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1. Introduction. In a recent paper, S. P. Tung [T] considers the prob-
lem of estimating from below the quantity
Sp(T) := maxmin |F(z, )|,
z<T
where F' € Q[X,Y] is a given polynomial and 7' € N is a variable growing
to infinity. For a fixed integer x, the quantity minycz |F(zo,y)| (which was
investigated already in [DZ]) gives a measure of the distance of the roots of
F(x0,Y) = 0 from the integers; the function Sp(T') expresses the behaviour
of this distance as the first variable grows.

Actually, Sp(T') implicitly appears in the statement of Hilbert’s Irre-
ducibility Theorem; in fact most proofs of it (see e.g. [S]) reduce to showing
the following: If for every integer xq the equation F(xo,Y) = 0 has an
integral solution y, then there exists a polynomial f(X) € Q[X] such that
F(X, f(X)) = 0 identically. Note that the assumption of this statement may
be reformulated as Sg(T) = 0 for all positive T'. Hence, Hilbert’s theorem
proves that either FI(X, f(X)) = 0 for some polynomial f € Q[X] or we
have a lower bound Sr(T") > ¢ > 0 for all large 7.

Note that it may happen that Sp(7') is bounded, e.g. when there exists a
polynomial f(X) € Q[X], taking integral values on Z, such that F'(X, f(X))
is a constant. However, Tung proves, among other things, that this is essen-
tially the only case when Sg(T') is bounded. In fact, Tung has a much sharper
conclusion. To state it, we first define, for an infinite set A C N, the symbol

A(T) = AN[L,T],

and the function

2000 Mathematics Subject Classification: Primary 12E05.

[115]



116 R. Dvornicich et al.
Sar(T) = (o min |F(2,y)]-
Also, we recall the classical definitions of upper and lower asymptotic den-
sities:
- T T
d(A) = limsup #/;S ), d(A) = liminf #“L}( )

T—00 T— o0

When these numbers coincide, their common value is called the asymptotic
density of A. With this notation, Tung proves [T, Thm. 3.4] the following
statement: There exists a number ¢ > 0, depending only on degF', with
the following property: Either there exists a polynomial f(X) € Q[X] such
that F(X, f(X)) is constant, or, for all sets A of positive density, we have
Sar(T) > T¢. (Here the implied constant may depend both on A and
on F.)

In this statement no attention is given to whether or not the polynomial
f is integral-valued on N; Tung studies this condition later on in the above-
mentioned paper (see also Remark (ii) below). Here we are concerned with
a question in a different direction: how large can one choose the exponent ¢
in the above statement?

Although Tung’s method yields in principle an effective estimate for ¢,
he does not mention any explicit lower bound. However, he points out that
c cannot exceed 1/2, in view of the data F(X,Y) = Y? - X, A = N.
Moreover, under the Generalized Riemann Hypothesis, he obtains the in-
equality S p(T) > VT /log? T, proving in particular that one can choose
¢=1/2—¢ for any € > 0.

The purpose of the present note is to show, unconditionally, that in fact
one can take ¢ = 1/2. We state this as the following

THEOREM 1. Let A C N be a set of positive lower asymptotic density
and let F(X,Y) € Q[X,Y]. Then either there exists f(X) € Q[X] such that
F(X, f(X)) is constant, or S4p(T) > VT for T — co.

We shall deduce Theorem 1 from a similar statement, namely

THEOREM 2. Let F(X,Y) € Q[X,Y]. If A is a set of positive upper
asymptotic density and y(a), a € A, are integers such that |F(a,y(a))| =
o(v/a), then there exists a polynomial f(X) € Q[X] such that F(X, f(X))
18 constant.

We remark that e.g. in the case A = N the implict constants are effec-
tively computable.

Our method, of completely different nature compared to [T], will make
essential use of the previous paper [DZ]. We shall not use Hilbert’s theorem
(a proof of which is implicitly given in [DZ]) nor other classical diophantine
tools.
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2. Proofs. For the reader’s convenience, we recall the main result of
[DZ]:

THEOREM DZ. Let FI(X,Y) € R[X,Y]. Assume that A is a set of nat-
ural numbers of positive upper density, such that for a € A we may find an
integer y(a) satisfying

OF
0 Pyl =o s |TFwo)).
le—y(a)<1|OY
Then there exist a polynomial f € Q[X] and a set B C A such that A\ B
has zero density and

(2) F(b, J0)] < [Fby(v)| Wb e B.

