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A decomposition of the space
of higher order modular cusp forms
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1. Introduction. Second order modular forms appear in the work of
Goldfeld [G] on the distribution of modular symbols as well as the work
of Kleban and Zagier [KZ] calculating crossing probabilities in percolation
theory. A systematic theory of second order modular forms was initiated by
Chinta, Diamantis, and O’Sullivan [CDOJ.

Let I" C SL(2,R) be an H-group, that is, a Fuchsian group of the first
kind which contains translations. I" has the following presentation [Lehll,
p. 236]:

(11) F:<’)/1,...,’ygg,el,...,6,«,71’1,...,7Ts>,
(12) 7179+17;17;J:1 co 7972g79_17591€1 gy =1, eéj =1.
Here «v;, €, m; are hyperbolic, elliptic, and parabolic elements, respectively;

l; > 2 is the order of €;, g is the genus of the Riemann surface I'\JH (with
H the upper half-plane), and s is the number of inequivalent cusps. Let F

denote a fundamental domain of I" and p; = 0o, pa, ..., ps a complete set of
inequivalent cusps in J. For 1 < j < s, set A; = (} _i;fj) € SL(2,R) and

Ar = (§9), thus Ajp; = oo. The stabilizer I}, is cyclic and the parabolic
generator 7; can be chosen so that AjT['jAj_l = SN = ((1) ’\f' ) with \; € RT;
A;j is called the width of the cusp p;. In particular I, = (81,

DEFINITION 1.1 (slash operator). Let 5 = {7 € C : Im(7) > 0} be the
upper half-plane and F' : H — C. We define |, the slash operator, by

(FIRV)(7) = (er +d)"*F(r),
where V = (‘(’;g) el.
A function F'(7) meromorphic on H* = HU{yp; : v € I,1 < j < s}
satisfying
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(Flpmi) (1) = F(7)

has a Fourier expansion at p; [Lehl]:

1 >
(13) F(r) = 3 a0 ] < oo
(r—p)* =
J
F(7) is holomorphic at p; if ; > 0 and F(7) vanishes at p; if p; > 1.
Next we define the various spaces of modular forms which appear in this
paper. First, the classical modular forms:

DEFINITION 1.2. A function F(7) meromorphic on H* is a modular form
of weight k if
(F|lV)(1) = F(r), VYV el.

We denote the space of modular forms of weight k by {I',k}. A function
F(7) € {I', k} which is holomorphic on H* is called an entire modular form
of weight k. The space of entire modular forms of weight k is denoted by
My (I'). An entire modular form of weight k& which vanishes at each cusp is
called a cusp form. We denote by Si(I") the space of cusp forms of weight k.

We are interested in the spaces of (parabolic) higher order modular
forms. They are defined iteratively as follows, with SP(I") = {0}:

DEFINITION 1.3. For ¢ > 1, a function F(7) holomorphic on H is a
(parabolic) modular cusp form of weight k and order t if

(1) Flx(V =1)(r) € SsHT) for all V € T

(2) (F|gmj)(r) = F(71) for 1 < j <s;

(3) F(r) vanishes at each cusp.
If we replace condition (3) with

(3) al, = 0 for n < 0,
then we call F'(7) a (parabolic) entire modular form of weight k and order t.

REMARK 1.4. The term parabolic is used because of condition (2). We
assume this condition throughout the paper. It allows, in particular, Fourier
expansions of higher order forms.

We denote the space of (parabolic) modular cusp forms of weight k& and
order ¢ by St (I"), and the space of (parabolic) entire modular forms of weight
k and order ¢ by R.(I"). We also define the following space of meromorphic
second order forms:

DEFINITION 1.5. A meromorphic second order modular form F(T) is a
meromorphic function on H* such that
(i) Flp(V =I)(1) € {I,k},
(i) (Flem) (1) = F(7), 1 <j <s.
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We will denote the space of meromorphic second order modular forms by
{1 k}®

REMARK 1.6. Given f(7) meromorphic on H* with (f|2V) (1) = f(7)
such that f(7) vanishes at each cusp, the integral

(1.4) o(7) = | f(2)dz

is called an abelian integral. An abelian integral satisfies
O(Vr)=2(1)+cv(f), VVel.

Here the period function

is the modular symbol which is independent of 7. Eichler [Eil] generalized
abelian integrals to higher weights allowing polynomial periods. From our
point of view, an abelian integral is a weight zero second order modular
form. The periods are constants, that is, weight zero modular forms. Thus
second order modular forms are a natural generalization of abelian integrals
to weight k with modular periods.

REMARK 1.7. Since S{(I') = Si(I') and R},(I") = My(I"), we suppress
the 1 for first order (classical) modular forms.

For each ¢ > 1, the group I" acts on Si(I") by means of the slash op-
erator; therefore, by general theory [EM], we can assign to this action the
cohomology groups H™(I', St (I")). In this paper we only need H(I", S{(I"))
which is defined as

HY (I, S () = ZY(I, (D) /BT, Si(D)), k> 2,

where
ZNLS|(ID) = {02 : T = Si(I) : QVW)(7) = (2(V) [eW) (1) +2(W)(7)},
BYILSp(I) = {¢ € ZL,S|(D) = p(V)(7) = Flp(V = I)(7)

for some F(1) € Si(I')}.
For k = 2, we modify the space of 1- cocycles Given 2 € Z1(I, Sk(F
can construct F(7) € R5™(I') (Theorem W.1)) such that F|o(V — I)
Qv (1) for all V € I'. We denote this F' by Eic(_Q). Then
(1.5) zZNI,SL(I)) = {2 € Z'(I',S5(I")) : Eic(2)(7) has zero residue sum}.
This gives the modified cohomology space

H(I,S5(I)) = Z, (I, S5(1)) /B (I, S5(T)).

