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1. Introduction. We are interested in the number and size of integer
points on certain families of plane curves of genus 1. Such is the work of
Evertse and Silverman [2], wherein it is shown that for any ε > 0, the
number of integer solutions to an equation of the form

y2 = f(x) = x3 + bx2 + cx+ d,

with b, c, d∈Z and discriminant∆(f) nonzero, is bounded by c(ε)|∆(f)|1/2+ε

for some effectively computable c(ε) > 0. The results we present here are
substantially more restrictive, however they are quite different, and do im-
prove upon the results in [2] in certain cases.

The results presented here are based on a recent theorem of Akhtari [1],
which we now state.

Theorem A (Akhtari, 2008). Let F (x, y) be a reduced binary quartic
form with integer coefficients, which is irreducible over Q, and which splits
over R. If JF = 0, then the inequality |F (x, y)| ≤ h has at most twelve
integer solutions (x, y) with

|y| ≥ h3/4

(3I)1/8
.

All of the conditions in Theorem A will be fully explained in the paper.
The particular condition JF = 0 forces us to be quite restrictive in our
applications to cubic and quartic curves.

In what follows, D > 1 and N will denote positive squarefree integers,
k < 0 will denote a negative squarefree integer coprime to D. We will be
interested in the quartic equation

(1.1) X2 −DY 4 = k,
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and the cubic equation

(1.2) Y 2 = X3 −NX.

Notation. For a nonzero integer k, let ω(k) denote the number of dis-
tinct prime factors of k. Also, n(D, k) denotes the number of classes of
coprime solutions (x, y) to the quadratic equation x2−Dy2 = k, which will
be defined in Section 3. Finally, for a squarefree positive integer D > 1, we
let εD denote the minimal unit greater than 1 in Z[

√
D] of positive norm.

We present our results in terms of εD, since this allows us to explicitly show
how the bounds we obtain depend on this unit. Moreover, this unit can of-
ten be quite small, and one can therefore obtain practical upper bounds. In
general, however, it is known that this unit can be very large. In fact, the
best result known to this author is εD < eD

1/2(log(4D)+2) (see [4]).

Theorem 1.1. There are at most 48n(D, k) integer solutions to (1.1)
with

|Y | >
25/4|k|39/4ε

45/4
D

D13/4
.

The value of n(D, k) is not altogether very well understood, but generally
depends on the arithmetic of the field Q(

√
D). In the worst possible case,

one has n(D, k) ≤ 2ω(k), and so if k has few distinct prime factors, then
n(D, k) is small.

Corollary 1.1. There are at most 48 · 2ω(k) integer solutions to (1.1)
with

|Y | >
25/4|k|39/4ε

45/4
D

D13/4
.

Let N denote a squarefree positive integer. An integer solution to the
equation Y 2 = X3−NX = X(X2−N), with X = Dy2 and X2−N = Dx2,
gives rise to a positive integer solution (x, y) to the equation x2 − Dy4 =
−N/D, where D |N . In this case, if either D < 0 or D = 1, then the
positive integers x and y must be relatively small. If D > 1, we can appeal
to Corollary 1.1, which yields the following application to cubic curves of
the form (1.2).

Theorem 1.2. There are at most 48
∑

D|N 2ω(D) integer solutions to
(1.2) with

|X| > max
D|N,D>1

25/2|N/D|39/2ε
45/2
D

D11/2
.

Apart from the small solutions, below the quantitative bound in Theorem
1.2, Theorem 1.2 compares favourably with the results in [2] in the case
where N has few prime factors.
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2. Generalized Pythagorean triples. The following lemma appears
in [7]. We will later need to make reference to it, and to some of the variables
contained in the proof, and so we provide all the details for completeness.

Lemma 2.1. Let a, b, c be nonzero integers with (a, b, c) = 1, and such
that the Diophantine equation

(2.1) ax2 + by2 + cz2 = 0

has a solution in integers x, y, z not all zero. Then there are integers R1,S1,T1,
R2, S2, T2, z1, depending only on a, b, c, satisfying the relations

(2.2) R1T2 +R2T1 = 2S1S2

and
(2.3) S2

1 −R1T1 = −bcz2
1 , S2

2 −R2T2 = −acz2
1 ,

and a nonzero integer δ, depending only on a, b, c, such that for every nonzero
solution (x, y, z)of (2.1), there exist integers Q, u, v and a divisorP of δ so that

Px = Q(R1u
2 − 2S1uv + T1v

2), Py = Q(R2u
2 − 2S2uv + T2v

2).

