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1. Introduction. In a recent paper, S. P. Tung [T] considers the prob-
lem of estimating from below the quantity

SF (T ) := max
x∈N
x≤T

min
y∈Z
|F (x, y)|,

where F ∈ Q[X,Y ] is a given polynomial and T ∈ N is a variable growing
to infinity. For a fixed integer x0, the quantity miny∈Z |F (x0, y)| (which was
investigated already in [DZ]) gives a measure of the distance of the roots of
F (x0, Y ) = 0 from the integers; the function SF (T ) expresses the behaviour
of this distance as the first variable grows.

Actually, SF (T ) implicitly appears in the statement of Hilbert’s Irre-
ducibility Theorem; in fact most proofs of it (see e.g. [S]) reduce to showing
the following: If for every integer x0 the equation F (x0, Y ) = 0 has an
integral solution y, then there exists a polynomial f(X) ∈ Q[X] such that
F (X, f(X)) = 0 identically. Note that the assumption of this statement may
be reformulated as SF (T ) = 0 for all positive T . Hence, Hilbert’s theorem
proves that either F (X, f(X)) = 0 for some polynomial f ∈ Q[X] or we
have a lower bound SF (T ) ≥ c > 0 for all large T .

Note that it may happen that SF (T ) is bounded, e.g. when there exists a
polynomial f(X) ∈ Q[X], taking integral values on Z, such that F (X, f(X))
is a constant. However, Tung proves, among other things, that this is essen-
tially the only case when SF (T ) is bounded. In fact, Tung has a much sharper
conclusion. To state it, we first define, for an infinite set A ⊂ N, the symbol

A(T ) = A ∩ [1, T ],

and the function
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SA,F (T ) = max
x∈A(T )

min
y∈Z
|F (x, y)|.

Also, we recall the classical definitions of upper and lower asymptotic den-
sities:

d(A) = lim sup
T→∞

#A(T )
T

, d(A) = lim inf
T→∞

#A(T )
T

.

When these numbers coincide, their common value is called the asymptotic
density of A. With this notation, Tung proves [T, Thm. 3.4] the following
statement: There exists a number c > 0, depending only on degF , with
the following property : Either there exists a polynomial f(X) ∈ Q[X] such
that F (X, f(X)) is constant , or , for all sets A of positive density , we have
SA,F (T ) � T c. (Here the implied constant may depend both on A and
on F .)

In this statement no attention is given to whether or not the polynomial
f is integral-valued on N; Tung studies this condition later on in the above-
mentioned paper (see also Remark (ii) below). Here we are concerned with
a question in a different direction: how large can one choose the exponent c
in the above statement?

Although Tung’s method yields in principle an effective estimate for c,
he does not mention any explicit lower bound. However, he points out that
c cannot exceed 1/2, in view of the data F (X,Y ) = Y 2 − X, A = N.
Moreover, under the Generalized Riemann Hypothesis, he obtains the in-
equality SA,F (T ) �

√
T/log2 T , proving in particular that one can choose

c = 1/2− ε for any ε > 0.
The purpose of the present note is to show, unconditionally, that in fact

one can take c = 1/2. We state this as the following

Theorem 1. Let A ⊂ N be a set of positive lower asymptotic density
and let F (X,Y ) ∈ Q[X,Y ]. Then either there exists f(X) ∈ Q[X] such that
F (X, f(X)) is constant , or SA,F (T )�

√
T for T →∞.

We shall deduce Theorem 1 from a similar statement, namely

Theorem 2. Let F (X,Y ) ∈ Q[X,Y ]. If A is a set of positive upper
asymptotic density and y(a), a ∈ A, are integers such that |F (a, y(a))| =
o(
√
a), then there exists a polynomial f(X) ∈ Q[X] such that F (X, f(X))

is constant.

We remark that e.g. in the case A = N the implict constants are effec-
tively computable.

Our method, of completely different nature compared to [T], will make
essential use of the previous paper [DZ]. We shall not use Hilbert’s theorem
(a proof of which is implicitly given in [DZ]) nor other classical diophantine
tools.



Polynomials taking small values 117

2. Proofs. For the reader’s convenience, we recall the main result of
[DZ]:

Theorem DZ. Let F (X,Y ) ∈ R[X,Y ]. Assume that A is a set of nat-
ural numbers of positive upper density , such that for a ∈ A we may find an
integer y(a) satisfying

(1) |F (a, y(a))| = o

(
sup

|ξ−y(a)|≤1

∣∣∣∣
∂F

∂Y
(a, ξ)

∣∣∣∣
)
.

