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The Chen primes contain arbitrarily long
arithmetic progressions

by

Binbin Zhou (Shanghai)

1. Introduction and main results. Prime is one of the most impor-
tant notions in number theory. Recently, an astonishing breakthrough was
made by B. Green and T. Tao [11] who showed that there are arbitrarily
long arithmetic progressions of primes; this result is known as the Green–Tao
Theorem.

Theorem 1.1. The prime numbers contain infinitely many arithmetic
progressions of length k for all k.

In fact, they say something a little stronger:

Theorem 1.2 (Green–Tao Theorem). Let A be any subset of the prime
numbers of positive relative upper density , so lim supN→∞ π(N)−1|A∩[1, N ]|
> 0, where π(N) denotes the number of primes less than or equal to N . Then
A contains infinitely many arithmetic progressions of length k for all k.

If one replaces “primes” in the statement of the Green–Tao Theorem
by the set Z+ of all positive integers, then this is a famous theorem of
Szemerédi [19], [5], [9]. The special case k = 3 of the Green–Tao Theorem
was established by B. Green [10] using methods of Fourier analysis, and the
special case k = 3 of Szemerédi’s theorem is the Roth–Bourgain theorem
[18], [1]. Moreover, D. R. Heath-Brown obtained some important results for
arithmetic progressions in primes [16].

On the other hand, J. R. Chen [2], [3] proved his famous theorem.

Definition. A prime p is a Chen prime if p + 2 is either a prime or a
product p1p2 with p1, p2 ≥ p1/10.

Theorem 1.3 (Chen Theorem relative to twin primes). Let x(1, 2) de-
note the number of Chen primes less than or equal to x. For sufficiently
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large integer x we have

x(1, 2) ≥ 0.67xCx
log2 x

where

Cx :=
∏
p|x
p>2

p− 1
p− 2

∏
p>2

(
1− 1

(p− 1)2

)
.

Remark. It is important for us to have this extra information. In Iwa-
niec’s unpublished notes [17] one may find a proof of Chen’s theorem which
leads to the exponent 3/11 in place of 1/10. Actually, one can modify Chen’s
theorem in a simple way to get

Lemma 1.4. Let N be a large integer. Then the number of Chen primes
in the interval (N/2, N ] is at least c1N/log2N , for some absolute con-
stant c1, and the smallest prime factor of p+ 2 is bounded below by p1/10.

Combining the two aspects, recently B. Green and T. Tao [12] proved

Theorem 1.5 (Green–Tao). There are infinitely many 3-term arith-
metic progressions of Chen primes.

A little earlier, Tolev [20] used the sieve method and the Hardy–Little-
wood circle method to show that there are infinitely many 3-term progres-
sions p1 < p2 < p3 of primes such that pi + 2 is a product of at most ri
primes, where (r1, r2, r3) can be taken to be (5, 5, 8) or (4, 5, 11).

Using the method of [11] and [12], we prove the main result of this paper.

Theorem 1.6. The Chen prime numbers contain infinitely many arith-
metic progressions of length k for all k.

There is a conjecture due to Erdős and Turán:

Conjecture 1.7 (Erdős and Turán [4]). Suppose that A = {a1 < a2 <
· · · } is an infinite sequence of integers such that

∑
1/ai = ∞. Then A

contains arbitrarily long arithmetic progressions.

Remark. It is well known that the sum
∑

p
1
p is divergent, and easy

to verify that
∑

pc
1
pc

(pc denote the Chen primes) is convergent, hence the
Erdős–Turán conjecture would imply Theorem 1.1, but not Theorem 1.6.

Now, let us recall some notation from [11], [12]. For a statement P , we
will occasionally write 1P to denote the indicator of P , thus 1P = 1 if P is
true and 1P = 0 if P is false. If A is a set we use 1A to denote the function
1A(x) := 1x∈A. We will always write |A| =

∑
x 1A(x) for the cardinality

of A.
If f : A → R is a function and A is a non-empty set, we write E(f) :=

E(f(x) | x ∈ A) for the average of f on A, that is, E(f) := |A|−1
∑

x∈A f(x).
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There is a deep and beautiful theorem of [11] on which this paper is
heavily based:

Theorem 1.8 (Green–Tao, Szemerédi’s theorem relative to a pseudo-
random measure). Let k ≥ 3 and 0 < δ ≤ 1 be fixed parameters. Suppose
that v : ZN → R+ is a k-pseudorandom measure (see Definition 3.3 of [11]).
Let f : ZN → R+ be any non-negative function obeying the bound

0 ≤ f(x) ≤ v(x) for all x ∈ ZN
and

E(f) ≥ δ.

