The terms $C x^{h}(h \geq 3)$ in Lucas sequences: an algorithm and applications to diophantine equations

by
Paulo Ribenboim (Kingston)

1. Introduction. For each prime p, we denote by v_{p} the p-adic valuation. Let $h \geq 2$. The positive integer n is said to be h-power free when $0 \leq v_{p}(n) \leq h-1$ for every prime p. The symbol \diamond shall represent any positive integer which is an h th power (and this includes the integer 1). If $h=2$, it is customary to use the symbol \square.

Let $P>0, Q \neq 0$ be coprime integers such that $D=P^{2}-4 Q \neq 0$. We define the Lucas sequences of the first kind, respectively of the second kind, with parameters (P, Q), denoted by $\mathcal{U}=\mathcal{U}(P, Q)=\left(U_{n}\right)_{n \geq 0}$ and $\mathcal{V}=\mathcal{V}(P, Q)=\left(V_{n}\right)_{n \geq 0}$, as follows:

$$
\begin{array}{ll}
U_{0}=0, & U_{1}=1,
\end{array} \quad U_{n}=P U_{n-1}-Q U_{n-2}, ~ 子 V_{n-1}-Q V_{n-2}
$$

(for $n \geq 2$).
D is called the discriminant of these sequences. We shall henceforth assume that $D>0$, hence the sequences $\left(U_{n}\right)_{n \geq 0}$ and $\left(V_{n}\right)_{n \geq 0}$ are increasing.

Noteworthy examples of Lucas sequences are the following:

1) $P=1, Q=-1$. Then $D=5$ and \mathcal{U} is the sequence of Fibonacci numbers, while \mathcal{V} is the sequence of Lucas numbers.
2) $P=2, Q=-1$. Then $D=8, \mathcal{U}$ is the sequence of Pell numbers of the first kind and \mathcal{V} is the sequence of Pell numbers of the second kind.
3) Let $a>b \geq 1$ with $\operatorname{gcd}(a, b)=1$, and let

$$
U_{n}=\frac{a^{n}-b^{n}}{a-b}, \quad V_{n}=a^{n}+b^{n}
$$

(for all $n \geq 0$). Then \mathcal{U}, \mathcal{V} are Lucas sequences with parameters $P=a+b$, $Q=a b$ and discriminant $D=(a-b)^{2}$. A special case is when $a=2, b=1$, giving $U_{n}=2^{n}-1, V_{n}=2^{n}+1$.

[^0]We shall be concerned with terms in Lucas sequences of the first kind of the form $U_{n}=A x^{h}$, where $x \geq 1, h \geq 2$ and $A \geq 1$ is given and h-power free. We first recall some known results. Cohn (and Wyler independently) proved:

The only square Fibonacci numbers are $U_{1}=U_{2}=1, U_{12}=144$.
Cohn proved also the following results:
The only Fibonacci numbers of the form $2 \square$ are $U_{3}=2, U_{6}=8$. The only square Lucas number is $V_{3}=4$. The only Lucas numbers of the form $2 \square$ are $V_{0}=2, V_{6}=18$.

The above results are equivalent to the determination of the solutions of the diophantine equations

$$
\begin{aligned}
x^{2}-5 y^{4} & = \pm 4 \\
x^{2}-20 y^{4} & = \pm 4 \\
x^{4}-5 y^{2} & = \pm 4 \\
4 x^{4}-5 y^{2} & = \pm 4,
\end{aligned}
$$

respectively.
These results were extended in [11].
(1.1) Let $P Q$ be odd.

1) If $U_{n}=\square$ then $n \in\{1,2,3,6,12\}$; for each pair (P, Q) there are at most three induces n (including $n=1$) such that $U_{n}=\square$.
2) If $U_{n}=2 \square$ then $n \in\{3,6\}$.
3) If $V_{n}=\square$ then $n \in\{1,3,5\}$.
4) If $V_{n}=2 \square$ then $n \in\{0,3,6\}$.

If $P Q$ is even, the squares and double squares are only known for special sequences. Without attempting to review all known results, we just quote the remarkable results of Ljunggren [1] about Pell numbers.
(1.2) For Pell numbers $(P=2, Q=-1)$:

1) $U_{n}=\square$ if and only if $n=1$ or 7 .
2) $U_{n}=2 \square$ if and only if $n=2$.
3) $V_{n} \neq \square$ for all $n \geq 0$.
4) $V_{n}=2 \square$ if and only if $n=0$.