The integers R1, R2, T1, T2 satisfy R1T2 − R2T1 = 0, and furthermore, if
gcd(x, y, z) is bounded , then an upper bound for Q can be determined.

Proof. We follow Tzanakis’ arguments in [7]. First put a = a0A
2, b =

b0B
2, c = c0C

2 with a0, b0, c0 squarefree, so that (2.1) becomes

(2.4) a0(Ax)2 + b0(By)2 + c0(Cz)2 = 0.

Let d = (a0, b0), e = (a0, c0), f = (b0, c0). Then by hypothesis it follows that

(d, e) = (d, f) = (e, f) = 1
and
a0 = dea1, b0 = dfb1, c0 = efc1, Ax = fX, By = eY, Cz = dZ,

for integers a1, b1, c1, X, Y, Z. Now (2.4) becomes

(2.5) a1fX
2 + b1eY

2 + c1dZ
2 = 0,

which has coefficients which are pairwise relatively prime and squarefree.
By hypothesis, (2.5) has a nonzero solution (x1, y1, z1), which will be used
in what follows. We may now appeal to formula 20 on p. 225 of [6], where
it is proved that there exist coprime integers u, v such that the solutions to
(2.5) take the form

d1
X

Q
= −a1fx1u

2 − 2b1ey1uv + b1ex1v
2,

d1
Y

Q
= a1fy1u

2 − 2a1fx1uv − b1ey1v
2,

±d1
Z

Q
= a1fz1u

2 + b1ez1v
2,
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with d1 representing the greatest common divisor of the three expressions
on the right-hand sides and Q = gcd(X,Y, Z). Multiplying the first relation
by fBC, and recalling that fX = Ax, it follows that

d1ABCx = Q(−a1f
2BCx1u

2 − 2b1efBCy1uv + b1efBCx1v
2),

which we rewrite as

(2.6) Px = Q(R1u
2 − 2S1uv + T1v

2).

Similarly, multiplying the second relation by eAC, and recalling that eY =
By, it follows that

d1ABCy = Q(a1efACy1u
2 − 2a1efACx1uv − b1e2ACy1v

2),

which we rewrite as

(2.7) Py = Q(R2u
2 − 2S2uv + T2v

2).

It is readily verified that R1, S1, T1, R2, S2, T2, as defined in (2.6) and (2.7),
satisfy the relations (2.2) and (2.3). Also, as proved in [7], P = d1ABC
is a divisor of δ = 2a1b1c1d1efABCz

3
1 . To see that R1T2 − R2T1 = 0, ob-

serve that the above expressions for these values show that R1T2 = R2T1 =
a1b1e

2f2ABC2x1y1. Finally, as noted in [7], if M represents an upper bound
for gcd(x, y, z), then Q ≤M · gcd(A,B,C).

We will need to have an upper bound for the smallest nontrivial solution
to the equation ax2 + by2 + cz2 = 0. A discussion on this topic is given in
Chapter 7 of [5], however we will use the quantitative result due to Holzer [3].

Lemma 2.2. Let a, b, c denote nonzero, pairwise coprime squarefree in-
tegers. If equation (2.1) has a nontrivial solution, then there is at least one
nontrivial solution (x, y, z) with

|x| <
√
|bc|, |y| <

√
|ac|, |z| <

√
|ab|.

3. Pellian equations. In this section, we make some brief definitions
and remarks on solutions to Pellian equations, which will be used later in the
paper. In particular, we provide the necessary background on the equation

(3.1) X2 −DY 2 = k.

For further details, the reader is referred to Section 58 in Chapter VI of [6].
Let D denote a nonsquare positive integer, and let

εD = T + U
√
D

denote the minimal unit greater than 1 in the ring Z[
√
D] with positive norm.

We note that both T and U are positive integers. Let k denote a nonzero
integer, and assume that x0, y0 are nonzero integers satisfying (3.1). Let
α = x0 + y0

√
D, and for i ∈ Z, define

(3.2) xi + yi
√
D = α · εi.
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Then each pair xi, yi is a solution to (3.1), and the set of all such solutions
is referred to as the class of solutions to (3.1) associated to x0, y0. As noted
in [6], a necessary and sufficient condition for two solutions u1 + v1

√
D,

u2 + v2
√
D to the equation x2 −Dy2 = k to be associated is that the two

numbers
u1u2 − v1v2D

k
and

v1u2 − v2u1

k
be integers.