Then

E
(
f(x)f(x+ r) · · · f(x+ (k − 1)r) | x, r ∈ ZN

)
≥ c(k, δ)− ok,δ(1)

where c(k, δ) > 0 (the decay rate ok,δ(1) depends of course on the decay rates
in the linear forms and correlation conditions).

Proof. See Theorem 3.5 of [11].

2. A pseudorandom measure majorizes the Chen primes. We are
now ready to apply Theorem 1.8 to the specific situation involving arith-
metic progressions in the Chen primes. As in [11], we first employ a device
called the W -trick, which effectively removes the arithmetic obstructions
to pseudorandomness arising from the very small primes. Let W = W (N)
be any function tending slowly (W (N) � log logN will suffice) to infinity
with N , so that 1/W (N) = o(1), let W :=

∏
p≤W (N) p be the product of

the primes up to W (N), and εk = 1/2k(k + 4)!. Define the modified von
Mangoldt function (relative to Chen primes) Λ̃C : Z+ → R+ by

(2.1) Λ̃C(n) :=

{
φ(W )
W

log(Wn+ b) when Wn+ b is a Chen prime,
0 otherwise.

Now let us use Chen’s theorem and the pigeonhole principle to capture a
large number of Chen primes. Let N be a sufficiently large prime number
and let XW ⊆ ZW denote the residue classes b ∈ ZW such that b and b+ 2
are coprime to W . Observe that

|XW | = W
∏

3≤p≤W (N)

(
1− 2

p

)
≤W

∏
3≤p≤W (N)

(
1− 1

p

)2

(2.2)

= 4W
(
φ(W )
W

)2

.

Note that all but O(W ) of Chen primes lie in one of the residue classes



304 B. B. Zhou

in XW . From Lemma 1.4, we have

(2.3)
∑
b∈XW

|{εkN ≤ n ≤ 2εkN : Wn+ b is a Chen prime}|

�
[

WεkN

log2(WεkN)
−O(W )

]
� WεkN

log2N
.

Here the implied constant is absolute. Combining (2.2), (2.3) and the pi-
geonhole principle, we can therefore choose b ∈ XW such that

(2.4) |X| � εkN

log2N

(
W

φ(W )

)2

where X is the set

X := {εkN ≤ n ≤ 2εkN : Wn+ b is a Chen prime}.
Now we can majorize the Chen primes by a pseudorandom measure as fol-
lows:

Proposition 2.1. Let N be a sufficiently large prime. Then there is a
k-pseudorandom measure v : ZN → R+ such that v(n) ≥ [k−12−k−5Λ̃C(n)]2

for all εkN ≤ n ≤ 2εkN .

Proof of Theorem 1.6 assuming Proposition 2.1. Let N be a large prime.
Define f ∈ L1(ZN ) by setting f(n) = [k−12−k−5Λ̃C(n)]2 for εkN ≤ n ≤
2εkN and f(n) = 0 otherwise. From the definition of f(n) and (2.4), we
observe that

E(f) =
k−22−2k−10

N

∑
εkN≤n≤2εkN

Λ̃C(n)2

≥ k−22−2k−10

N
× |X| ×

[
φ(W )
W

log(WεkN + b)
]2

≥ c′εkk−22−2k−10.

Here c′ is an absolute positive constant. Now apply Theorem 1.8 and Propo-
sition 2.1 to conclude that

E
(
f(x)f(x+r) · · · f(x+(k−1)r) | x, r ∈ ZN

)
≥ c(k, c′εkk−22−2k−10)−o(1).

Observe that the degenerate case r = 0 can only contribute at most
O(N−1 log2kN) = o(1) to the left side and can thus be discarded. The
rest of the argument goes exactly as in Theorem 1.1 of [11].

Remark. The value c(k, c′εkk−22−2k−10) is very small indeed, especially
for large k, and this also occurs in [11], but would not affect our desired
result, and B. Green and T. Tao develop a more recent approach in a series
of papers [13]–[15] to give the correct asymptotic value for k = 4.