Much less is known about terms of the form x^{h} where $x>1, h \geq 3$. We quote (see London and Finkelstein [2] and Pethő [4]):
(1.3) 1) $U_{1}=U_{2}=1$ and $U_{6}=8$ are the only cubes in the sequence of Fibonacci numbers.
2) $V_{1}=1$ is the only cube in the sequence of Lucas numbers.

About the terms of the form $A x^{h}$, the following important theorem will be relevant (Shorey and Stewart [12] and Pethő [3]):
(1.4) For any given Lucas sequence $\mathcal{U}=\left(U_{n}\right)_{n \geq 0}$ and any integer $A \geq 1$, there exists $C>0$ (depending on P, Q and A and effectively computable) such that if $U_{n}=A x^{h}$ with $x>1, h \geq 2$, then $n, h, x<C$.

The bound C provided by the proof of the theorem is far too large for any practical use. In the paper [7] we gave an algorithm to determine (for given parameters P, Q and given square-free integer $A>1$) the set $\left\{n \geq 1 \mid U_{n}=A \square\right\}$ provided one already knows the squares in the sequence. A somewhat simpler version, with additional precisions, may be found in [10].

In this paper we extend the preceding algorithm. Precisely: let $\mathcal{U}=$ $\left(U_{n}\right)_{n \geq 0}$ be a given Lucas sequence of the first kind, let $h \geq 2$, and let $A \geq 1$ be given. We assume that the set $N_{0}=\left\{n \geq 1 \mid U_{n}=x^{h}\right.$ with $\left.x \geq 1\right\}$ is known. We describe an algorithm to determine all terms $U_{n}=A x^{h}$ (with $x \geq 1$).

If $Q= \pm 1$, the knowledge of N_{0} is equivalent to the solution of the diophantine equations $x^{2}-D y^{2 h}= \pm 4$. The algorithm allows us to determine the solutions of each one of the equations $x^{2}-D A^{2} y^{2 h}= \pm 4$.
2. Preliminaries. The terms of Lucas sequences satisfy many identities and possess numerous interesting divisibility properties. We single out below a few of these properties.

Let $\alpha=(P+\sqrt{D}) / 2, \beta=(P-\sqrt{D}) / 2$ be the roots of $X^{2}-P X+Q=0$. Then

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad V_{n}=\alpha^{n}+\beta^{n}
$$

for every $n \geq 0$.
For every $n \geq 0$:

$$
\begin{gathered}
V_{n}^{2}-D U_{n}^{2}=4 Q^{n}, \\
U_{2 n}=U_{n} V_{n}, \\
U_{3 n}=U_{n}\left(D U_{n}^{2}+3 Q^{n}\right), \\
\operatorname{gcd}\left(U_{n}, U_{m}\right)=U_{d},
\end{gathered}
$$

where $d=\operatorname{gcd}(n, m)$.
Let $1 \leq n<m$; then $U_{n} \mid U_{m}$ if and only if $n \mid m$.
The prime p is said to divide the sequence \mathcal{U} if there exists $n>1$ such that $p \mid U_{n}$. Let $\mathcal{P}(\mathcal{U})$ denote the set of all primes which divide \mathcal{U}. If p divides \mathcal{U}, the smallest n such that $p \mid U_{n}$ is called the rank of appearance of p in \mathcal{U} and it is denoted by $\varrho(p)$. It follows that $p \mid U_{n}$ if and only if $\varrho(p) \mid n$.

For $p=2$ we have the following facts: if Q is even then 2 does not divide \mathcal{U}; if P is even and Q is odd then $\varrho(2)=2$; if P and Q are odd, then $\varrho(2)=3$.

For any odd prime p, if $p \mid Q$ then P does not divide \mathcal{U}; if $p \mid P$ but $p \nmid Q$ then $\varrho(p)=2$; if $p \mid D$ but $p \nmid P Q$ then $\varrho(p)=p$; if $p \nmid Q P D$ then $\varrho(p)$ divides $p-\left(\frac{D}{p}\right)$ where $\left(\frac{D}{p}\right)$ denotes the Legendre symbol.

We observe that if $P Q$ is even, or if $P Q$ is odd and $p \neq 2$, then every prime factor q of $\varrho(p)$ is at most equal to p.

The following result was established in [7]:
(2.1) Let $n=r m$ with $1<r$. Then $U_{n}=U_{m} Z$ where $\operatorname{gcd}\left(U_{m}, Z\right)$ divides r.
3. The algorithm. Let $\mathcal{U}=\left(U_{n}\right)_{n \geq 0}$ be a Lucas sequence of the first kind, and let $\mathcal{P}(\mathcal{U})$ be the set of primes dividing \mathcal{U}. A subset H of $\mathcal{P}(\mathcal{U})$ is said to be saturated when the following condition is satisfied: if $p \in H$ and if the prime q divides $\varrho(p)$ and $q \in \mathcal{P}(\mathcal{U})$ then $q \in H$.