), we

)
() =
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REMARK 1.8. We use the convention
HYI,SUT)) = Sp(I) and  H (I, S3(I)) = Sa(I).
We may now state the main result of the paper:
THEOREM 1.9. Let I' be an H-group. Then for k > 2 andt > 1,
SHNry = HNI, SE(D)) @ HY(I, S, N (D) @ -+ @ HY(I, Sp(I)).
Fork=2andt>1,
SyTN(I) = HN(L, SH(D) @ HND.S5 (D) @ - @ HN(L,SY(T)).
COROLLARY 1.10. For I' an H-group, k > 2, and t > 1,

dim S;7H(I) = i ([Vf(—l)j <” ; J ) (29)”—2j) dim S (I").

v=0 \j=0

2. Second order modular forms. In this section we prove Sz(I") &
HY(I',S,(I)) @ Si(I'), k > 2. This case is straightforward and instructive.
Let

(2.1)  Homypa (I, Sk(IN))
={p: ' = Sp(I) : p(VW)(7) = p(V)(7) + ¢(W)(7) and
o(m)(1) = 0, Yr parabolic}.

Since I" acts simply on Si(I"), we have
BY(I, Sy(I")) = {0},
ZN L, SK(D) = {2 I — Sp(I) : QVW)(7) = 2(V)(7) + 2(W)(7)}.
Thus
(2.2) HY(T, Si(IN) = Homypa, (I, Sk(I)).
Let {Fi(7),... Fx1(k)( 7)} be a basis for S(I"). Then a basis {w;; : 1 < i
<2g,1 <1< xi(k)} for Hompa, (I, Sk(I)) is determined as follows:
wit (Y5, ) (T )—52JhFl( ), 1< jn<2g;
(2.3) wit(m5,)(7) = 1<jp <s;
wir(€5.) (T )—0, 1<je<r.
Thus for V € I', we have w; (V) (7) = n;(V) Fj(7) where n;(V) is the sum of
the powers of v; that appear when V' is expressed as a word in the generators

ins Tjpr € 1 1 < jn <29, 1 < jip <5, 1 < je <7} ni(V) does not depend
on the factorization.
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Following Eichler [Ei2], we define, for v any even integer with k +v > 2,
a weighted Eisenstein series

o e =- Y adDE WZC j

k+v?
We(I'so\IN) (CT + d)

--am Yy, )

k+v -’
We(Tso\I') (CT + d)

Here (I'x,\I') denotes an arbitrary system of coset representatives of
I' with respect to I'. The sum is independent of the choice of the coset
representatives since n;(7) = 0 for all = parabolic. For W = (‘é g) € SL(2,R)
set (W) = a?+b%+c?+d>%. Let M denote the choice of coset representatives
such that, for some C' > 0, p(W) < C(c? + d?) for all W € I'. That such
an M exists is shown in [Leh2]. Let 5 = {v1,...,724,€1,..., €} be the set
of nonparabolic generators of I'. We use the following result due to Eichler
[Ei2]:

THEOREM 2.1. W eI has a representation W =C - -- Cy, where C; €3
or Cj = 772_3 for some 1 < i; < s and n; € Z. Furthermore

(2.5) I < mylog w(W) + ma,
with m1,ms > 0 and independent of W.

PROPOSITION 2.2. > ey ni(W)/(cm +d)? converges absolutely and
uniformly on compact subsets of H for o > 2.

Proof. Let W = C1 --- C be the Eichler representation of W. Then
n; (W) <1< mylogu(W) +ma < mylog(c? + d*) +mb,
by our choice of M. Thus
ni(W) < mylogler +d* +mj.
The proposition follows from this estimate. =
In the above proposition we used the fact that ¢ + d? < Cler + d|?

uniformly on compact subsets of JH; this is a consequence of the following
lemma proved in [K]:

LEMMA 2.3. For real numbers c,d and T = x + iy, we have

y2

2.6 —_—
(2.6) 1+ 4|7|2

(c* +d%) < ler +df* <2(7|* +y77)(c* + 7).
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Now ¥;;(7) satisfies, for v an even integer and for all V € I'| V = (C"‘/ dy ),

(Tit|ops V) (T) = (ey T + dy) 270, (VT)

= —(cy7+dy) FR(VT) Y
weMm

=) Y

cwvT +d
oo ewvT +dwv)

— _R(7) Z : n;(WV) = + F(T)ni(V) Z 1

cwvT + d cwvT +d k+v
o lewvT +dwy WeM(WV +dwv)

= Uy (7) + wa(V)(7) By (7).

Here Ery,(7) = Y yen 1/(em + d)* is the weight k + v Eisenstein series
associated to the cusp oco. Set

ni(W)
(cyT +dy)Ftv (cV T + d)ktv

27 2alr) = A7

Then o
(@aleV)(7) = (cvr +dv) ™" Efi(y‘(/;)ﬂ = ((cf/VrT:dCf/V))—k—VEfffgfx%-

Therefore

(2.8) (@il’kV)(T) = @il<7') + wil(V)(T).

We will take v =0 for £ > 2 and v =2 for k = 2.

From (2.8)), we see that &;(7) is a second order modular form (€ {I',k}(2))
with period forms {w;;(V')(7)}. We are interested in holomorphic second or-
der modular cusp forms as defined in the introduction. Therefore we must
eliminate the poles introduced by the zeros of the Eisenstein series Ej,(T)
in . Since adding a classical modular form to @;;(7) does not affect the
period in , we apply the ‘Mittag-Leffler’ theorem for weight £ > 2 clas-
sical forms [K|, p. 622], which gives the existence of a G (7) € {I',k} with
principal parts identical to the principal parts of @; (7). Then

(2.9) 1) = (1) — Ga() € RA(I), k> 2,

that is, it is an entire second order modular form.
If £ > 4 we can further add a linear combination of weight k Eisenstein
series to F},(7) in order to obtain a cuspidal form:

(2.10) Fy(r) = Fj(r) = Y a}(F}j)Ey (1) € S{(I),
j=1

where Ej ;(7) is the standard Eisenstein series attached to the cusp p;. In
this way we obtain a second order cusp form Fj(7) with the prescribed
period forms {w;;(V)(7)}.
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THEOREM 2.4. Let I' be an H-group. The set
{Eu(m), Fj(T) hi<i<ag1<i<ia (b, 1500 (k)
with Fy(t) given by ([2.10)), is a basis for S3(I'), k > 2.