Thus to obtain arbitrarily long arithmetic progressions in the Chen
primes, it will suffice to prove Proposition 2.1. This will be the purpose
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of the remainder of this section. To obtain a majorant for Λ̃C , we intro-
duce

Definition 2.2 (Goldston–Pintz–Yıldırım truncated divisor sum). Let
R be a parameter (in applications it will be a small power of N). Define

ΛR(n) =
∑
d|n
d≤R

µ(d) log(R/d) =
∑
d|n

µ(d) log(R/d)+.

These truncated divisor sums have been studied in several papers, most
notably in the works of Goldston, Pintz and Yıldırım [6]–[8] concerning the
problem of finding small gaps between primes. We shall obtain asymptotics
for these truncated primes to prove that the measure v defined below is
pseudorandom.

Definition 2.3. Let R=Nk−12−k−4
. We define the function v :ZN→R+

by

(2.5) v(n)

:=


[
φ(W )
W

]2ΛR(Wn+ b)2ΛR(Wn+ b+ 2)2

log2R
when εkN ≤ n ≤ 2εkN ,

1 otherwise,
for all 0 ≤ n < N , where we identify {0, . . . , N − 1} with ZN in the usual
manner.

This v will be our majorant for Proposition 2.1. We first verify that it is
indeed a majorant.

Lemma 2.4. We have v(n) ≥ 0 for all n ∈ ZN , and v(n) ≥ f(n) =
[k−12−k−5Λ̃C(n)]2 for all εkN ≤ n ≤ 2εkN (if N is sufficiently large de-
pending on k).

Proof. The first claim is trivial. From the definition of R, we see that
Wn + b > R if N is sufficiently large, and from Lemma 1.4, if p is a Chen
prime then p + 2 is either a prime or a product p1p2 with p1, p2 > p1/10.
Hence if Wn + b + 2 is prime, then Wn + b + 2 > R; if Wn + b + 2 is a
product p1p2, also p1, p2 > (Wn+b)1/10 > Nk−12−k−4

= R if N is sufficiently
large. So we get ΛR(Wn+ b) = ΛR(Wn+ b+ 2) = logR, which means that
v(n) = [φ(W )/W ]2 log2R ≥ [k−12−k−5Λ̃C(n)]2 = f(n) by construction of R
and N (assuming W (N) is sufficiently slowly growing in N).

We will prove later that v is actually a measure (in the sense of [11], i.e.
E(v) = 1 + o(1)). First, we introduce two crucial propositions.

Proposition 2.5 (on linear forms condition). Let m, t be positive in-
tegers. For each 1 ≤ i ≤ m, let ψi(X) :=

∑t
j=1 Lijxj + bi be linear forms

with integer coefficients Lij such that |Lij | ≤
√
W (N)/2 for all i = 1, . . . ,m
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and j = 1, . . . , t. Assume that the t-tuples (Lij)tj=1 are never identically
zero, and that no two t-tuples are rational multiples of each other. Write
θi := Wψi + b and θi+m := θi + 2 for all i = 1, . . . ,m. Suppose that B is a
product

∏t
i=1 Ii ⊂ Rt of t intervals Ii, each of length at least R10m. Then (if

W (N) is sufficiently slowly growing in N)

E
(
ΛR(θ1(X))2 · · ·ΛR(θm(X))2ΛR(θm+1(X))2 · · ·ΛR(θ2m(X))2 | X ∈ B

)
= (1 + om,t(1))

(
W logR
φ(W )

)2m

.

Proposition 2.6 (Correlation condition). Let m ≥ 1 be an integer ,
and let B be an interval of length at least R10m. Suppose that h1, . . . , hm are
distinct integers satisfying |hi| ≤ N2 for all i = 1, . . . ,m, and let 4 denote
the integer

4 :=
∏

1≤i<j≤m
(hi − hj)(W (hi − hj) + 2)(W (hi − hj)− 2).

Then (for N sufficiently large depending on m, and assuming W (N) to grow
sufficiently slowly in N)

(2.6) E
(
ΛR(W (x+ h1) + b)2 · · ·ΛR(W (x+ hm) + b)2

×ΛR(W (x+ h1) + b+ 2)2 · · ·ΛR(W (x+ hm) + b+ 2)2 | x ∈ B
)

≤ (1 + om(1))
(
W logR
φ(W )

)2m ∏
p|4

p>W (N)

(1 +Om(p−1/2)).

