N2 = {n ≥ 1 | Un = 3♦, 6♦, 9♦, 12♦, 18♦, 36♦}.
Then N2 ⊆ 4N1 ∪ 16N1 ∪ . . . We have N2 ∩ 4N1 = {4}. Since 8 6∈ N2, by
(4.1), 16, 32 6∈ N2. Therefore N2 ∩ 16N2 = ∅. Thus N2 = {4}.

Let N2 = N2 ∪N1 = {1, 2, 4}. Let

N3 = {n ≥ 1 | Un = 2i3j5k♦, 0 ≤ i, j ≤ 2, 1 ≤ k ≤ 2}.
Since %(5) = 3 we have N3 ⊆ 3N2 ∪ 9N2 ∪ . . . We note that 6 6∈ N3 and
9 6∈ N3, so by (4.1), 12, 18, 36 6∈ N3. HenceN3∩3N2 = {3} andN3∩9N2 = ∅.
Therefore N3 = {3}. The set N∗ ⊆ N3, but U3 = 5 6= 20x3, so N∗ = ∅.

We deduce that the diophantine equations

X2 − 27 · 52Y 6 = ±4,

or equivalently
X2 − 25 · 52Y 6 = ±1

do not have solutions in non-zero integers.

(4.4) Determination of all n ≥ 1 such that 7n − 1 = 3x3. Let n ≥ 1 and
x ≥ 1 be such that 7n − 1 = 3x3. Since 6 | 7n − 1 we have

7n − 1
7− 1

= 4y3.

Let P = 8, Q = 7, so D = 36 and let U be the sequence with terms
Un = (7n − 1)/(7 − 1). Let N∗ = {n ≥ 1 | Un = 4♦} where ♦ denotes any
non-zero cube.

We have N0 = {n ≥ 1 | Un = ♦} = {1, 2} (see [6]). Since %(2) = 2, {2} is
a saturated set. Let N1 = {n ≥ 1 | Un = 2♦, 4♦}. Then N1 ⊆ 2N0∪4N0∪. . .
But N1 ∩ 2N0 = ∅ so N1 = ∅. Therefore 7n − 1 is never equal to 3x3.
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