On polynomials taking small values at integral arguments II

by

ROBERTO DVORNICICH (Pisa), SHIH PING TUNG (Chung Li) and UMBERTO ZANNIER (Venezia)

1. Introduction. In a recent paper, S. P. Tung [T] considers the problem of estimating from below the quantity

$$S_F(T) := \max_{\substack{x \in \mathbb{N} \\ x < T}} \min_{y \in \mathbb{Z}} |F(x, y)|,$$

where $F \in \mathbb{Q}[X,Y]$ is a given polynomial and $T \in \mathbb{N}$ is a variable growing to infinity. For a fixed integer x_0 , the quantity $\min_{y \in \mathbb{Z}} |F(x_0,y)|$ (which was investigated already in [DZ]) gives a measure of the distance of the roots of $F(x_0,Y) = 0$ from the integers; the function $S_F(T)$ expresses the behaviour of this distance as the first variable grows.

Actually, $S_F(T)$ implicitly appears in the statement of Hilbert's Irreducibility Theorem; in fact most proofs of it (see e.g. [S]) reduce to showing the following: If for every integer x_0 the equation $F(x_0, Y) = 0$ has an integral solution y, then there exists a polynomial $f(X) \in \mathbb{Q}[X]$ such that F(X, f(X)) = 0 identically. Note that the assumption of this statement may be reformulated as $S_F(T) = 0$ for all positive T. Hence, Hilbert's theorem proves that either F(X, f(X)) = 0 for some polynomial $f \in \mathbb{Q}[X]$ or we have a lower bound $S_F(T) \geq c > 0$ for all large T.

Note that it may happen that $S_F(T)$ is bounded, e.g. when there exists a polynomial $f(X) \in \mathbb{Q}[X]$, taking integral values on \mathbb{Z} , such that F(X, f(X)) is a constant. However, Tung proves, among other things, that this is essentially the only case when $S_F(T)$ is bounded. In fact, Tung has a much sharper conclusion. To state it, we first define, for an infinite set $\mathcal{A} \subset \mathbb{N}$, the symbol

$$\mathcal{A}(T) = \mathcal{A} \cap [1, T],$$

and the function

²⁰⁰⁰ Mathematics Subject Classification: Primary 12E05.

$$S_{\mathcal{A},F}(T) = \max_{x \in \mathcal{A}(T)} \min_{y \in \mathbb{Z}} |F(x,y)|.$$

Also, we recall the classical definitions of upper and lower asymptotic densities:

$$\bar{d}(\mathcal{A}) = \limsup_{T \to \infty} \frac{\#\mathcal{A}(T)}{T}, \quad \underline{d}(\mathcal{A}) = \liminf_{T \to \infty} \frac{\#\mathcal{A}(T)}{T}.$$

When these numbers coincide, their common value is called the asymptotic density of \mathcal{A} . With this notation, Tung proves [T, Thm. 3.4] the following statement: There exists a number c > 0, depending only on $\deg F$, with the following property: Either there exists a polynomial $f(X) \in \mathbb{Q}[X]$ such that F(X, f(X)) is constant, or, for all sets \mathcal{A} of positive density, we have $S_{\mathcal{A},F}(T) \gg T^c$. (Here the implied constant may depend both on \mathcal{A} and on F.)

In this statement no attention is given to whether or not the polynomial f is integral-valued on \mathbb{N} ; Tung studies this condition later on in the above-mentioned paper (see also Remark (ii) below). Here we are concerned with a question in a different direction: how large can one choose the exponent c in the above statement?

Although Tung's method yields in principle an effective estimate for c, he does not mention any explicit lower bound. However, he points out that c cannot exceed 1/2, in view of the data $F(X,Y) = Y^2 - X$, $A = \mathbb{N}$. Moreover, under the Generalized Riemann Hypothesis, he obtains the inequality $S_{A,F}(T) \gg \sqrt{T/\log^2 T}$, proving in particular that one can choose $c = 1/2 - \varepsilon$ for any $\varepsilon > 0$.

The purpose of the present note is to show, unconditionally, that in fact one can take c = 1/2. We state this as the following

THEOREM 1. Let $A \subset \mathbb{N}$ be a set of positive lower asymptotic density and let $F(X,Y) \in \mathbb{Q}[X,Y]$. Then either there exists $f(X) \in \mathbb{Q}[X]$ such that F(X,f(X)) is constant, or $S_{A,F}(T) \gg \sqrt{T}$ for $T \to \infty$.