Assuming both Propositions 2.5 and 2.6, we can now conclude the proof
of Proposition 2.1, but first we show that v is indeed a measure.

Lemma 2.7. The function v constructed in Definition 2.3 obeys the es-
timate E(v) = 1 + o(1).

Proof. Apply Proposition 2.5 with m := t := 1, ψi(x1) := x1 and
B := [εkN, 2εkN ] (taking N sufficiently large depending on k, of course).
Comparing with Definition 2.3, we thus have

E(v(x) | x ∈ [εkN, 2εkN ]) = 1 + o(1).

But from the same definition we clearly have

E(v(x) | x ∈ ZN \ [εkN, 2εkN ]) = 1.

Combining these two results yields the lemma.

Now we verify the linear forms condition (Definition 3.1 of [11]), which
is proven in a similar spirit to the above lemma.
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Proposition 2.8. The function v satisfies the (k ·2k−1, 3k−4, k)-linear
forms condition.

Proof. Let ψi(X) :=
∑t

j=1 Lijxj + bi be linear forms of the type which
features in Definition of 3.1 of [11]. We wish to show that

(2.7) E
(
v(ψ1(X)) · · · v(ψm(X)) | X ∈ ZmN

)
= 1 + o(1).

The argument is almost exactly the same as that in Proposition 9.8 of [11].
The only difference is that whenever (u1, . . . , ut) is nice (see [11]), we can
replace each of the v(ψi(X)) by either

[W logR
φ(W )

]2
ΛR(θi(X))2ΛR(θi+m(X))2

or 1, and when (u1, . . . , ut) is not nice, we can crudely bound v by 1 +[W logR
φ(W )

]2
ΛR(θi(X))2ΛR(θi+m(X))2.

Later, we use Proposition 2.6 to show that v satisfies the correlation
condition (Definition 3.2 of [11]). First, we must look at the average size of
the “arithmetic” factor

∏
p>W (N), p|4(1 +Om(p−1/2)) appearing in the next

lemma, which is one of the main differences compared with Green–Tao’s
paper [11].

Lemma 2.9. Let m ≥ 1 be a parameter. There is a weight function
τ = τm : Z → R+ such that τ(n) ≥ 1 for all n 6= 0, and for all distinct
h1, . . . , hj ∈ [εkN, 2εkN ] we have∏

p|4
p>W (N)

(1 +Om(p−1/2)) ≤
∏

1≤i<j≤m
τ(hi − hj),

where4 is defined in Proposition 2.6, and E(τ q(n) | 0 < |n| ≤ N) = Om,q(1)
for all 0 < q <∞.

Proof. We observe that∏
p|4

p>W (N)

(1 +Om(p−1/2))

≤
∏

1≤i<j≤m

( ∏
p|(hi−hj)(W (hi−hj)+2)(W (hi−hj)−2)

p>W (N)

(1 + p−1/2)
)Om(1)

.

By the arithmetic-geometric mean inequality (absorbing all constants into
the Om(1) factor) we can thus take

τm(n) := Om(1)
∏

p|n(Wn+2)(Wn−2)
p>W (N)

(1 + p−1/2)Om(1)

for all n 6= 0. (The value of τ at 0 is irrelevant for this lemma since we are
taking all the hi to be distinct.) To prove the claim, it thus suffices to show
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that

E
( ∏
p|n(Wn+2)(Wn−2)

p>W (N)

(1 + p−1/2)Om(q)
∣∣∣ 0 < |n| ≤ N

)
= Om,q(1)

for all 0 < q <∞.
Since (1 + p−1/2)Om(q) is bounded by 1 + p−1/4 for all but Om,q(1) many

primes p, we have

E
( ∏
p|n(Wn+2)(Wn−2)

p>W (N)

(1 + p−1/2)Om(q)
∣∣∣ 0 < |n| ≤ N

)

≤ Om,q(1)E
( ∏

p|n
p>W (N)

(1 + p−1/4)
∏

p|Wn+2
p>W (N)

(1 + p−1/4)
∏

p|Wn−2
p>W (N)

(1 + p−1/4)
∣∣∣

0 < n ≤ N
)

≤ Om,q(1)
[
E
( ∏

p|n
p>W (N)

(1 + p−1/8)
∣∣∣ I)]1/2[E( ∏

p|Wn+2
p>W (N)

(1 + p−1/8)
∣∣∣ I)]1/4

×
[
E
( ∏
p|Wn−2
p>W (N)

(1 + p−1/8)
∣∣∣ I)]1/4.