The empty set is saturated. If H is a non-empty finite set we denote by $p[H]$ the largest prime in H. [The above definition of a saturated set is a variant of the one given in [7].]
(3.1) For every finite set of primes $H \subseteq \mathcal{P}(\mathcal{U})$ there exists the smallest saturated set H^{*} containing $H . H^{*}$ is finite and if $H \neq \emptyset$ then $p\left[H^{*}\right]=p[H]$, except when $H=\{2\}, P Q$ is odd and $3 \nmid Q$; in this case $H^{*}=\{2,3\}$.

Proof. First we note that $\emptyset^{*}=\emptyset$. So we assume that $H \neq \emptyset$. The proof is by induction on $p[H]$.

Let $p[H]=2$, that is, $H=\{2\}$. Since $2 \in \mathcal{P}(\mathcal{U}), Q$ is odd. If P is even then $\varrho(2)=2$ so $H^{*}=\{2\}$. If P is odd then $\varrho(2)=3$. If $3 \mid Q$ then $3 \nmid \mathcal{P}(\mathcal{U})$ so $H^{*}=\{2\}$. If $3 \nmid Q$ then $3 \in \mathcal{P}(\mathcal{U})$. If H^{\prime} is a saturated set containing $\{2\}$ then it contains $\{2,3\}$. We show that $\{2,3\}$ is saturated, so $H^{*}=\{2,3\}$. If $3 \mid P$ then $\varrho(3)=2$ so $\{2,3\}$ is saturated. If $3 \nmid P$ and $3 \mid D$ then $\varrho(3)=3$ so $\{2,3\}$ is saturated. If $3 \nmid P D$ then $\varrho(3)$ divides $3-\left(\frac{D}{3}\right)$ so 2 is the only prime dividing $\varrho(3)$, hence again $\{2,3\}$ is saturated.

Now let $p[H]=q \geq 3$, and let $H=\{q\} \cup H^{\prime}$ with $q \notin H^{\prime}$; so if $H^{\prime} \neq \emptyset$ then $p\left[H^{\prime}\right]<q$. By induction, we have: if $H^{\prime}=\emptyset$ then $H^{\prime *}=\emptyset$; if $H^{\prime}=$ $\{2\}$ then $p\left[H^{\prime *}\right] \leq 3 \leq q$; if $2<p\left[H^{\prime}\right]$ then $p\left[H^{* *}\right]=p\left[H^{\prime}\right]<q$. From $q \in H \subseteq \mathcal{P}(\mathcal{U})$ the set $H_{1}=\{p$ prime $\mid p$ divides $\varrho(q)\}$ is non-empty and contained in H^{*}. As already indicated, if $p \in H_{1}$ and $q \nmid D$ then $p<q$, so $p\left[H_{1}\right]<q$, so $p\left[H^{\prime} \cup H_{1}\right]<q$. By induction $\left(H^{\prime} \cup H_{1}\right)^{*}$ has been defined. If $p\left[H^{\prime} \cup H_{1}\right]=2$ then $p\left[\left(H^{\prime} \cup H_{1}\right)^{*}\right] \leq 3 \leq q$. If $p\left[H^{\prime} \cup H_{1}\right]>2$ then $p\left[\left(H^{\prime} \cup H_{1}\right)^{*}\right]=p\left[H^{\prime} \cup H_{1}\right]<q$. The set $\{q\} \cup\left(H^{\prime} \cup H_{1}\right)^{*}$ is saturated, it contains every saturated set containing H, so $H^{*}=\{q\} \cup\left(H^{\prime} \cup H_{1}\right)^{*}$ and $p\left[H^{*}\right]=q=p[H]$.

If $q \mid D$ then $\varrho(q)=q$ so $H_{1}=\{q\}$. The set $\{q\} \cup H^{* *}$ is saturated, it contains H and it is contained in any saturated set containing H. So $H^{*}=\{q\} \cup H^{\prime *}$ and $p\left[H^{*}\right]=p[H]$.

We deduce easily:
(3.2) 1) Let H be a non-empty finite saturated set, $H \neq\{2,3\}$, with $p[H]=q$, and $H=\{q\} \cup H^{\prime}$ with $q \notin H^{\prime}$. Then H^{\prime} is a saturated set.
2) The following conditions are equivalent:
(a) $H=\{2,3\}$ is saturated but $\{2\}$ and $\{3\}$ are not saturated,
(b) $2 \nmid Q, 3 \nmid Q, 2 \nmid P$ and either $3 \mid P$ or $3 \nmid P D$.