We shall deduce Theorem 1 from a similar statement, namely

THEOREM 2. Let $F(X,Y) \in \mathbb{Q}[X,Y]$. If A is a set of positive upper asymptotic density and y(a), $a \in A$, are integers such that $|F(a,y(a))| = o(\sqrt{a})$, then there exists a polynomial $f(X) \in \mathbb{Q}[X]$ such that F(X,f(X)) is constant.

We remark that e.g. in the case $\mathcal{A} = \mathbb{N}$ the implict constants are effectively computable.

Our method, of completely different nature compared to [T], will make essential use of the previous paper [DZ]. We shall not use Hilbert's theorem (a proof of which is implicitly given in [DZ]) nor other classical diophantine tools.

2. Proofs. For the reader's convenience, we recall the main result of [DZ]:

THEOREM DZ. Let $F(X,Y) \in \mathbb{R}[X,Y]$. Assume that A is a set of natural numbers of positive upper density, such that for $a \in A$ we may find an integer y(a) satisfying

(1)
$$|F(a,y(a))| = o\left(\sup_{|\xi - y(a)| \le 1} \left| \frac{\partial F}{\partial Y}(a,\xi) \right| \right).$$

Then there exist a polynomial $f \in \mathbb{Q}[X]$ and a set $\mathcal{B} \subset \mathcal{A}$ such that $\mathcal{A} \setminus \mathcal{B}$ has zero density and

(2)
$$|F(b, f(b))| \le |F(b, y(b))| \quad \forall b \in \mathcal{B}.$$

Proof of Theorem 2. Assume, as in the statement, that $A \subset \mathbb{N}$ is an infinite set of positive upper density, such that $|F(a,y(a))| = o(\sqrt{a})$ for $a \in A$. We start by writing

$$F(X,Y) = \varphi_0(X) + \varphi_1(X)Y + \ldots + \varphi_d(X)Y^d, \quad \varphi_i \in \mathbb{Q}[X], \ \varphi_d(X) \neq 0.$$

We note at once that, if d = 0, then the assumption implies that $|\varphi_0(a)| = o(a)$, whence F is constant, and there is nothing to prove. Hence we assume d > 1.

Suppose that the leading coefficient $\varphi_d(X)$ in Y of F(X,Y) is constant. Then we normalize F as follows. First we choose $h(X) \in \mathbb{Q}[X]$ such that the second coefficient in Y of F(X,Y+h(X)) vanishes, i.e. $h(X) = -\varphi_{d-1}(X)/d\varphi_d$. Next, if r is a common denominator for the coefficients of h(X), we replace F(X,Y) with F(X,Y/r+h(X)). We note that this polynomial continues to satisfy the assumptions of Theorem 2: we leave the set A unchanged, while the function y(a) is replaced by r(y(a) - h(a)). Moreover, the conclusion of Theorem 2 for the new polynomial implies the same conclusion for the old one.

Summing up, we may assume that either $\varphi_d(X)$ is not constant or $\varphi_{d-1}(X) = 0$.

Before going on, we recall the following simple fact.

Lemma. Let $P(Y) \in \mathbb{C}[Y]$. Then

$$\sup_{0 \le y \le 1} |P(y)| \ge c \sum_{j=0}^{\deg P} |P^{(j)}(0)|,$$

where c is a positive number depending only on $\deg P$.

Proof. Write the Taylor expansion

$$P(Y) = P(0) + P'(0)Y + \ldots + \frac{P^{(k)}(0)}{k!}Y^k,$$

where $k = \deg P$. Since the Vandermonde determinant $\det((i/k)^j)_{0 \le i,j \le k}$ is nonzero, the formulas

$$P\left(\frac{i}{k}\right) = P(0) + P'(0)\left(\frac{i}{k}\right) + \dots + \frac{P^{(k)}(0)}{k!}\left(\frac{i}{k}\right)^k, \quad i = 0, \dots, k,$$

imply that the numbers $P^{(j)}(0)$ may be expressed as linear forms in P(0), $P(1/k), \ldots, P(1)$ with coefficients depending only on k. If C is the maximum of the absolute values of these coefficients, we have

$$\sum_{j=0}^{k} |P^{(j)}(0)| \le (k+1) \sup_{j} |P^{(j)}(0)|$$

$$\le (k+1)C\left(P(0) + P\left(\frac{1}{k}\right) + \dots + P(1)\right)$$

$$\le (k+1)^{2} C \sup_{0 \le y \le 1} |P(y)|. \quad \blacksquare$$

We now put $G(X,Y) = \frac{\partial}{\partial Y} F(X,Y)$ and, for $a \in \mathcal{A}$, $\sigma(a) := \sup_{|\xi - \eta(a)| < 1} |G(a,\xi)|.$

Our next aim is to show that either the conclusion of Theorem 2 is true or

(3)
$$\sigma(a) \gg \sqrt{a}$$
 for large $a \in \mathcal{A}$.