Proof of Theorem 2. Assume, as in the statement, that A C N is an
infinite set of positive upper density, such that |F(a,y(a))] = o(y/a) for
a € A. We start by writing

F(X,Y) = ¢o(X)+ e1(X)Y + ...+ @a(X)Y?, ¢ € QIX], pa(X) #0.

We note at once that, if d = 0, then the assumption implies that |¢g(a)| =
o(a), whence F' is constant, and there is nothing to prove. Hence we assume
d>1.

Suppose that the leading coefficient ¢4(X) in Y of F(X,Y) is con-
stant. Then we normalize F as follows. First we choose h(X) € Q[X] such
that the second coefficient in Y of F(X,Y + h(X)) vanishes, i.e. h(X) =
—@q-1(X)/dpg. Next, if r is a common denominator for the coefficients of
h(X), we replace F(X,Y) with F(X,Y/r + h(X)). We note that this poly-
nomial continues to satisfy the assumptions of Theorem 2: we leave the set
A unchanged, while the function y(a) is replaced by r(y(a) — h(a)). More-
over, the conclusion of Theorem 2 for the new polynomial implies the same
conclusion for the old one.

Summing up, we may assume that either p4(X) is not constant or
(Pd—l(X) = 0.

Before going on, we recall the following simple fact.

LEMMA. Let P(Y) € C[Y]. Then

degP
sup |[P(y)| > ¢ Y |[PY(0)],
7=0

0<y<1
where ¢ is a positive number depending only on deg P.

Proof. Write the Taylor expansion

P®)(0)

k
k! r

P(Y)=P0)+P0)Y +...+
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where k = deg P. Since the Vandermonde determinant det((i/k)?)o<; j<k is
nonzero, the formulas

P(%) = P(0)+P’(0)<%> +.+ P(:!(()) <%>k i=0,...,k,

imply that the numbers PU)(0) may be expressed as linear forms in P(0),
P(1/k), ..., P(1) with coefficients depending only on k. If C' is the maximum
of the absolute values of these coefficients, we have

ZIP(” )| < (k+1)sup |PY(0)]
J

<(k+ 1)0(13(0) +P(%> .. +P(1)>
< (k4 1)*C sup |P(y)|. =

0<y<1

We now put G(X,Y) = aiF(X,Y) and, for a € A,
a) =

sup  |G(a,§)l.
[€—y(a)|<1
Our next aim is to show that either the conclusion of Theorem 2 is true or
(3) o(a) > +/a for large a € A.

By applying the Lemma to the polynomial P(Y) := G(a,y(a) +Y) we find
that

(4) o(a) > ey |G (a,y(a))]

720

where G() denotes the jth derivative with respect to Y and ¢; > 0 depends
only on d.

In the preceding notation we have G(X,Y) = ¢1(X) +2¢2(X)Y +... +
dcpd(X )Yd_l .

In what follows, cs,c3,... will denote positive numbers depending only
on F'. We distinguish two cases.

CASE 1: There exists i € {1,...,d} such that ¢;(X) has positive degree
(i.e. degy G > 0). In this case, let ¢ be the maximum index ¢ with this
property. If ¢ = d, then there exists a positive number ¢y such that o(a) >
co|a| for all large a € A: in fact, by (4), we have o(a) > c1d!|pq(a)|, and (3)
follows.

If ¢ < d, then ¢ < d — 1 in view of the opening normalization. Ob-
serve that G(?(X,Y) is a polynomial in Y alone, of degree d — ¢ — 1 > 0,
whence |GD(a,y(a))| > caly(a)|?=97" — c3. In view of (4) we obtain o(a) >
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cicaly(a)|4 771 — ¢yes, whence
(5) ly(a)| < es(o(a) 4+ 1)1/ @=a=1),
Further,
d—q (i +q)! |
G(q_l)(X7 Y) = adlog(X) + Z Tq PirqY "
i=1

In particular,

G (a, y(a)] = |aleq(a)] = csly(a) .
Since ¢p4(X) is not constant by assumption, (4) and (5) imply that, for large
a€ A,

o(a) > cslal — cr(o(a) + 1) d-D/(d=a=1),
Since (d —¢q)/(d —q—1) <2 for ¢ < d— 1 we again deduce (3).