Proof. 1) Let $H \neq\{2,3\}, p[H]=q, H=\{q\} \cup H^{\prime}$ with $q \notin H^{\prime}$. If H^{\prime} is empty then H^{\prime} is saturated. If $p\left[H^{\prime}\right]=2$ then $H^{\prime}=\{2\}$ so $H=\{2, q\}$. If H^{\prime} is not saturated then by $(3.1), H^{*}=\{2,3\}$. From $H^{*} \subseteq H^{*}=H$ we have $H=\{2,3\}$, which is absurd. So H^{\prime} is saturated. If $p\left[H^{\prime}\right] \geq 3$ then $p\left[H^{\prime *}\right]=p\left[H^{\prime}\right]$. If H^{\prime} is not saturated then $H^{\prime} \subset H^{\prime *} \subseteq H^{*}=H$ so $H^{\prime *}=H$ so $p\left[H^{\prime}\right]=p[H]=q$, which is absurd. So H^{\prime} is saturated.
2) $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Since $\{2,3\} \subseteq \mathcal{P}(\mathcal{U})$ we have $2 \nmid Q$ and $3 \nmid Q$. If $2 \mid P$ then $\{2\}$ is saturated; so $2 \nmid P$. If $3 \nmid P$ but $3 \mid D$ then $\varrho(3)=3$ so $\{3\}$ is saturated. Thus either $3 \mid P$ or $3 \nmid P D$.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. First $\{2,3\} \subseteq \mathcal{P}(\mathcal{U})$. From $2 \nmid P$ we have $\varrho(2)=3$, thus $\{2,3\}$ is saturated but $\{2\}$ is not saturated. If $3 \nmid P D$ or if $3 \mid P$ then 2 is the only prime dividing $\varrho(3)$; but $2 \notin\{3\}$, so $\{3\}$ is not saturated.

Let $h \geq 2$, and let H be a finite saturated set. Let $T(H)=\{t \geq 1 \mid t$ is h-power free and if p is any prime dividing t then $p \in H\}$. So $T(\emptyset)=\{1\}$ and $T(H)$ is a finite set.

Let $N_{H}=\left\{n \geq 1 \mid U_{n}=t \diamond\right.$ for some $\left.t \in T(H)\right\}$. Thus $N_{\emptyset}=\{n \geq 1 \mid$ $\left.U_{n}=\diamond\right\}$. We denote this set by N_{0}. We introduce the following sets. Let $f \geq 1$, and let H_{0}, H be finite saturated sets such that $H_{0} \subset H$. Let

$$
\begin{aligned}
M_{f, H_{0}, H} & =M_{f} \\
& =\left\{m \geq 1 \mid m \in\left(\prod_{p \in H \backslash H_{0}} \varrho(p)^{e_{p}}\right) N_{H_{0}} \text { and } \sum_{p \in H \backslash H_{0}} e_{p}=f\right\} .
\end{aligned}
$$

In particular, $M_{0}=N_{H_{0}}$. We shall require the lemmas below. Let

$$
S=\left\{s \geq 1 \mid \text { if } p \notin H \text { then } v_{p}(s) \equiv 0(\bmod h)\right\}
$$

(3.3) Lemma. 1) Let $s=s_{1} s_{2}$ with $\operatorname{gcd}\left(s_{1}, s_{2}\right)=1$. Then $s \in S$ if and only if $s_{1}, s_{2} \in S$.
2) Let $d \geq 1$ be such that if $p \mid d$ then $p \notin H$ and let s be a multiple of d. Then $s \in S$ if and only if $s / d \in S$.

Proof. 1) We have $v_{p}(s)=v_{p}\left(s_{1}\right)+v_{p}\left(s_{2}\right)$ and $\min \left\{v_{p}\left(s_{1}\right), v_{p}\left(s_{2}\right)\right\}=0$ for every prime p. The assertion follows at once from the definition of S.
2) For every prime $p \notin H, v_{p}(s)=v_{p}(s / d)$ so the assertion follows at once.
(3.4) 1) There exists the smallest $l \geq 0$ such that $\left(N_{H} \backslash N_{H_{0}}\right) \cap M_{l+1, H_{0}, H}$ $=\emptyset$.
2) $N_{H} \backslash N_{H_{0}} \subseteq \bigcup_{f=1}^{l} M_{f, H_{0}, H}$.