By applying the Lemma to the polynomial P(Y) := G(a, y(a) + Y) we find that

(4)
$$\sigma(a) \ge c_1 \sum_{j \ge 0} |G^{(j)}(a, y(a))|$$

where $G^{(j)}$ denotes the jth derivative with respect to Y and $c_1 > 0$ depends only on d.

In the preceding notation we have $G(X,Y) = \varphi_1(X) + 2\varphi_2(X)Y + \ldots + d\varphi_d(X)Y^{d-1}$.

In what follows, c_2, c_3, \ldots will denote positive numbers depending only on F. We distinguish two cases.

Case 1: There exists $i \in \{1, ..., d\}$ such that $\varphi_i(X)$ has positive degree (i.e. $\deg_X G > 0$). In this case, let q be the maximum index i with this property. If q = d, then there exists a positive number c_2 such that $\sigma(a) \ge c_2|a|$ for all large $a \in \mathcal{A}$: in fact, by (4), we have $\sigma(a) \ge c_1 d! |\varphi_d(a)|$, and (3) follows.

If q < d, then q < d-1 in view of the opening normalization. Observe that $G^{(q)}(X,Y)$ is a polynomial in Y alone, of degree d-q-1>0, whence $|G^{(q)}(a,y(a))| \ge c_2|y(a)|^{d-q-1}-c_3$. In view of (4) we obtain $\sigma(a) \ge$

 $c_1c_2|y(a)|^{d-q-1}-c_1c_3$, whence

(5)
$$|y(a)| \le c_4(\sigma(a) + 1)^{1/(d-q-1)}.$$

Further,

$$G^{(q-1)}(X,Y) = q!\varphi_q(X) + \sum_{i=1}^{d-q} \frac{(i+q)!}{i!} \varphi_{i+q} Y^i.$$

In particular,

$$|G^{(q-1)}(a,y(a))| \ge |q!\varphi_q(a)| - c_5|y(a)|^{d-q}.$$

Since $\varphi_q(X)$ is not constant by assumption, (4) and (5) imply that, for large $a \in \mathcal{A}$,

$$\sigma(a) \ge c_6|a| - c_7(\sigma(a) + 1)^{(d-q)/(d-q-1)}$$
.

Since $(d-q)/(d-q-1) \le 2$ for q < d-1 we again deduce (3).

Case 2: G(X,Y) does not depend on X. In this case we can assume that $F(X,Y) = \varphi_0(X) + \psi(Y)$ for a polynomial $\psi \in \mathbb{Q}[Y]$, so $G(X,Y) = \psi'(Y)$. If $\varphi_0(X)$ is constant, Theorem 2 follows immediately by letting f(X) be any constant polynomial. Similarly if d=1. Also, the case d=0 was previously excluded, and therefore we assume $\deg_X F > 0$ and $d=\deg_Y F > 1$.

By (4) we have
$$\sigma(a) \ge c_1 |\psi'(y(a))| \ge c_8 |y(a)|^{d-1} - c_9$$
, whence $|y(a)| \le c_{10} (\sigma(a) + 1)^{1/(d-1)}$.

Moreover, since φ_0 is not constant, we have

$$|F(a,y(a))| \ge c_{11}|a| - c_{12}(|y(a)|+1)^d \ge c_{11}|a| - c_{13}(\sigma(a)+1)^{d/(d-1)}$$
.

On the other hand we have $|F(a,y(a))| = o(\sqrt{a})$ by assumption, whence

$$c_{14}\sqrt{a} \ge c_{11}|a| - c_{13}(\sigma(a) + 1)^{d/(d-1)}$$
.

Now, as before, (3) follows by noting that $d/(d-1) \le 2$ for d > 1.

By combining (3) with the assumption $|F(a,y(a))| = o(\sqrt{a})$ for $a \in \mathcal{A}$, we find that

$$|F(a, y(a))| = o\left(\sup_{|\xi - y(a)| \le 1} \left| \frac{\partial}{\partial Y} F(a, \xi) \right| \right) \quad \text{for } a \in \mathcal{A}.$$

Since the set \mathcal{A} is assumed to be of positive upper density, Theorem DZ then implies the existence of a polynomial f with rational coefficients and of a set $\mathcal{B} \subset \mathcal{A}$ with the same upper density as \mathcal{A} , such that $|F(b,f(b))| \leq |F(b,y(b))| = o(\sqrt{b})$ for $b \in \mathcal{B}$. Since \mathcal{B} is infinite, it follows that F(X,f(X)) must be constant, concluding the proof of Theorem 2. \blacksquare

Proof of Theorem 1. We let \mathcal{A} be a set as in the statement. In view of the definition of lower density, there exists a positive number c such that $\#\mathcal{A}(T) > cT$ for all $T > T_0$, say.