The last step uses Hölder’s inequality, and I denotes 0 < n ≤ N . More-
over,

∏
p|n(1 + p−1/8) ≤

∑
d|n d

−1/8, hence

E
( ∏

p|n
p>W (N)

(1 + p−1/8)
∣∣∣ 0 < n ≤ N

)
≤ E

(∏
p|n

(1 + p−1/8)
∣∣∣ 0 < n ≤ N

)

≤ 1
N

∑
1≤n≤N

∑
d|n

d−1/8 ≤ 1
N

N∑
d=1

N

d
d−1/8 =

N∑
d=1

d−9/8.

It is readily verified that∏
p|Wn+2
p>W (N)

(1 + p−1/8) ≤
∑

d|Wn+2
pd>W (N)

d−1/8

(pd denotes the smallest prime divisor of d); we recall the definition W :=∏
p≤W (N) p, together with pd > W (N), hence (d,W ) = 1. For every d sat-

isfying (d,W ) = 1, we denote by n1 the smallest positive integer such that
d |Wn1+2, and for every ni such that d |Wni+2, we have d |ni−n1, i.e. when
n runs over all 1 ≤ n ≤ N , there are at most 1+bN/dc ≤ 1+N/d distinct n
such that d |Wn+2, and observe that only values with d ≤ NW+2 ≤ 2NW
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can contribute. Hence

E
( ∏
p|Wn+2
p>W (N)

(1 + p−1/8)
∣∣∣ 0 < n ≤ N

)
� 1

N

∑
d≤2NW

(1 +N/d)d−1/8

� N−1
∑

d≤2NW

d−1/8 +
∑

d≤2NW

d−9/8 � N−1(NW )7/8 +O(1).

However, W (N)� log logN , we have W = O(N1/7), so that

N−1(NW )7/8 = O(1),

hence Om,q(1) as desired.

We are now ready to verify the correlation condition.

Proposition 2.10. The measure v satisfies the 2k−1-correlation condi-
tion.

Proof. Let us begin by recalling what we wish to prove. For any 1 ≤
m ≤ 2k−1 and h1, . . . , hm ∈ ZN we must show a bound

(2.8) E(v(x+ h1)v(x+ h2) · · · v(x+ hm) | x ∈ ZN ) ≤
∑

1≤i<j≤m
τ(hi − hj)

where the weight function τ = τm is bounded in Lq for all q. The argument
follows that for Proposition 9.10 of [11]; the only difference is that we set

τ(0) := exp(2Cm logN/log logN),

and use the crude bound ‖v‖L∞ � exp(2C logN/log logN). Then the claim
follows thanks to our choice of τ(0).

Now, set

g(n) :=
[
φ(W )
W

]2 ΛR(Wn+ b)2ΛR(Wn+ b+ 2)2

log2R
1[εkN,2εkN ](n).

Now we have enough tools to obtain the result.

Proof of Proposition 2.1. This is immediate from Lemma 2.4, Lemma
2.7, Proposition 2.8, Proposition 2.10 and the definition of k-pseudorandom
measures (see Definition 3.3 of [11]).

3. Correlation estimate for ΛR. To conclude the proof of Theorem
1.6, it remains to verify Propositions 2.5 and 2.6.

We begin by proving Proposition 2.5. Recall that for each 1 ≤ i ≤ m, we
have a linear form ψi(X) :=

∑t
j=1 Lijxj + bi in t variables x1, . . . , xt. Define

θi := Wψi + b and θi+m := Wψi + b+ 2 for all 1 ≤ i ≤ m.
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Let B :=
∏t
j=1 Ij be a product of intervals Ij , each of length at least

R10m. We wish to prove the estimate

(3.1) E
(
ΛR(θ1(X))2 · · ·ΛR(θm+1(X))2 · · ·ΛR(θ2m(X))2 | X ∈ B

)
= (1 + om,t(1))

(
W logR
φ(W )

)2m

.