CASE 2: G(X,Y) does not depend on X. In this case we can assume
that F(X,Y) = ¢o(X) + ¢(Y) for a polynomial ¢ € Q[Y], so G(X,Y)
= Y (Y). If po(X) is constant, Theorem 2 follows immediately by letting
f(X) be any constant polynomial. Similarly if d = 1. Also, the case d = 0
was previously excluded, and therefore we assume degy F' > 0 and d =
degy F' > 1.

By (4) we have o(a) > c1|¢/(y(a))| > cs|y(a)|9~! — cy, whence

[y(@)] < erolo(a) + 1)VED,
Moreover, since g is not constant, we have
|[F(a,y(a))] = ennla] = crz(ly(a)| +1)? = enrla] = ers(o(a) + 1)¥ Y.
On the other hand we have |F(a,y(a))| = o(y/a) by assumption, whence
cuava > ciilal — exz(o(a) + )40,
Now, as before, (3) follows by noting that d/(d — 1) < 2 for d > 1.
By combining (3) with the assumption |F(a,y(a))| = o(y/a) for a € A,
we find that
Flay@)=o sw
€=y (a)[<1

Since the set A is assumed to be of positive upper density, Theorem DZ
then implies the existence of a polynomial f with rational coefficients and
of a set B C A with the same upper density as A, such that |F(b, f(b))| <
|F(b,y(b))| = o(/b) for b € B. Since B is infinite, it follows that F(X, f(X))
must be constant, concluding the proof of Theorem 2. m

0
a—yF(a,é)D for a € A.
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Proof of Theorem 1. We let A be a set as in the statement. In view of
the definition of lower density, there exists a positive number ¢ such that
#A(T) > cT for all T > Ty, say.

We shall prove the existence of a polynomial f(X) with the stated
property, under the assumption that S4 p(T) > VT does not hold true.
This means that there exist positive integers T3 < Tb < ... such that
Sa.r(T,) < (1/n)\/T, for all positive integers n. We may also assume that
T > Tp.

For a € N we define g(a) := minycz|F(a,y)|. The numbers |F(a,y)|
for a,y € Z are nonnegative rational numbers with bounded denominators,
so the minimum is attained for every a € N and we may write g(a) =
|F'(a,y(a))| for a suitable rational integer y(a).

In view of our definitions we have

1
max g(a) < —/T,.
n

a€A(Ty)
Define the set A’ to be the union of the sets AN[(c/2)T,,, T,], over all positive
integers n. Since #A(T,) > cT,, for all n € N, the interval [(¢/2)T),T},]
contains at least (¢/2)T;, elements of A, so A’ has positive upper density.
We contend that g(a) = o(y/a) for a € A'. In fact, if a € A’ then a lies
in some interval [(¢/2)T,,T,], and a € A. Therefore

1 1
g(a) < max g(z) < —\/T, < —/2a/c,
Tre n n

A(Tn)

since a > (¢/2)T,,. This proves our contention.
Finally, recalling that g(a) = F(a,y(a)) for a € A’, we may apply The-
orem 2 to get the desired conclusion. m

REMARKS. (i) We observe that it is not possible to replace lower density
with upper density in the statement of Theorem 1. It suffices to take A to be
any set containing large intervals of integers and then large gaps, to produce
a counterexample. Take, e.g., A to be the union of the intervals [2"!, 22'”!] for
n € N; this set clearly has upper density equal to 1 and lower density equal
to 0. Also, let FI(X,Y) be any polynomial. Plainly, for any positive integer
a, we have ming,cz |F(a,y)| < |F(a,0)] < a" (where h = degy F). Then,
if T =2tV — 1, we have max,e 4(r) minyez |F(a,y)| < max,<g2n a” <
22hnt < T2h/" Hence a lower bound S 4 r(T') > T¢ does not hold, no matter
the value of ¢ > 0. On the other hand, for suitable F, e.g. F(X,Y) =Y?-X
there does not exist a polynomial f(X) such that F(X, f(X)) is constant.

(ii) By using the full force of the proof of Theorem DZ (as given in
[DZ]), both Theorem 1 and Theorem 2 can be sharpened: one can add to
the first alternative of the conclusion of Theorem 1 and to the conclusion
of Theorem 2 that f is integral-valued on a sequence B with A4 \ B of zero
density.
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