Proof. 1) For every $t \in T(H)$ the set $\left\{n \geq 1 \mid U_{n}=t \diamond\right\}$ is finite, by (1.4). Since $T(H)$ is finite, the sets N_{H} and also $N_{H} \backslash N_{H_{0}}$ are finite.

If $N_{H} \backslash N_{H_{0}}=\emptyset$ the statement is true with $l=0$. Now let $N_{H} \backslash N_{H_{0}} \neq \emptyset$. For each $n \in N_{H} \backslash N_{H_{0}}$ the set $F_{n}=\left\{f \geq 1 \mid n \in M_{f}\right\}$ is finite. Indeed, assume that there exist $f_{1}<f_{2}<\ldots$ in F_{n}. So for every $i \geq 1$ there exist $\left(e_{p i}\right)_{p \in H \backslash H_{0}}$ with $\sum_{p \in H \backslash H_{0}} e_{p i}=f_{i}$ and $\prod_{p \in H \backslash H_{0}} \varrho(p)^{e_{p i}}$ divides n. Then there exists $p_{0} \in H \backslash H_{0}$ such that the sequence $\left(e_{p_{0} i}\right)_{i \geq 1}$ has an infinite subsequence $e_{p_{0} i_{1}}<e_{p_{0} i_{2}}<\ldots$ so n is divisible by an arbitrarily large power of $\varrho\left(p_{0}\right)$, which is absurd. Therefore F_{n} is finite for every $n \in N_{H} \backslash N_{H_{0}}$. Let $l=\max _{n \in N_{H} \backslash N_{H_{0}}}\left\{\max F_{n}\right\}$. It follows that $\left(N_{H} \backslash N_{H_{0}}\right) \cap M_{l+1, H_{0}, H}=\emptyset$ and that l is the smallest such index.
2) The statement is trivial when $N_{H} \backslash N_{H_{0}}=\emptyset$. Now assume that $N_{H} \backslash$ $N_{H_{0}} \neq \emptyset$ and that there exists n such that $n \in N_{H} \backslash N_{H_{0}}$ but $n \notin \bigcup_{f=1}^{l} M_{f}$. We choose n minimal. Since $U_{n}=t \diamond$ with $t \in T(H) \backslash T\left(H_{0}\right)$ there exists $p \in H \backslash H_{0}$ such that p divides U_{n}. Therefore $\varrho(p) \mid n$ and we write $n=m \varrho(p)$. Then by (2.1), $U_{n}=U_{m} Z$ with $d=\operatorname{gcd}\left(U_{m}, Z\right) \mid \varrho(p)$. We have

$$
\frac{U_{n}}{d^{2}}=\frac{U_{m}}{d} \cdot \frac{Z}{d}
$$

Let q be any prime dividing d, so $q \mid U_{m}$, hence $q \in \mathcal{P}(\mathcal{U})$. Thus $q \in H$ because H is saturated. By hypothesis $U_{n}=t \diamond \in T(H) \diamond \subseteq S$. By (3.3), $U_{n} / d^{2} \in S$, hence $U_{m} / d \in S$ and so $U_{m} \in S$, that is, $U_{m}=t_{1} \diamond \in T(H) \diamond$, so $m \in N_{H}$.

If $m \in N_{H_{0}}$ then $n=\varrho(p) m \in M_{1}$, which is contrary to the assumption. If $m \notin N_{H_{0}}$, since n is minimal and $m<n$, we have $m \in \bigcup_{f=1}^{l} M_{f}$, so $n=\varrho(p) m \in \bigcup_{f=2}^{l+1} M_{f}$. But $\left(N_{H} \backslash N_{H_{0}}\right) \cap M_{l+1}=\emptyset$, so this is also absurd.

The above results are the basis for the algorithm.
Description of the algorithm. Let $h \geq 2, C \geq 1$. We wish to determine the set $N^{*}=\left\{n \geq 1 \mid U_{n}=C \diamond\right\}$. Writing $C=A \diamond$ where $A \geq 1$ and A is h-power free, we have $N^{*}=\left\{n \geq 1 \mid U_{n}=A \diamond\right\}$. We assume that the set $N_{0}=\left\{n \geq 1 \mid U_{n}=\diamond\right\}$ is known. If there exists a prime p such that $p \mid A$ and $p \notin \mathcal{P}(\mathcal{U})$ then $N^{*}=\emptyset$. Now we assume that if $p \mid A$ then $p \in \mathcal{P}(\mathcal{U})$. Let H be the smallest saturated set containing all the prime factors of A.