The first step is to eliminate the role of the box B. We can use Definition
2.2 to expand the left-hand side as

E

( 2m∏
i=1

∑
di,d
′
i≤R

di,d
′
i|θi(X)

µ(di)µ(d′i) log
R

di
log

R

d′i

∣∣∣∣X ∈ B),
which we can rearrange as∑
d1,...,d2m,d′1,...,d

′
2m≤R

( 2m∏
i=1

µ(di)µ(d′i) log
R

di
log

R

d′i

)
E
( 2m∏
i=1

1di,d′i|θi(X)

∣∣∣X ∈ B).
The rest of the argument follows Section 10 of [11], the only difference is the
contribution of the error term Om(R−6m) corresponding to (10.1) in [11],
which can be crudely estimated by Om,t(R−2m log4mR), which is clearly
acceptable; then we just simply need to replace m by 2m, and consider the
behavior of ωX(p). We recall the definitions of ωX(p) and Ep (or see (10.3)
and (10.7) of [11]).

If we write Xd1,...,d2m(p) := {1 ≤ i ≤ 2m : p | di} then

ωX(p) := E
(∏
i∈X

1θi(X)≡0 (mod p)

∣∣∣ X ∈ Ztp)
for each subset X ⊆ {1, . . . , 2m}, and

Ep(z, z′) :=
∑

X,X′⊆{1,...,2m}

(−1)|X|+|X
′|ωX∪X′(p)

p
P
j∈X zj+

P
j∈X′ z

′
j

.

The main difference from [11] is in the proof of the next lemma, especially
Case II.

Lemma 3.1 (Local factor estimate). If p ≤ W (N), then ωX(p) = 0
for all non-empty X; in particular , Ep = 1 when p ≤ W (N). If instead
p > W (N), then ωX(p) = p−1 when |X| = 1 and ωX(p) ≤ p−2 when |X| ≥ 2.

Proof. The first statement is clear, since the maps θj : Ztp → Zp are
identically b or b+ 2, which are coprime to W when p ≤W (N). The second
statement (when p > W (N) and |X| = 1) is similar since in this case θj
uniformly covers Zp (in the terminology of [11]). Now suppose p > W (N)
and |X| = 2 (X = {i, j}), and set Y1 := {1, . . . ,m} and Y2 := {m+ 1,
. . . , 2m}. Our discussion is divided into the following two cases.
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Case I: {i, j} ⊆ Y1 or {i, j} ⊆ Y2. In this case we argue exactly as in
Lemma 10.1 of [11]. We claim that none of the s pure linear forms W (ψi−bi)
is a multiple of any other (modulo p). Indeed, otherwise we would have
LijL

−1
i′j = λ (mod p) for some λ and all j = 1, . . . , t. But if a/q and a′/q′ are

two rational numbers in lowest terms, with |a|, |a′|, q, q′ <
√
W (N)/2, then

clearly a/q 6= a′/q′ (mod p) unless a = a′ and q = q′. It follows that the two
pure linear forms ψi − bi and ψi′ − bi′ are rational multiples of each other,
contrary to assumption. Thus the set of X ∈ Ztp for which θi ≡ 0 (mod p)
for all i ∈ X is contained in the intersection of two skew affine subspaces
of Ztp, and as such has cardinality at most pt−2.

Case II: i, j (assume that i < j) belong to different Yl (l = 1, 2). If
j − i = m (here θi+m − θi = 2), then there is no solution X0 ∈ Ztp such that
θi(X0) ≡ θj(X0) ≡ 0 (mod p) when p > W (N). If j − i 6= m, notice that
θi(X) = W (

∑t
l=1 Lilxl+bi)+b and θj(X) = W (

∑t
l=1 Lj−m,lxl+bj−m)+b+2.

Since p > W (N), we can take the difference 2 (b+ 2− b = 2) into bi−2W−1
p

(i ≤ m, and W−1
p satisfies W ·W−1

p ≡ 1 (mod p)), where bi is not restricted,
and then the argument is analogous to that in Case I.

The third statement is that when p > W (N) and |X| ≥ 3, we can take
any two indices {i, j} such that {i, j} ⊆ Y1 or {i, j} ⊆ Y2, which is just
Case I when p > W (N) and |X| = 2. The rest of the argument is as in
[11], we only need to replace m by 2m. Thus we can conclude the proof of
Proposition 2.5 following Green–Tao’s [11] method.