Then there exist a polynomial f ∈ Q[X] and a set B ⊂ A such that A \ B
has zero density and

(2) |F (b, f(b))| ≤ |F (b, y(b))| ∀b ∈ B.
Proof of Theorem 2. Assume, as in the statement, that A ⊂ N is an

infinite set of positive upper density, such that |F (a, y(a))| = o(
√
a) for

a ∈ A. We start by writing

F (X,Y ) = ϕ0(X) + ϕ1(X)Y + . . .+ ϕd(X)Y d, ϕi ∈ Q[X], ϕd(X) 6= 0.

We note at once that, if d = 0, then the assumption implies that |ϕ0(a)| =
o(a), whence F is constant, and there is nothing to prove. Hence we assume
d ≥ 1.

Suppose that the leading coefficient ϕd(X) in Y of F (X,Y ) is con-
stant. Then we normalize F as follows. First we choose h(X) ∈ Q[X] such
that the second coefficient in Y of F (X,Y + h(X)) vanishes, i.e. h(X) =
−ϕd−1(X)/dϕd. Next, if r is a common denominator for the coefficients of
h(X), we replace F (X,Y ) with F (X,Y/r+ h(X)). We note that this poly-
nomial continues to satisfy the assumptions of Theorem 2: we leave the set
A unchanged, while the function y(a) is replaced by r(y(a) − h(a)). More-
over, the conclusion of Theorem 2 for the new polynomial implies the same
conclusion for the old one.

Summing up, we may assume that either ϕd(X) is not constant or
ϕd−1(X) = 0.

Before going on, we recall the following simple fact.

Lemma. Let P (Y ) ∈ C[Y ]. Then

sup
0≤y≤1

|P (y)| ≥ c
degP∑

j=0

|P (j)(0)|,

where c is a positive number depending only on degP .

Proof. Write the Taylor expansion

P (Y ) = P (0) + P ′(0)Y + . . .+
P (k)(0)
k!

Y k,
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where k = degP . Since the Vandermonde determinant det((i/k)j)0≤i,j≤k is
nonzero, the formulas

P

(
i

k

)
= P (0) + P ′(0)

(
i

k

)
+ . . .+

P (k)(0)
k!

(
i

k

)k
, i = 0, . . . , k,

imply that the numbers P (j)(0) may be expressed as linear forms in P (0),
P (1/k), . . . , P (1) with coefficients depending only on k. If C is the maximum
of the absolute values of these coefficients, we have

k∑

j=0

|P (j)(0)| ≤ (k + 1) sup
j
|P (j)(0)|

≤ (k + 1)C
(
P (0) + P

(
1
k

)
+ . . .+ P (1)

)

≤ (k + 1)2C sup
0≤y≤1

|P (y)|.

We now put G(X,Y ) = ∂
∂Y F (X,Y ) and, for a ∈ A,

σ(a) := sup
|ξ−y(a)|≤1

|G(a, ξ)|.

Our next aim is to show that either the conclusion of Theorem 2 is true or

(3) σ(a)� √a for large a ∈ A.
By applying the Lemma to the polynomial P (Y ) := G(a, y(a) + Y ) we find
that

(4) σ(a) ≥ c1
∑

j≥0

|G(j)(a, y(a))|

where G(j) denotes the jth derivative with respect to Y and c1 > 0 depends
only on d.

In the preceding notation we have G(X,Y ) = ϕ1(X) + 2ϕ2(X)Y + . . .+
dϕd(X)Y d−1.

In what follows, c2, c3, . . . will denote positive numbers depending only
on F . We distinguish two cases.

Case 1: There exists i ∈ {1, . . . , d} such that ϕi(X) has positive degree
(i.e. degX G > 0). In this case, let q be the maximum index i with this
property. If q = d, then there exists a positive number c2 such that σ(a) ≥
c2|a| for all large a ∈ A: in fact, by (4), we have σ(a) ≥ c1d!|ϕd(a)|, and (3)
follows.

If q < d, then q < d − 1 in view of the opening normalization. Ob-
serve that G(q)(X,Y ) is a polynomial in Y alone, of degree d − q − 1 > 0,
whence |G(q)(a, y(a))| ≥ c2|y(a)|d−q−1− c3. In view of (4) we obtain σ(a) ≥
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c1c2|y(a)|d−q−1 − c1c3, whence

(5) |y(a)| ≤ c4(σ(a) + 1)1/(d−q−1).

Further,

G(q−1)(X,Y ) = q!ϕq(X) +
d−q∑

i=1

(i+ q)!
i!

ϕi+qY
i.

In particular,

|G(q−1)(a, y(a))| ≥ |q!ϕq(a)| − c5|y(a)|d−q.
Since ϕq(X) is not constant by assumption, (4) and (5) imply that, for large
a ∈ A,

σ(a) ≥ c6|a| − c7(σ(a) + 1)(d−q)/(d−q−1).

Since (d− q)/(d− q − 1) ≤ 2 for q < d− 1 we again deduce (3).