Proof. Let k > 2.1f F(r) € S(I'), then (V +— Fy (7)) € Hom(I', Sg(I)).
Here Fy (1) = F|(V — I)(1). Therefore

Fy(r)= > aqwa()(r)= D  aan(V)F(7)
1<i<2g 1<i<2g
1<i<xa (k) 1<i<xa (k)

for some a; € C. Let G(7) = Zl§i§2g,1§l§><1(k) a; Fy (7). Then
GV =G+ D aun(V)F(7) = G() + Fle(V = I)(7).

1<i<2g
1<i<x1 (k)

This implies F'(1) — G(1) € Si(I") and
F(r)= Y aaFa(r)+ > biF(n).

1<i<2g 1<5<x1 (k)
1<i<x1(k)

This shows that span{F;;(7), Fj(1)} = SZ(I"). Suppose

Z ailFl‘l(T) = Z bij(T).

1<i<2g 1<j<x1 (k)
1<i<x1(k)

Apply [V to both sides to obtain, for each [,
Z aimi(V) =0.
i

Letting V' = ~; gives a; = 0, and linear independence of the Fj(7) gives
by =0. m

REMARK 2.5. The map Fy; — w; and Fj — F; and (2.2)) give SZ(I")
Hl(f', Sk(I') ® Sk(I) for k > 2.

COROLLARY 2.6. Let I' be an H-group and k > 2. Then
dim S3(I') = (2g + 1) dim Si(I").

REMARK 2.7. Weight 2 Eisenstein series have residue sum zero. Thus
we can extend the notion of residue sum zero to higher order forms. As
F|x(V—=I)(r) = 0 for V parabolic (condition (2) in Definition [1.3)) and for V
elliptic (Proposition[6.2), the expansion and order of F(7) at a point 7 € H*
are identical to those of a classical weight k form. Although for weight 2,
F(7) can no longer be identified with a differential on the Riemann surface
I'\H*, we define the residue, res(F,p;,I"), of F(7) at p; by res(F,p;,I") =
)\ja%. This agrees with the residue of weight 2 forms (see [Ran, p. 122]). If
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F(7) € Ry(I'), the residue sum of F(7) is >5_ ves(F,p;, ') = >5_, \jal.
For clarity, we will write a%(F) for the zeroth coefficient in the Fourier

expansion of F(7) at the cusp p;.

We consider the map
Res: R3(I") — C, FHZ/\jaé(F).
j=1

REMARK 2.8. The map Res : R3(I") — C is nontrivial. For example,
given f € So(I") and a cusp a, the function, denoted in [DO] by Zy ¢(7) +
20V (f, f)Pao(7)2 is shown, in the proof of Proposition 5.2 of [DOJ, to be in
R3(I') with nonzero residue sum.

Let c;; = residue sum(F}(7)) = >77_; )\jag(Fi’l). At least one ¢;; is not 0
(see the remark above); without loss of generality, we assume c;; # 0. Let
Fi'(1) = enn FYy(1) — eaF{1(7), (i,1) # (1,1). The F}'(7) have residue sum
zero. Thus

(211)  Fa(r) = Fi'(r) = Y Njay(F)Ej(r) € S3(I), (i,0) # (1, 1),
j=2

where E7(7) € My(I'), 2 < j < s, is the standard weight two Eisenstein
series with residue —1 at p;, residue 1 at p;, and vanishing at the remaining
cusps.

REMARK 2.9. If there is only one cusp, s = 1, then the sum appearing
in is vacuous. Yet the result is true since for one cusp, residue sum
zero is equivalent to cuspidal.

THEOREM 2.10. Let I' be an H-group. Then

{Fu(7), Fj(T) }<i<2g, 1<i<x1(2), 1<5<x1 (2), (1,1)£(1,1) 5
where Fy(t) given by ([2.11)), is a basis for S3(I") (x1(2) = g).

Proof. Let F(7) € S2(I') with Fy (1) = Zlgz’gQg,lglg)a(k) azwi(V)(7).
The Eichler construction above gives F'(T) = 31 ;<00 1<i<y, (k) @itd(7) €
R3(I') with period forms {Fy (7)}. Thus F(7) — F'(7) € My(I"). We recall
My(I') = S3(I') ® E, where E = span{E;(7)}]_y (see [S]); in particular
elements of Ms(I") have residue sum zero. We have

F(r)=F(r)=F(r)~ Y aqFj(7)

1<i<2
1§T§l§1(gk)
ag aiici
=F(r) - Z CL(CHF{I(T) — cFy1 (7)) + Z ; SFY (7).
1<i<2g 1<i<ag 1

1<1<x1 (k) 1<i<x1 (k)
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/
Recall F};'(1) = c11 F},(1) — caF{,(T), so that

F(r) - F'(r) =F(r)— Y ‘Z“F;;'m—( 3 a“c”)F{lm.

5 c11 . c11
<i<2g 1<i<2g
1<i<x1 (k) 1<I<x1(k)
(5,1)#(1,1)

Now as F(7) — F'(7) has residue sum zero, it follows that

Z ajicy = 0.

1<i<2g
1<i<x1 (k)

Therefore

a; %
F(r)=F(r)=F(r)~ Y, ““Fj(r)
1<i<2g M
1<i<x1(2)
(&,0)#(1,1)

=F(r)= 3 SR - 3 Y Na(EDE ()
j=2

C
1<i<2g 11 1<i<2g

1<i<x1(2) 1<i<x1(2)
(3,0)#(1,1) (4,0)#(1,1)

We have F(7) — F'(1), E;(1) € Sa(I') @ E, by assumption F(7) € S3(I')
and by construction Fy(7) € S2(I'); therefore
a;
FO - Y R e )N (ST ® B) = Sy(T)
1<i<2g

1<I<x1(2)
(@,0#(1,1)

This gives
span{ Fiu(7), Fj(T) hicag 1<120(2), 12520 @), G211 = S3(1).
The proof of linear independence is the same as for k > 2. =
COROLLARY 2.11. Let I' be an H-group. Then
dim S2(I') = (29 + 1) dim So(I") — 1.