Let $H_{0}=\emptyset$, and let $H_{1}=\{2,3\}$ if $\{2,3\} \subseteq H,\{2,3\}$ is saturated but $\{2\}$ and $\{3\}$ are not saturated. Otherwise let $H_{1}=\left\{q_{1}\right\}$ where q_{1} is the smallest
prime in H. Let q_{2} be the smallest prime in $H \backslash H_{1}$ and let $H_{2}=H_{1} \cup\left\{q_{2}\right\}$. Define H_{3}, \ldots in a similar way. Let r be such that $H_{r}=H$. So $3<q_{2}$ or $q_{1}<q_{2}$ and $q_{2}<q_{3}<\ldots<q_{r}$. By the preceding results if $H_{1}=\{2,3\}$ then

$$
N_{H_{1}} \backslash N_{0} \subseteq \bigcup_{f=1}^{l} M_{f, \emptyset,\{2,3\}}
$$

where

$$
M_{f, \emptyset,\{2,3\}}=\left\{m=\varrho(2)^{e_{2}} \varrho(3)^{e_{3}} N_{0} \mid e_{2}+e_{3}=f\right\}
$$

By direct calculation we may determine the elements of

$$
\left(N_{\{2,3\}} \backslash N_{0}\right) \cap M_{1, \emptyset,\{2,3\}}, \quad\left(N_{\{2,3\}} \backslash N_{0}\right) \cap M_{2, \emptyset,\{2,3\}}
$$

etc. until we determine l such that

$$
\left(N_{\{2,3\}} \backslash N_{0}\right) \cap M_{l+1, \emptyset,\{2,3\}}=\emptyset
$$

We note that l depends on $\{2,3\}$. This determines $N_{\{2,3\}} \backslash N_{0}$.
Let $i \geq 1$ and $H_{i}=H_{i-1} \cup\left\{q_{i}\right\}$, where we may take $i=1$ when $H_{1}=$ $\left\{q_{1}\right\}$, so $H_{0}=\emptyset$. Similarly, by direct calculation we may determine the sets

$$
\left(N_{H_{i}} \backslash N_{H_{i-1}}\right) \cap M_{1, H_{i-1}, H_{i}}, \quad\left(N_{H_{i}} \backslash N_{H_{i-1}}\right) \cap M_{2, H_{i-1}, H_{i}}
$$

etc. until we reach the smallest l such that

$$
\left(N_{H_{i}} \backslash N_{H_{i-1}}\right) \cap M_{l+1, H_{i-1}, H_{i}}=\emptyset .
$$

This determines the sets $N_{H_{i}} \backslash N_{H_{i-1}}$ for $i=1, \ldots, r$. Finally, we identify by calculation the subset N^{*} of $N_{H_{r}}$.

The implementation of the algorithm is usually very simple, as will be illustrated in the next section.
4. Numerical examples. In this section we shall give numerical examples to show how the algorithm indicated in the preceding section may be applied. We modify somewhat the notation used before to make it more adapted to handle the examples. The following lemma will be useful to eliminate superfluous calculations.
(4.1) Lemma. Let $l>1$ be such that every prime factor of l belongs to H. If $m \notin N_{H}$ then $l m \notin N_{H}$.

Proof. We have $U_{m l}=U_{m} Z$ with $d=\operatorname{gcd}\left(U_{m}, Z\right)$ dividing l. From $m \notin N_{H}$ there exists a prime $p \notin H$ such that $v_{p}(m) \not \equiv 0(\bmod h)$. If $m l \in N_{H}$ then $v_{p}(m l) \equiv 0(\bmod h)$, therefore $v_{p}(l) \not \equiv 0(\bmod h)$, so $p \mid l$, which is a contradiction.
(4.2) Determination of the Fibonacci numbers of the form $25 \cdot 7 x^{3}$. We have $P=1, Q=-1, D=5$. The ranks of appearance of 5,7 are $\varrho(5)=5$, $\varrho(7)=8$. So the smallest saturated set containing $\{5,7\}$ is $H=\{2,3,5,7\}$.

It was recalled in (1.3) that $N_{0}=\left\{n \mid U_{n}\right.$ is a cube $\}=\{1,2,6\}$. Let

$$
N_{1}=N_{\{2,3\}}=\left\{n \geq 1 \mid U_{n}=2 \diamond, 3 \diamond, 4 \diamond, 6 \diamond, 9 \diamond, 12 \diamond, 18 \diamond, 36 \diamond\right\}
$$

For $f \geq 1$ let

$$
M_{1, f}=\left\{2^{e_{2}} 3^{e_{3}} N_{0} \mid e_{2}+e_{3}=f\right\}
$$

So $N_{1} \subseteq M_{1,1} \cup M_{1,2} \cup M_{1,3} \cup \ldots$ Now

$$
M_{1,1}=2 N_{0} \cup 3 N_{0}=\{2,4,12,3,6,18\}
$$

By direct calculation, or looking at tables, $N_{1} \cap M_{1,1}=\{3,4,12\}$. Next

$$
M_{1,2}=4 N_{0} \cup 6 N_{0} \cup 9 N_{0}=\{4,8,24,6,12,36,9,18,54\}
$$

We observe that $6,8,9 \notin N_{1}$, hence by (4.1), 12, $36,24,18,54 \notin N_{1}$, so $N_{1} \cap M_{1,2}=\{4\}$.