Case 2: G(X,Y ) does not depend on X. In this case we can assume
that F (X,Y ) = ϕ0(X) + ψ(Y ) for a polynomial ψ ∈ Q[Y ], so G(X,Y )
= ψ′(Y ). If ϕ0(X) is constant, Theorem 2 follows immediately by letting
f(X) be any constant polynomial. Similarly if d = 1. Also, the case d = 0
was previously excluded, and therefore we assume degX F > 0 and d =
degY F > 1.

By (4) we have σ(a) ≥ c1|ψ′(y(a))| ≥ c8|y(a)|d−1 − c9, whence

|y(a)| ≤ c10(σ(a) + 1)1/(d−1).

Moreover, since ϕ0 is not constant, we have

|F (a, y(a))| ≥ c11|a| − c12(|y(a)|+ 1)d ≥ c11|a| − c13(σ(a) + 1)d/(d−1).

On the other hand we have |F (a, y(a))| = o(
√
a) by assumption, whence

c14
√
a ≥ c11|a| − c13(σ(a) + 1)d/(d−1).

Now, as before, (3) follows by noting that d/(d− 1) ≤ 2 for d > 1.

By combining (3) with the assumption |F (a, y(a))| = o(
√
a) for a ∈ A,

we find that

|F (a, y(a))| = o

(
sup

|ξ−y(a)|≤1

∣∣∣∣
∂

∂Y
F (a, ξ)

∣∣∣∣
)

for a ∈ A.

Since the set A is assumed to be of positive upper density, Theorem DZ
then implies the existence of a polynomial f with rational coefficients and
of a set B ⊂ A with the same upper density as A, such that |F (b, f(b))| ≤
|F (b, y(b))| = o(

√
b) for b ∈ B. Since B is infinite, it follows that F (X, f(X))

must be constant, concluding the proof of Theorem 2.
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Proof of Theorem 1. We let A be a set as in the statement. In view of
the definition of lower density, there exists a positive number c such that
#A(T ) > cT for all T > T0, say.

We shall prove the existence of a polynomial f(X) with the stated
property, under the assumption that SA,F (T ) �

√
T does not hold true.

This means that there exist positive integers T1 < T2 < . . . such that
SA,F (Tn) ≤ (1/n)

√
Tn for all positive integers n. We may also assume that

T1 > T0.
For a ∈ N we define g(a) := miny∈Z |F (a, y)|. The numbers |F (a, y)|

for a, y ∈ Z are nonnegative rational numbers with bounded denominators,
so the minimum is attained for every a ∈ N and we may write g(a) =
|F (a, y(a))| for a suitable rational integer y(a).

In view of our definitions we have

max
a∈A(Tn)

g(a) ≤ 1
n

√
Tn.

Define the setA′ to be the union of the setsA∩[(c/2)Tn, Tn], over all positive
integers n. Since #A(Tn) ≥ cTn for all n ∈ N, the interval [(c/2)Tn, Tn]
contains at least (c/2)Tn elements of A, so A′ has positive upper density.

We contend that g(a) = o(
√
a) for a ∈ A′. In fact, if a ∈ A′ then a lies

in some interval [(c/2)Tn, Tn], and a ∈ A. Therefore

g(a) ≤ max
x∈A(Tn)

g(x) ≤ 1
n

√
Tn ≤

1
n

√
2a/c,

since a ≥ (c/2)Tn. This proves our contention.
Finally, recalling that g(a) = F (a, y(a)) for a ∈ A′, we may apply The-

orem 2 to get the desired conclusion.

Remarks. (i) We observe that it is not possible to replace lower density
with upper density in the statement of Theorem 1. It suffices to take A to be
any set containing large intervals of integers and then large gaps, to produce
a counterexample. Take, e.g., A to be the union of the intervals [2n!, 22·n!] for
n ∈ N; this set clearly has upper density equal to 1 and lower density equal
to 0. Also, let F (X,Y ) be any polynomial. Plainly, for any positive integer
a, we have miny∈Z |F (a, y)| ≤ |F (a, 0)| � ah (where h = degX F ). Then,
if T = 2(n+1)! − 1, we have maxa∈A(T ) miny∈Z |F (a, y)| � maxa≤22·n! ah �
22hn! � T 2h/n. Hence a lower bound SA,F (T )� T c does not hold, no matter
the value of c > 0. On the other hand, for suitable F , e.g. F (X,Y ) = Y 2−X
there does not exist a polynomial f(X) such that F (X, f(X)) is constant.

(ii) By using the full force of the proof of Theorem DZ (as given in
[DZ]), both Theorem 1 and Theorem 2 can be sharpened: one can add to
the first alternative of the conclusion of Theorem 1 and to the conclusion
of Theorem 2 that f is integral-valued on a sequence B with A \ B of zero
density.
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