3. Preliminary lemmas. In this section, we prove a series of lemmas
which will be used, in the next section, to construct the Eichler map, Eic.
For large Y, let ¥ = {r € F : y > Y}; it is a neighborhood of co and
?}/ = A]-_lffy is the corresponding neighborhood of the cusp p;. Then F =
Uj=1 A]-*lS’YUH’Z, where FY is compact. For a > 0, let E, = {r € H : |z| <
la,y>al Let EY ={r €FEy:y>Y}and B,y = {7 € E,:y <Y}
We use the following lemma proved in [Shil.
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LEMMA 3.1. There exists a positive number r, depending only on I', such
that |c| > r for all V € I' — I',, where V = (} %). Moreover, for such anr,
one has Im(7) Im(V7) < 1/r% for all 7 € H and all V € I' — I'y.

LEMMA 3.2. There exists Yy such that for all Y > Y,
F NV(Eay)=0 foralVer, j=1,...,s.
Proof. Choose Y > 1/(ar?), with r as in Lemma Let 7 € 3’}/. Con-

sider Tm(4;V'7) = Tm(A;V A" A;7). By LemmaB.1] if 4;V A7 € I' - I,

then
1 1

< <

~ Im(A4;7)r?2 — Yr?
If AjVA;l € I'y, then Im(AjVAjflAjT) = Im(A;7) > Y. The lemma
follows with Yy = 1/(ar?). =

Im(A;VA; ' Aj7) <a.

LEMMA 3.3. There exist a finite number of elements Wr,... , W,, € I
such that
m J—
E, C U ijf.
j=1

Proof. Choose Y > Y as above. We have F = szl 3'“;/ UJY and E, =

EYUE,y, where F¥ and EY are compact. We know E,y C Uyer VT and,
by Lemma (VEyy)N 9"}/ =@ forall Vel andj=1,...,s; therefore

Ea’y C U fog/.
ver
Since F¥ and EY are compact, Eq,y U VFY £ for only finitely many V’s
[Shi]. Label these W7i,...,W,. Also, EY C Ui:_l StFY for some I. Label
the S¥s Wy11,...,Wy,. Thus E, C WFU---UW,,F. u

LEMMA 3.4. Let F(7) € SL(I"). Then there exzists C = C(F, ) such that
|F(T)| < C, V1€ E,.

Proof. By Lemma there exist elements Wi,..., Wy, € I" such that
Eo CUjL W;T. Let g(7) = [Tm(7)*/2F(7)|. Hence for 7 € E, there exist
weFand j € {1,...,m} so that
(3.1) g(r) = g(Wjw) = Tm(w)*"?|(c;w + d;) ~* F(Wjw)|

= Im(w)*/?|F (w) + Fy, (w)|.
Thus g(7) < M(F,{Wh,...,Wy}), where
M(FAWL,...,Wn}) = sup  Im(w)*?(|F(w)| + |Fw, (w))).

weF, j=1,....m
Therefore |F(7)] < M Im(7)~%/2 < C(F,a) for 7 € E,. =
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REMARK 3.5. Lemma|[3.4] shows that, as in the case of classical modular

cusp forms, F(7) € Si(I') satisfies supTengm(T)k/2|F(T)] < C. This follows

from the exponential decay at the cusps, i.e. condition (3), and compactness
away from the cusps.

Recall that
ZNLS|D)) = {02 : T = Si(I) : QVW)(7) = (2(V)[kW)(1) +2(W)(7)}.
Let 2 € ZY(I',SL(I")) and set 2y (1) = 2(V)(7). Thus 2y (1) € Si(I") for
all Ve I' and {2 satisfies the 1-cocycle condition:
(3:2) Qvw (1) = (2v[sW)(1) + Q2w (7).
The following statement and proof are modifications of those of Theorem 1
in [Leh2].

THEOREM 3.6. Let 2 € ZY(I',SL(I)). For W € " and 7 € E,, we have
(3.3) 12w ()] < C(mylog u(W) 4 ma) (W)™ 1082,
Here my and mg are as in Theorem [2.1].

Proof. Let W = (C41---C; be the Eichler factorization of W. Using
(3.2) and the multiplicativity of the slash operator, ((F|iV)[xW)(r) =
(F|xVW)(7), we have

(34)  Qw(r) = (Lor-c [kC)(T) + 2c,(7T)

= (2cy[kCo -~ C)(T) + (Lo kC3 - - Ci) (1) + - -+ (2, [kC1) (7) + £, (7).
For 7 € E, we estimate each of the above [ terms. By assumption (¢, (7)
= 0 if Cj is parabolic, thus we need only estimate the terms involving
£2¢,(7) with Cj nonparabolic, i.e. Cj € B = {71,...,72g,€1,--, €}, the set
of nonparabolic generators of I'. Since 2 € Z*(I', S{(I")), we have £2¢,(T)
€ S!(I'). Thus we may write

xt (k)

(3.5) Qc,(r) =Y _ biFi(7),
=1

where {F;(7)}1<i<y, (k) is a basis for S;(I"). Now we wish to estimate
(ch‘ij_:,_l‘--Cl)(T); we write Cj = (g; JJ) and Cj---Cl = (»;; 5;), SO
that
(3:6)  (2¢,|kCis1--- C)(T) = (17 + 8j41) 020, (Cjya -+ Cr)
xt (k)
= (17 +6541) " Y b Fi(Cipa -+ Cir).
i=1
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Since F;(7) € SL(I'), we have
F(Cjy1---Cpr)
= (¢j+1Cj42 -+ CiT + dj1)* (Fi(Cjr2--- Co7) + Ficy,, (Cjya - Cim)),
where Fic,,, (Cjr2 - 1) = (B|1(Cjp1 — 1))(Cjy2 -~ Ci7) € Sy H(I).
REMARK 3.7. We use the notation
Fic; c;, (1) = (Ficy, -c;,_, k(Cj, — D)(T).
Repeating the argument, we have
F(Cjy1---Cy)
= (¢j41Cjs2 - T + dj11)* (cjy2Clrs - - O + djya)”
x {Fi(Cjy3--- O 1) + Fic; ,(Cjy3 - Ci7) + Fio, ., (Cjrs - C7)
+ Fic; 10542 (Clyz - Cr) ).
Continuing, we arrive at
F(Cjs1---Cr7)
= (¢jt1Cjs2 - O + djs1)"(¢j32C)13 - O + djya)"
(1O A+ di)* (e 4 dy)*