We shall prove the existence of a polynomial f(X) with the stated property, under the assumption that $S_{\mathcal{A},F}(T) \gg \sqrt{T}$ does not hold true. This means that there exist positive integers $T_1 < T_2 < \ldots$ such that $S_{\mathcal{A},F}(T_n) \leq (1/n)\sqrt{T_n}$ for all positive integers n. We may also assume that $T_1 > T_0$.

For $a \in \mathbb{N}$ we define $g(a) := \min_{y \in \mathbb{Z}} |F(a,y)|$. The numbers |F(a,y)| for $a, y \in \mathbb{Z}$ are nonnegative rational numbers with bounded denominators, so the minimum is attained for every $a \in \mathbb{N}$ and we may write g(a) = |F(a,y(a))| for a suitable rational integer y(a).

In view of our definitions we have

$$\max_{a \in \mathcal{A}(T_n)} g(a) \le \frac{1}{n} \sqrt{T_n}.$$

Define the set \mathcal{A}' to be the union of the sets $\mathcal{A} \cap [(c/2)T_n, T_n]$, over all positive integers n. Since $\#\mathcal{A}(T_n) \geq cT_n$ for all $n \in \mathbb{N}$, the interval $[(c/2)T_n, T_n]$ contains at least $(c/2)T_n$ elements of \mathcal{A} , so \mathcal{A}' has positive upper density.

We contend that $g(a) = o(\sqrt{a})$ for $a \in \mathcal{A}'$. In fact, if $a \in \mathcal{A}'$ then a lies in some interval $[(c/2)T_n, T_n]$, and $a \in \mathcal{A}$. Therefore

$$g(a) \le \max_{x \in \mathcal{A}(T_n)} g(x) \le \frac{1}{n} \sqrt{T_n} \le \frac{1}{n} \sqrt{2a/c},$$

since $a \ge (c/2)T_n$. This proves our contention.

Finally, recalling that g(a) = F(a, y(a)) for $a \in \mathcal{A}'$, we may apply Theorem 2 to get the desired conclusion. \blacksquare

REMARKS. (i) We observe that it is not possible to replace lower density with upper density in the statement of Theorem 1. It suffices to take \mathcal{A} to be any set containing large intervals of integers and then large gaps, to produce a counterexample. Take, e.g., \mathcal{A} to be the union of the intervals $[2^{n!}, 2^{2 \cdot n!}]$ for $n \in \mathbb{N}$; this set clearly has upper density equal to 1 and lower density equal to 0. Also, let F(X,Y) be any polynomial. Plainly, for any positive integer a, we have $\min_{y \in \mathbb{Z}} |F(a,y)| \leq |F(a,0)| \ll a^h$ (where $h = \deg_X F$). Then, if $T = 2^{(n+1)!} - 1$, we have $\max_{a \in \mathcal{A}(T)} \min_{y \in \mathbb{Z}} |F(a,y)| \ll \max_{a \leq 2^{2 \cdot n!}} a^h \ll 2^{2hn!} \ll T^{2h/n}$. Hence a lower bound $S_{\mathcal{A},F}(T) \gg T^c$ does not hold, no matter the value of c > 0. On the other hand, for suitable F, e.g. $F(X,Y) = Y^2 - X$ there does not exist a polynomial f(X) such that F(X, f(X)) is constant.

(ii) By using the full force of the proof of Theorem DZ (as given in [DZ]), both Theorem 1 and Theorem 2 can be sharpened: one can add to the first alternative of the conclusion of Theorem 1 and to the conclusion of Theorem 2 that f is integral-valued on a sequence $\mathcal B$ with $\mathcal A\setminus\mathcal B$ of zero density.

(4032)

References

- [DZ] R. Dvornicich and U. Zannier, On polynomials taking small values at integral arguments, Acta Arith. 42 (1983), 189–196.
- [S] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia Appl. Math. 77, Cambridge Univ. Press, 2000.
- [T] S. P. Tung, Max-min of polynomials and exponential Diophantine equations, to appear.

Dipartimento di Matematica Via Buonarroti, 2 56127 Pisa, Italy E-mail: dvornic@dm.unipi.it Department of Mathematics Chung Yuan Christian University Chung Li, Taiwan 32023, R.O.C. E-mail: sptung@cycu.edu.tw

Ist. Univ. Arch. – D.C.A. S. Croce, 191 30135 Venezia, Italy E-mail: zannier@iuay.unive.it

> Received on 17.5.2001 and in revised form on 21.6.2002