Next $M_{1,3}=8 N_{0} \cup 12 N_{0} \cup 18 N_{0} \cup 27 N_{0}$. As already said $8,12,18,9 \notin N_{1}$, hence $N_{1} \cap M_{1,3}=\emptyset$, by Lemma (4.1).

In conclusion, $N_{1}=\{3,4,12\}$.
Let

$$
N_{2}=\left\{n \geq 1 \mid U_{n}=5 \diamond, 10 \diamond, 15 \diamond, 20 \diamond, 30 \diamond, 45 \diamond, 60 \diamond, 90 \diamond\right\}
$$

[In the preceding notation, $N_{2}=N_{\{2,3,5\}} \backslash N_{\{2,3\}}$.]
Hence $N_{2} \subseteq M_{2,1} \cup M_{2,2} \cup \ldots$ where $M_{2,1}=5 \bar{N}_{1}, M_{2,2}=25 \bar{N}_{1}, \ldots$ with $\bar{N}_{1}=N_{0} \cup N_{1}=\{1,2,3,4,6,12\}$. Now we observe that $3,10 \notin N_{2}$, so $25,45,20,30,60,90 \notin N_{2}$ by (4.1). We have $M_{2,1}=\{5,10,15,20,30,60\}$, so $N_{2} \cap M_{2,1}=\{5\}$. Next $M_{2,2}=\{25,50,75,100,150,300\}$ and again by (4.1), $N_{2} \cap M_{2,2}=\emptyset$. Thus $N_{2}=\{5\}$.

Let $\bar{N}_{2}=\bar{N}_{1} \cup N_{2}=\{1,2,3,4,5,6,12\}$. Let

$$
N_{3}=\left\{n \geq 1 \mid U_{n}=2^{i} 3^{j} 5^{k} 7^{l} \diamond, 0 \leq i, j, k \leq 2, l=1,2\right\}
$$

Since $\varrho(7)=8$ we have $N_{3} \subseteq M_{3,1} \cup M_{3,2} \cup \ldots$ where $M_{3,1}=8 \bar{N}_{2}, M_{3,2}=$ $64 \bar{N}_{2}, \ldots$

Explicitly $M_{3,1}=\{8,16,24,32,40,48,96\}$ and by calculation and (4.1), $N_{3} \cap M_{3,1}=\{8\}$. By similar considerations $N_{3} \cap 64 \bar{N}_{2}=\emptyset$. Thus $N_{3}=\{8\}$.

The set N^{*} is contained in N_{3}. But $U_{8}=21 \neq 25 \cdot 7 \diamond$. So $N^{*}=\emptyset$.
We deduce that the diophantine equations

$$
X^{2}-5^{5} \cdot 7^{2} Y^{6}= \pm 4
$$

do not have solutions in non-zero integers.
(4.3) Determination of the Pell numbers of the form $20 x^{3}$. We have $P=$ $2, Q=-1, D=8$. Pethő showed in [5] that $N_{0}=\left\{n \geq 1 \mid U_{n}\right.$ is a cube $\}=\{1\}$. Since $\varrho(2)=2, \varrho(5)=3, \varrho(3)=4$ the saturated set containing $\{2,3\}$ is $H=\{2,3,5\}$. We note that $\{2\}$ is saturated. Let $N_{1}=\{n \geq 1 \mid$ $\left.U_{n}=2 \diamond, 4 \diamond\right\}$. Then $N_{1} \subseteq 2 N_{0} \cup 4 N_{0} \cup \ldots$ But $N_{1} \cap 2 N_{0}=\{2\}, N_{1} \cap 4 N_{0}=\emptyset$. Thus $N_{1}=\{2\}$.