ARO+ X Fou®t Y Rt

1< <l—j 1<V1<u2§l—j

+oet FichcHQ...Cl(T)}'
Thus
(3.7) F(Cj+1 - O) = (yT + 5j+1)k

{ + Y. B, > B G, (7)

1< <l—j 1<1/1<1/2§lfj
+o Fioj+1cj+2---01 (7')}
Since Fi(1) € Si(I'), Fic;,..c;, () = 0 when v > t. Thus we set

N = C(Fic .o
1 <i%nn (k) (Fic;, -0y, )

le ,...,C]’V es

0<v<t

where C(F,«) is the bound given in Lemma Here we have used the
convention Fjc, = F;. N is a bound, independent of j or [, for each of the
2!=7 higher order forms appearing in (3.7). Therefore for 7 € E,, we have

(3.8) |F(Cjg1---Cir)| < 2" N|yjar + 651"
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This implies, by (3.6) and (3.8]), that
xt(k) ‘

(3.9) (20, [kCjr1--CT) SN Y Jby[287 < Ny2',
i=1

Here N1 = N maxc;ep Zﬁ(lk) |bij|. Since there are [ terms in (3.4]), we have
(3.10) |2 (7)| < Np12L.

Recall [ is the number of factors in the Eichler factorization of W. We use
the Eichler estimate on [ given in Theorem [2.1] to obtain

(3.11) ’QW(T)| < N (ml log U(W) + m2)2m1 log (W) +mo
< C(my log (W) + ma) (W)™ 182,

4. Higher order forms with preassigned periods; the Eichler
map. Let 2 € ZY(I',SL(I")). We use the Eichler construction to obtain a
t + 1 order form with period 2. The exposition follows Lehner [Leh2].

THEOREM 4.1. Let I" be an H-group and 2 € Z*(I', SL(T")).

(1) For k > 2, there exists F(1) € Sy (I") such that F|,(V — I)(7) =
Qu(r) for allV € T.

(2) For k = 2, there exists F(1) € REYY(1) such that Flo(V — I)(1) =
Qv (r) for allV € I.

Proof. Let 6 be a positive even integer > 2m; log 2 and

Ow(r
Vo == 3

WeM
As in the proof of Proposition the estimate (3.3]) implies
(4.1) 2w ()] < C(my log |er + d|? + mb)|er + d|*m 1082

on compact subsets of H. It follows that the sum Yy o 2w (1) /(e + d)F+°
converges absolutely uniformly on compact subsets of H for k& > 2. We have,
as before,

(Plok+6V)(T) =¥ (7) + 20 (T) Egys(T).

Here Ej16(7) = Y yrenc 1/ (e + d)F+0. Also, with &(7) = (1) /Ej15(7), we
have

(D V) (1) = P(1) + Qv (7).
As in the second order case, there exists a classical modular form, G(7),
with exactly the same poles and principal parts as @(7). If we set F'(1) =
&(1) — G(7), then F'(1) € RZH(F) and F'(7)|x(V — I)(1) = Qv (r) for
all & > 2. For k > 2, we let F(1) = F'(1) — 327, al(F")E;j(1) so that
F(N)p(V = I)(r) = 2v(r) and F(r) € S;tH(I). For k = 2, in order to
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obtain a cuspidal form, we restrict to F’(7) having residue sum zero; then
F(r) = F(1)=> i a;(F')E;(7) isin SEYH(I") and has the correct period.

Fixing the choices made in Theorem [4.1] gives us the maps
(4.2) Eic: ZY(I, Si(I)) — SyTH(D), k> 2,
(4.3) Eic: ZY(I, S§(I)) — RS (1)
with Eic(2)[(V — I)(7) = 2y (1) for all V € I" and k > 2. Next we define
(4.4) ZNI,S5(IN)) = {2 € ZY(TI,S5(I")) : Eic(£2)() has zero residue sum}.
We have BY(I', S3(I")) € Z1(I', S5(I")), thus we define

H(I, S4()) = Z1(I, SY() /BN, SY(T)).

Finally, we have
(4.5) Eic : Z}(I, S§(I)) — SET(I).

5. The decomposition. In this section, we establish

THEOREM 5.1. Let I' be an H-group.

(1) Fork>2andt>1,

SEH) = HY (L, SU(D)) @ -+ @ HY(I SR(D)).

(2) Fort>1,

SyHI) = Hy(I,S5(1)) @ - @ Hy (I, S5(1)).

Proof. Let 7 : Si™Y(I') — HY(I',S(I")) be the map F — [{Fy}]. Here
[{Fy}] is the equivalence class of the 1-cocycle Fy,. We must show that 7
is onto, 7 is a homomorphism, and Kerm = S};(F). That m is onto is given
by the Eichler map defined above: given 2 + B (I, SL(I")) € HY(I', SL(I))
(or HN(I',SY(I)), for k = 2), F(r) = Eic(£2)(7) has the property that
F|(V = I)(1) = Q2v(r) for k > 2. That Kerm = S}(I") follows from the
definition of BY(I', S{(I)). m

6. The dimension of H!(I',S(I")). In this section we calculate the
dimension of H!(I', S¢(I")) under the assumption 2 = 0 for all 7 parabolic.
We use the following notation:

Ri(k) = dim HY(I', SL(I)), k> 2,

NrSENT), k=2,
re(k :dile I, SL(I)), k> 2,
)s k=2,

I, SL(I)), k> 2.

o~ o~
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We have
Ry(k) = re(k) — 17 (k).
PROPOSITION 6.1. Let I' be an H-group.
(1) If k> 2 and t > 1, then
BA(I, SY(I)) = 211, S5 (D)),

(2) Fort>1,

BT, S4(I) = ZA(T, S5 ().

Proof. Let k > 2 and 2 € BY(I,SL(I')). By definition, there exists
F(7) € SL(I") such that 2y (1) = F|p(V—1I)(7) for all V € I". Therefore 2 €
ZN I, SN ). If 2 € ZYI, S H(I)), then G(7) = Eic(2)(r) € SL(I)
satisfies G|, (V — I)(7) = Qv (7) for all V € I'. That is, 2 € BY(I', Si(I)).
This gives (1).