Higher order correlation for ΛR. We now prove Proposition 2.6; the main
difference from [11] is now also that (recall Y1 = {1, . . . ,m} and Y2 =
{m+ 1, . . . , 2m})
ωX(p)

:= E
( ∏
i∈X∩Y1

1W (x+hi)+b≡0 (mod p)

∏
i∈X∩Y2

1W (x+hi−m)+b+2≡0 (mod p)

∣∣∣ x ∈ Zp).
Lemma 3.2. If p ≤ W (N) then ωX(p) = 0 for all non-empty X; in

particular , Ep = 1 when p ≤W (N). If instead p > W (N), then ωX(p) = p−1

when |X| = 1 and ωX(p) ≤ p−1 when |X| ≥ 2. Furthermore, if |X| ≥ 2 then
ωX(p) = 0 unless p |4 :=

∏
1≤i<j≤s(hi−hj)(W (hi−hj)+2)(W (hi−hj)−2),

s ≤ m.

Proof. If p ≤ W (N) then W (x + hi) + b ≡ b (mod p) and the claim
follows. When p > W (N) and |X| = 1, ωX(p) is equal to 1/p. When p >
W (N) and |X| ≥ 2, ωX(p) 6= 0; then the residue classes {hi (mod p) : i ∈
X ∩Y1} are all equal or the residue classes {Whi,Whi′−m + 2 (mod p) : i ∈
X ∩ Y1 or i′ ∈ X ∩ Y2} are all equal; i.e. when we assume that i < j, the
first case is that p divides some hi−hj , and the latter case is that p divides



312 B. B. Zhou

some W (hi− hj) + 2 or W (hi− hj)− 2; it is easy to see that ωX(p) is equal
to 1/p in the first case, and zero otherwise, and the claim again follows.

The remaining argument is almost exactly as in [11], the main difference
is the next lemma. First, we recall some notation from Definition 10.2 of
[11]. For any σ > 0, let D2m

σ ⊆ C4m denote the domain

D2m
σ := {zj , z′j : −σ < Re(zj),Re(z′j) < 100, j = 1, . . . , 2m}.

If G = G(z, z′) is an analytic function of 4m complex variables on D2m
σ , we

define the Ck(D2m
σ ) norm of G for any integer k ≥ 0 as

‖G‖Ck(D2m
σ )

:= sup
a1+···+a′2m≤k

∥∥∥∥( ∂

∂z1

)a1

· · ·
(

∂

∂z2m

)a2m
(
∂

∂z′1

)a′1
· · ·
(

∂

∂z′2m

)a′2m
G

∥∥∥∥
L∞(D2m

σ )

where a1, . . . , a
′
2m range over all non-negative integers with total sum at

most k. Moreover, λp(z, z′) is an expression of the form

λp(z, z′) =
∑

X,X′⊆{1,...,2m}
|X∪X′|≥2

O(1/p)

p
P
j∈X zj+

P
j∈X′ z

′
j

where the O(1/p) quantity does not depend on z, z′. Furthermore,

E(0)
p = 1 + 1p>W (N), p|4λp(z, z

′),

E
(1)
p = Ep

E
(0)
p

Q2m
j=1(1− 1p>W (N)p

−1−zj )(1− 1p>W (N)p
−1−z′j )(1− 1p>W (N)p

−1−zj−z′j )−1
,

E
(2)
p =

2mY
j=1

(1− 1p>W (N)p
−1−zj )−1(1− 1p>W (N)p

−1−z′j )−1(1− 1p>W (N)p
−1−zj−z′j ),

E(3)
p =

2m∏
j=1

(1− p−1−zj )(1− p−1−z′j )(1− p−1−zj−z′j )−1.

Write Gj :=
∏
pE

(j)
p for j = 0, 1, 2, 3.