Let $\bar{N}_{1}=N_{0} \cup N_{1}=\{1,2\}$, and

$$
N_{2}=\left\{n \geq 1 \mid U_{n}=3 \diamond, 6 \diamond, 9 \diamond, 12 \diamond, 18 \diamond, 36 \diamond\right\}
$$

Then $N_{2} \subseteq 4 \bar{N}_{1} \cup 16 \bar{N}_{1} \cup \ldots$ We have $N_{2} \cap 4 \bar{N}_{1}=\{4\}$. Since $8 \notin N_{2}$, by (4.1), $16,32 \notin N_{2}$. Therefore $N_{2} \cap 16 \bar{N}_{2}=\emptyset$. Thus $N_{2}=\{4\}$.

Let $\bar{N}_{2}=N_{2} \cup \bar{N}_{1}=\{1,2,4\}$. Let

$$
N_{3}=\left\{n \geq 1 \mid U_{n}=2^{i} 3^{j} 5^{k} \diamond, 0 \leq i, j \leq 2,1 \leq k \leq 2\right\}
$$

Since $\varrho(5)=3$ we have $N_{3} \subseteq 3 \bar{N}_{2} \cup 9 \bar{N}_{2} \cup \ldots$ We note that $6 \notin N_{3}$ and $9 \notin N_{3}$, so by (4.1), $12,18,36 \notin N_{3}$. Hence $N_{3} \cap 3 \bar{N}_{2}=\{3\}$ and $N_{3} \cap 9 \bar{N}_{2}=\emptyset$. Therefore $N_{3}=\{3\}$. The set $N^{*} \subseteq N_{3}$, but $U_{3}=5 \neq 20 x^{3}$, so $N^{*}=\emptyset$.

We deduce that the diophantine equations

$$
X^{2}-2^{7} \cdot 5^{2} Y^{6}= \pm 4
$$

or equivalently

$$
X^{2}-2^{5} \cdot 5^{2} Y^{6}= \pm 1
$$

do not have solutions in non-zero integers.
(4.4) Determination of all $n \geq 1$ such that $7^{n}-1=3 x^{3}$. Let $n \geq 1$ and $x \geq 1$ be such that $7^{n}-1=3 x^{3}$. Since $6 \mid 7^{n}-1$ we have

$$
\frac{7^{n}-1}{7-1}=4 y^{3}
$$

Let $P=8, Q=7$, so $D=36$ and let \mathcal{U} be the sequence with terms $U_{n}=\left(7^{n}-1\right) /(7-1)$. Let $N^{*}=\left\{n \geq 1 \mid U_{n}=4 \diamond\right\}$ where \diamond denotes any non-zero cube.

We have $N_{0}=\left\{n \geq 1 \mid U_{n}=\diamond\right\}=\{1,2\}$ (see [6]). Since $\varrho(2)=2$, $\{2\}$ is a saturated set. Let $N_{1}=\left\{n \geq 1 \mid U_{n}=2 \diamond, 4 \diamond\right\}$. Then $N_{1} \subseteq 2 N_{0} \cup 4 N_{0} \cup \ldots$. But $N_{1} \cap 2 N_{0}=\emptyset$ so $N_{1}=\emptyset$. Therefore $7^{n}-1$ is never equal to $3 x^{3}$.

References

[1] W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Det Norske Vid. Akad. Avh. I 5 (1942), 27 pp.
[2] H. London and R. Finkelstein (alias R. Steiner), On Fibonacci and Lucas numbers which are perfect powers, Fibonacci Quart. 7 (1969), 476-481 and 487.
[3] A. Pethő, Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), 5-13.
[4] -, Full cubes in the Fibonacci sequence, Publ. Math. Debrecen 30 (1983), 117-127.
[5] -, The Pell sequence contains only trivial perfect powers, in: Sets, Graphs and Numbers (Budapest, 1991), Colloq. Soc. Math. János Bolyai 60, North-Holland, 1992, 561-568.
[6] P. Ribenboim, Catalan's Conjecture, Academic Press, Boston, 1994.
[7] -, An algorithm to determine the points with integral coordinates in certain elliptic curves, J. Number Theory 74 (1998), 19-38.
[8] P. Ribenboim, Pell numbers: squares and cubes, Publ. Math. Debrecen 54 (1999), 131-152.
[9] -, My Numbers, My Friends, Springer, New York, 2000.
[10] -, Solving infinite families of systems of Pell equations with binary recurring sequences, preprint, 2001.
[11] P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, J. Number Theory 58 (1996), 104-125.
[12] T. N. Shorey and C. L. Stewart, On the diophantine equation $a x^{2 t}+b x^{t} y+c y^{2}=1$ and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36.

Department of Mathematics and Statistics
Queen's University
Kingston, Ontario
Canada K7L 3N6

Received on 4.4.2001
and in revised form on 18.1.2002

[^0]: 2000 Mathematics Subject Classification: Primary 11B37.