For k = 2, as before, if 2 € BY(I',S5(I")) then 2 € ZY(I",S51(I")) and
there exists F(1) € Si(I") such that 2y (1) = F|2(V —I)(7). We must show
Qe zZNr,SSH). As 2 € ZY(I, SEH(T)) we have Eic(£2)(1) € R5(I") by
(4.3), and Eic(£2)[x(V —I)(1) = F|(V —I)(7). Therefore Eic(£2)(7) — F(T)
€ M>s(I"), which implies

0 = residue sum(Eic(£2)(7) — F(7)) = residue sum(Eic(£2)(7)),
since F(1) € S4(I"). Hence 2 € ZN(I', SL1(I")). Conversely, Z}(I', St™H(TI"))
C BY(I, SL(I")) follows from (4.5). u

The above proposition implies Ry (k) = ry(k) — r—1(k) for k > 2. Hence
we are left to determine the dimension, r(k), of Z1(I, S¢(I")). We calcu-
late dim Z' (I, S{(I")) following the method described in [Eil]. Given 2 €
ZN I, SE(I)), we have 2y(7) € SL(I') and 2 is a 1-cocycle, i.e.,

(6.1) va(’l') = (QvlkW)(T)—l-Qw(T).
Essentially we calculate the number of choices for (25, where § is a generator
of I', subject to the relations .

PROPOSITION 6.2. Let 2 € ZY(I,Si(I")), k > 2. If e € I is elliptic,
then £2:(1) = 0.

Proof. Suppose € = I, 1 a positive integer. Applying (6.1]), we have
(6.2) 0=02;(1)=02u(7) = 2ep{I + e+ -+ 71}r).

Now let (see [Eill)
—1
(6:3)  F(r) = 72l { = DI + (1 =2)e+ (1 = 3)* + -+ 71}(7).
This choice is such that F(7) € SL(I") and
(6.4) Fli(e = I)(1) = Q2(7).
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This relation implies, by the definition of S(I'), that 2.(1) € SL(I'),
which in turn implies, by (6.3), F(r) € Sy '(I). Iterating, we arrive at
F(7) € S;(I") such that

Q(1)=Flp(e=I)(1) =0. m

REMARK 6.3. The above proposition together with the parabolic as-
sumption, F|i(m — I)(1) = 0 for all m parabolic, necessitates I" to have
positive genus (g > 0) in order for there to exist nontrivial higher order
(parabolic) forms.

From the decomposition given in Theorem we can write
Sy I = Prira(D) @ - @ Pea(T)
where Py (I') = 7Y (HY(I, SEH())) = HY(I, S5 1Y),k > 2 and Poy(T7) =2
H(I, Sy~ H(T)).

We want to enumerate basis elements for each component P;(I"). We use
the index sets I;(k), k > 2, and I;(2) defined, iteratively, as follows:

To(k) = {i: 1< i < a(b)},
Li(k) ={(i1,1) : 1 <1 <29, 1 <i<x1(k)},
Ii(k) = {(igs i1, -y i1,9) : 1 < iy < 2g, (3, 44-1) # (L, g+ 1),
(it—h v 7i17i) € It—l(k)}7
It(2) — {(itaitfla o 7i1ai) 01 S /L't S 2ga (itaitfl) 7& (1,9 + 1)5
(Z.b ceey ilai) 7& (17 1)7 (it—la s 7i17i) € It—l(Q)}a
10(2) = {Z 01 S 7 S X1<2)},
L(2) = {(i1,1) : 1 <41 <2g, 1 <d < x1(2), (i1,9) # (1, 1)}
The condition (i, ...,i1,4) # (1,1) is vacuous for ¢ > 1.
THEOREM 6.4. Let I' be an H-group.
(1) For k> 2 andt > 1, there exists a basis {Fy, i i(T)}(iy,...ir i) €L (k)
of Py t11(I") such that
(6.5)  Fiy,.ivi

k(v — D7) = 6ij Fiy . ini(T),
1 S itv.j S 297 (ituit—l) 7é (1)9 + 1)
Here {Fi, iyi(T)}(iy_1,..ivi)eli_ (k) 15 @ basis for Py (I").
(2) There exists a basis {Fj,..._iyi(T)}y,...inien @) of Paar1(l), t > 1,
such that
(6.6)  Fi,. ivile(yj — D(7) = dijer1 Fiy_y,..ina(T) — 01€4,..i,1 F11 (7),
1 S itvj S 297 (it7it—1) 7& (179 + 1)
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Here {Et—lruﬂ'lyi(T)}(’L’tfl,..-,il,i)eltfl(k) is a basis for Po(I') =

HNI, S () and Fly() € R3(I'), constructed in Section satis-

fies F{1|2(V—=1I)(1)=n1(V)Fi(7) and c11 =residue sum(Fy,(7)) # 0.
By convention, F;, ;(T) = F;(7).

Proof. The proof is by induction on . For t = 1, we have shown there
exists a basis {F}, ;(7)} for Ppo(I") & HY(I, Sk(I")) with F, i|x(vj — I)(7)
= 0;,;Fi(7). The condition i9 # g + 1 is vacuous. Next we assume a ba-
sis {Fj,_1,..i1,1(7)} for Py (I"), satisfying , has been chosen. We have,
by Proposition HY(I,S4(D)) = ZY(T, SL(I)) /2 (I, Sk~ 1(I)). Thus we
first find a basis for Z1(I, S{(I")). Let 2 € ZY(I',SL(I")), k > 2, and con-
sider the hyperbolic generators 71, . .., y24. The relation and the cocycle
condition (6.1)) imply

(6.7)

-1, -1 -1_-1 T
VVg+171 Vgr1lk12Vg+27Yg Vag erermyos (T)

+ 2 7)=0.

11 (1)
Y2Vg+2 Vg Vg €17 ErTL T

Also, the cocycle condition implies
(6.8) Q,-1(7) = = Q| (7).
Therefore
9'7179+1’71_179_j1 (T) = {Q'Yl ‘k(,)/g"l‘l - I) - 'Q'Yg+1 |k(ryl - I)}‘kvflry‘giil (7—)

We write the above equation as

(6.9) C(7) = Ng+1(£25,)(7),

where N; denotes the map

(6.10) N;: SL(D) — SN, F(1) v Fli(yi — (1),
and

C(1) = N1(£2y,,,)(7)
0 irmy st ey (2 Vg2 Vg Vg €1 e ) T H(7)
— N1(07g+2)<7') + Qﬁs—ln_ﬂ;16;1_.6171729_._7;_&272—1(T),

using . Thus, since {25 = 0 for § parabolic or elliptic, we have
C(7) = Ni(82y,.,)(7) + 12

72g797i71751~~7;ﬁ2751 (T)

REMARK 6.5. The importance, for us, of C(7) is that it depends only on
2,,(7), ..., 824,,(7). Also note that (2729%72_91%_1”_7911272_1(T), N1(82,,,,)(7),
and C(7) are in S, 1(I).