Lemma 3.3. Let 0 < σ < 1/12m. Then the Euler products
∏
pE

(l)
p

for l = 0, 1, 2 are absolutely convergent in the domain D2m
σ . In particular ,

G0, G1, G2 can be continued analytically to this domain. Furthermore, we
have the estimates

(3.2) ‖G0‖Cr(D2m
1/12m

)

≤ Om
(

logR
log logR

)r ∏
p|4

p>W (N)

(1 +Om(p4mσ−1)) for 0 ≤ r ≤ 2m,
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(3.3)
‖G0‖C2m(D2m

1/12m
) ≤ exp(Om(log1/3R)),

‖G1‖C2m(D2m
1/12m

) ≤ Om(1), ‖G2‖C2m(D2m
1/12m

) ≤ Om,W (N)(1),

(3.4)

G0(0, 0) =
∏
p|4

p>W (N)

(1 +Om(p−1/2)),

G1(0, 0) = 1 + om(1), G2(0, 0) = (W/φ(W ))2m.

Proof. The difference from Lemma 10.6 of [11] is mainly in three places.
The first is

4 =
∏

1≤i<j≤m
(hi − hj)(W (hi − hj) + 2)(W (hi − hj)− 2)(3.5)

≤ N3m2 ≤ ROm(1).

The second is that to prove (3.3), in light of (3.2), it suffices to prove that∏
p|4

p>W (N)

(1 +Om(p4mσ−1)) ≤ exp(Om(log1/3R)).

Taking logarithms and using the hypothesis σ < 1/12m (and (3.5)), we are
reduced to showing∑

p|4
p>W (N)

p−2/3 ≤
∑
p|4

p−2/3 ≤ O(log1/34).

But there are at most O(log4/log log4) primes dividing 4, hence the
left-hand side can be crudely bounded by∑

1≤n≤O(log4/log log4)

n−2/3 = O(log1/34)

as desired.
The third difference is that the bound (3.4) now follows from the crude

estimate E(0)
p (z, z′) = 1 + Om(p−1/2), and the condition p > W (N) (main

difference from (10.14) of [11]) in (3.4) is crucial for proving Lemma 2.9.

Now, we can conclude the proof of Proposition 2.6 following Green–Tao’s
[11] argument.

Remark. We have in fact shown that the number of k-tuples (p1, . . . , pk)
which are arithmetic progressions of Chen primes and with each p1 ≤ N is
�k N

2/log2kN . It is clear that if one had a lower bound π2(N)� N/log2N
for the number of twin primes less than N (this, of course, is one of the
most open conjectures in prime number theory) then a simple adaptation
of our argument would produce infinitely many k-tuples (p1, . . . , pk) of twin
primes in arithmetic progressions, and the number of such k-tuples less than
N would be �k N

2/log2kN . Hence we conclude
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Proposition 3.4. Assume the Hardy–Littlewood l-tuple conjecture, i.e.
setting Tl(N) = {p ∈ {1, . . . , N} : p, p + d1, . . . , p + dl−1 are all prime},
assume that #Tl(N) ≥ cN/loglN (with c an absolute positive constant).
Then Tl(N) contains infinitely many arithmetic progressions of length k for
all k, and the number of such k-tuples less than N (sufficiently large integer
only depending on k and l) is �k,l N

2/loglkN .

Outline of proof. This is a slight modification of the proof of Theo-
rem 1.6. First, we make

Definition 3.5.

(3.6) Λ̃l(n) :=

{
φ(W )
W

log(Wn+ b) if Wn+ b ∈ Tl(N),
0 otherwise.

Definition 3.6. Let R = N l−1k−12−k−4
. We define the function v :

ZN → R+ by

(3.7) v(n)

:=


[
φ(W )
W

]l ΛR(Wn+ b)2ΛR(Wn+ b+ d1)2 · · ·ΛR(Wn+ b+ dl−1)2

loglR
when εkN ≤ n ≤ 2εkN ,

1 otherwise.
Set

(3.8) f(n) =
{

[l−1k−12−k−5Λ̃l(n)]l when εkN ≤ n ≤ 2εkN ,
0 otherwise.

There is also an important revision corresponding to (3.1): Let B :=
∏t
j=1 Ij

be a product of intervals Ij , each of length at least R10lm so that the error
term corresponding to (10.1) of [11] would easily be acceptable. It is easy to
see that 4 corresponding to Lemma 2.9 would be

4 :=
∏

1≤i<j≤m
(hi−hj)(W (hi−hj)+d1)(W (hi−hj)−d1) · · · (W (hi−hj)−dl−1).

The above modifications ensure that no additional difficulties arise in the
proof.
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