We choose £2,,(1) € Si(I'), 2 < j < 2g, arbitrarily; £2,,(7) is then
subject to the constraint (6.9). As we noted, C(r) € S; '(I'), thus, by
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Theorem [5.1] and the induction hypothesis, we write

t—2
(6.11) C(r) = Z Z Ciy....iniFi i i (T).

v=0 (ZV771171)EIVU§)

Also, since £2,,(7) € Si(I'),

t—1
(6.12) ()= > Wiy eomyin;iFinnin i (7).

v=0 (iy,...,i1,i) L, (k)
Thus we have

C(r) = > Cir_groositiFirgpnin i(T)

(it—2,eenyi1,i) €T (K)

4t Z Ciy.iFiy (T ZCF

(il,i)Ell(k) ’LGIQ(k
= Ng41(£2y,)(1)  (by (6.9
= > wz'tfl,...,il,z‘NgH(Fz‘tfl,...,il,z‘)(T)

(it—15ei1,0) €Lp—1 (K)

+ -+ Z wi17¢Ng+1(F‘il,i)(T)
(117 )Ejl(k?)

= E Wt 1ig it iFip_9y.nnyin,i(T)
(t¢—2,..s01,0) €T 2 (k)

+ot D weriFil(T)

i€lo(k)

We have used (6.10) and (6.5)), which is valid by the induction hypothesis.
Therefore, equating coefficients, we have
(6.13)

Wyt lyiy_1,mitg = Ciy_1yoinyis (Go—1,...,01,9) € L,1(k), 1 <v <t -1

All other coefficients appearing in may be arbitrarily chosen. Thus a
basis for Zl(F, SZ(F)) k>2,is given by U 1{9’“7’” Ly, Z} (i siv—1soensit ) EL
where

(6.14)  Qitvte () = 6 5 Fy, o na(T), 2 <y <2g,2 <5 < 2g,
(2.11717 s 7’5.172.) € Illfl(k%

T
N

(6.15) Qi“l’i”*l"“’“’i(f) = Cipoin,iFgr1yip,in,i(T),
1=1 (iy,...51,0) €T (k)
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and
(6.16) _qul;_iufh-wihi(T) 0, 2<j<2g
6.17) @) = Fiyyna(n),
(lefla" Zl, )EL/ 1( lefl#g‘*_l.

);
Thus (6.14]) represents all possible choices for 2, ( ), 7 >2 The Ci,,...ir i are
then determined by these choices. The (i,—1,...,41,1) in (| parameterize
the remaining degrees of freedom for (2, (7')

A basis for HY(I',SL(T")), k > 2, is given by the cocycle representatives
{£2%-118} satisfying the conditions (6.14)-(6.17) with v = ¢. The corre-
sponding basis of Py is {Fj, i (T)}(Mu’“ﬂ)eh( k) where Fj, i (1) =
Eic(£2%:4)(7). To see this, we need only check that the above set is lin-
early independent. Suppose

(6.18) 0= Z Qiy,...in i Fig, i i (T)
(it, 1,0 )Eft(k)
= Z iy iy i Bic(£27"00) (1)
(’Lt, 1,0 )Elt(k‘)
= Eic< Z iy i, 19”’ 1,0 )(7‘) + F (1),
(itye-ri1,8) €I (k)

where F(7) € Si(I). Then all periods of -, oer ) ... iy i § 20— Lol
are zero. Hence

(6.19) 0= Z ait,...,il,iQit"“’ihi,
(itye.rrin,i) €T (K)

which implies a;, s, ; = 0 since the set {§2%-:¢} is linearly independent.

For k = 2 we fix the element Q'Y = ny(\)Fy(7) € ZY(I,S5(I)); it has
the property that F'11(7) = Eic(2!)(7) and the residue sum of Fj;(7) is
c11 # 0. A basis for Z1(I', S5(I")) is then given by |J!,_,{c1q Qiwbv—1i1d —
Civ iy 1...i1.i82M} where { Q2% iv—1-018} ig a basis for Z1(I, S5(I")) given by
(6.14)—(6.17) with v = ¢, k =2 and {F, _,._i,i(T) }iyr,.iv.i)el, 1 (2) & basis
for Poy(I") C S5(I"). A basis for H}(I', S5(I")) is given by the cocycle repre-
sentatives {c11 2%t —c; QLY The corresponding basis of Paz1(I)

is {Fiy,...i1.i(T) Y iy, in i)e T, (2) Where
Fyy..oini(1) = Eic(enn 20" — ¢, i i 2M)(7).

By counting the number of elements satisfying (6.14] - for v =t,
we obtain
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COROLLARY 6.6. Let I' be an H-group.
(1) Fork>2andt>1,

/2] .
(6.20)  dim H(I,SL(I)) =Y (~1) <t ; J > (29)=% dim Sy(I").
j=0

(2) Fork=2andt>1,

(6.21)  dim HM(I" st(r)):%(—w(t_j)@ =2 dim S(I")
) im H, (I, S5 > j g im S

(VI |
- (—1)]( . J)<2g>“2ﬂ.

j=0 J
Proof. Let |I;(k)| denote the cardinality of I;(k). The number of 2%
satisfying 7, with v =t is
(29— [T (k)] = (29 — 1) dim H'(I, SL71(I)),
and the number of 211+ satisfying f with v =t is
\Li—1(k)| — | L2 (k)| = dim HY(I, S5 (1)) — dim HY (I, S;2(I)).
Hence the dimension satisfies the recursive formula
(6.22) dim H'(I', SL(I")) = 2gdim HY(I', S, H(I")) — dim H*(I', S *(I")).

We use this formula and induction to prove (/6.20]). As noted in Section
HY(I',S,(I)) = Hom(I', Si(I")). Hence dim H(I', Sg(I")) = 2gdim Sk(I).
Also, recall H(I', S)(I")) = Sk(I'). Thus for t = 2, (6.22)) gives

(6.23)  dim H'(I,S2(I")) = 29 dim HY(I", S(I")) — dim H*(I", SY(I"))
= ((29)* — 1) dim Si(I).

Assume holds for v < t. Applying , we have

dim HY (I, SL(I))/dim Sy (I")

[(t=1)/2] — - [(t—2)/2] . -
=2 3 DI T S Y (1P () ()
j=0 Jj=0
[(t—1)/2] [(t—2)/2]+1
= (29)' + ()Y Y () () 2.
j=1 Jj=1
For t odd, [%] = [%] = [%] + 1, thus the above sum is
[(t-1)/2] i o2 g '
o+ S (M e =i o
j=1 J Jj=0 J
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Here we have used (t_;_j) + (tjllj) = (t?) For t even, [%] = [“1] +1=

[t 2] + 1, thus the sum becomes

[t/2—1] o .
(2g)t-|— Z (—1)3< ; )(2g)t2j—|—(_1)t/2

Jj=1

_% ( ><2g>f—2j-

For k = 2, t > 2, we count the number of elements {01719""“""1’i -
cl-t,”.ﬂ-lﬂ-ﬁl’l} with 2%"% gatisfying (6 with v = ¢t. The number of

{§2t111) gatisfying Qi;’it_l’”"il’ = 5WF“ Loind(T)y 2 < 4,5 < 2g,
(e, 1,0) € i (2), 88 (20 = DT (2)] = (29 = 1) dim H}(I, 837" ("))
and the number of elements satisfying (2, R i (T)s G—1 #

g+ 105 [T 1(2)] — [T o(2)] = dim HL(T, 857 (1) — dim HL(1, S52(7).
In particular, H}(I", SL(I")) satisfies the recursive relation (6.22) with ini-
tial data dim HL(I, SY(I")) = dim So(I") = g and dim HL(I', S2(I")) =
2¢g dim So(I") — 1. Since the solution to the recursive relation (6.22)) depends
linearly on the initial data, H(I", S{(I")) is the sum of the solutions with
initial data (dim Sa(I"),2¢dim S(I")) and (0, —1). This yields (6.21). m

COROLLARY 6.7. Let I' be an H-group.

(1) Fork>2andt>1,

t /2]
(6.24) dim ST =" (-1 (V_‘])Qg)” %7 dim Sy (I).

v=0 j=0
(2) Fork=2andt>1,
t [v/2]

dmsg(r) = 303 (17 ("7 ) 20 dimsa(r)

v=0 j=0
t—1 [v/2] .
Sy ("o
v=0 5=0
Finally, we express these results in the form given in [DS]:
COROLLARY 6.8. Let I' be an H-group.
(1) Fork>2andt>1,
(6.25)  dim(S;™(I)/Sk(I)

C;lmgsk ((g +\/7t+1 _\/92;_1)2#1).
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(2) Fork=2andt>1,

(6.26) dim(Sy(I")/S5(I") = %((9 +Vg? =D (g - Vg2 - D).

To show that Corollary [6.8] follows from Corollary use the binomial
formula to write

(6.27) (9+ g2 — D — (g — /g2 — 1)!H!

Then we use the fact, to be proved in the next section, that

N - BN
(6.29 ;(MJg -1 => (1Yo

Jj=0

7. A binomial identity. In this section we prove (6.28]). Expanding
and equating like terms reduces the problem to showing

O () P f (L)(2) osmzpn

We introduce, for a a positive integer, the notation (a), = a(a—1)---(a—n)
if n >0 and (a), =1 if n < 0. Thus we want to prove the following

PROPOSITION 7.1.
[t/2]
t+1
2 — )27 = N1
(7.2 (=2 = 3 (5,71 ) G

Proof. We introduce the auxiliary function

(Vz+y)™ — (Vo +y)™t
NG .

Applying the binomial expansion and differentiating, we have

[t/2)
am F t+1
(7.3) S (1L 151) = 22 <2j+1> 1.

Therefore we want to prove
OmF
ox e

F(z,y;t) =

(7.4) 1,1;t) = (t — m)py,_ 2072+

We prove ([7.4) by induction. Our starting point is (0,0) where we have
F(1,1;0) = 2. Next we assume (7.4 holds for any (m’/,t') < (m,t), that
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is, either ¢/ < t, or ¢/ = ¢t and m’ < m. The function F(z,y;t) satisfies the
recursive differential equation
0*F 3 OF (t+ 1)t
w(iﬂ,y; t) = 3 %(%y;t) T o,
Therefore, after applying Leibniz’s rule and evaluating at x = y = 1, we
have

F(x,y;t —2).

omF . (=1)"2%(m —2)!
m—2 ; ; :
(—1)] IF oE
]:

Our induction hypothesis holds for all derivatives appearing in the right
hand side of (7.5)), thus

omF

(7.6) W(l’ 1;t) = (=1)™2(m — 2)!
m—2 j
X (_jl') 27U (2 — 5t +6(j + 1))t — (j+2))j-1.
j=0 7

Now the problem is reduced to showing, for m > 3,

(7.7) (=)™ 2 (m—2)12073 '2_2j(t2—5t+6(j+1))(t—(j+2))j_1

— 972(m=2) (t—m)m—1-

We denote the left hand side of by G, and again apply induction.
Direct calculation gives the result for m = 3. We then rewrite G,, as
G = 27222 — 5t + 6(1 4+ 1)) (t — m)m—s — (m — 2)Gp1.

By the induction hypothesis, Gy, = 272" =3)(t — (m — 1))_3, so that
G = 27202 (4 — )y _3(t2 + (3 — dm)t + (2m — 1)(2m — 2))
=272 2 (t —m)gp_1. m
REMARK 7.2. Cormac O’Sullivan has pointed out that identity is
the combinatorial identity counting the number of odd committees one can

make from n people with subcommittees of size m chosen from the first half
(i.e. below the median j + 1st element in a committee with 2j + 1 elements)

[BQI.
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