Among all solutions x+ y
√
D to (3.1) belonging to a given class, say C,

we choose a solution x∗ + y∗
√
D in the following way: Let y∗ be the least

positive value of y which occurs in C and let x∗ be positive, satisfying (x∗)2−
D(y∗)2 = k. Then, by the way y∗ was chosen, at least one of x∗+y∗

√
D and

−x∗+ y∗
√
D belongs to C. If both belong, then we define x∗+ y∗

√
D as the

fundamental solution of the class C. Otherwise, we define the fundamental
solution α∗ as the sole solution among x∗ + y∗

√
D and −x∗ + y∗

√
D which

belongs to C.
We will be interested in the case that k is negative. In this case, Theorem

108a in [6] gives information on the size of the fundamental solution of
a class. In particular, with T and U as defined above, Nagell proves the
following.

Lemma 3.1. With all the notation as above, we have

0 < y∗ <
U√

2(T − 1)

√
|k|, 0 < |x|∗ <

√
(1/2)(T − 1)|k|.

Along with bounds for the size of the fundamental solution of a class,
we will need to refer to upper bounds for the number of classes of solutions
to an equation of the form (3.1). Note that the above lemma shows that the
number of classes is finite.

Notation. For a nonsquare positive integer D, and a nonzero integer
k for which (3.1) is solvable, denote by n(D, k) the number of classes of
solutions to equation (3.1).

It is important to note that if x∗ + y∗
√
D is a fundamental solution to

(3.1) with (x∗, y∗) = 1, then all solutions x + y
√
D in that class satisfy

(x, y) = 1. Conversely, if x + y
√
D is any solution to (3.1) with (x, y) = 1,

then the fundamental solution of that class also has this property.

Lemma 3.2. Let D and k be as above. The number of classes of solu-
tions in coprime integers to (3.1) is at most 2ω(k), where ω(k) represents the
number of distinct prime factors of k.

Proof. For simplicity of exposition, we will restrict our attention to the
case where k is squarefree, as the proof extends to the general case in an
identical manner. Let t = ω(k), and assume that k has the factorization into
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primes given by k = p1 · · · pt. Assuming that x2 − Dy2 = k is solvable in
coprime positive integers x, y, it follows thatD is a square modulo each of the
pi, and so for 1 ≤ i ≤ t, we define∆i to be a fixed square root ofD modulo pi.
Assume that there are l > 2t solutions α1 = u1+v1

√
D, . . . , αl = ul+vl

√
D

to x2 −Dy2 = k. We will show that there is at least one pair of associated
solutions among them. For each 1 ≤ i ≤ t and 1 ≤ j ≤ l, we see that
u2
j ≡ Dv2

j (mod pi), and so for each pair i, j in these ranges, we define
εi,j ∈ {1,−1} by

uj ≡ εi,j∆ivj (mod pi).

Since l > 2t, there are values j1, j2 for which εi,j1 = εi,j2 for all 1 ≤ i ≤ t. It
is readily deduced from this that both

uj1uj2 − vj1vj2D
k

and
vj1uj2 − vj2uj1

k
are integers, and hence αj1 and αj2 are associated solutions.

In the case where D and k are squarefree, solutions to (3.1) are neces-
sarily coprime, and so we record the following for later use.

Corollary 3.1. Let D > 0 and k be squarefree integers. Then

n(D, k) ≤ 2ω(k).

4. The reduction to Thue equations. Throughout this section,
D denotes a positive squarefree integer and k denotes a negative square-
free integer. Let (X,Y ) be a solution to equation (1.1) with X,Y positive.
Then X + Y 2

√
D is a solution to (3.1) belonging to a certain class C of

solutions. Denote by x∗ + y∗
√
D the fundamental solution of C. Then

X + Y 2
√
D = (x∗ + y∗

√
D)εiD (i ∈ Z),

where εD is defined in Section 3. Let s+ t
√
D = x∗ + y∗

√
D if i is even and

s+ t
√
D = (x∗ + y∗

√
D)εD if i is odd. It is easy to see that t > 0 and, since

k is squarefree, that gcd(t, k) = 1.
The above preliminaries imply that there is an integer j for which

X + Y 2
√
D = (s+ t

√
D)(T + U

√
D)2j .

Let m+ n
√
D = (T + U

√
D)j . Then m2 −Dn2 = 1 and

X + Y 2
√
D = (s+ t

√
D)(m+ n

√
D)2 = (s+ t

√
D)(m2 +Dn2 + 2mn

√
D),

from which it follows that

Y 2 = tm2 + 2smn+ tDn2.

Multiplying the above through by t, completing the square, and using the
fact that s2 −Dt2 = k, gives

(4.1) −(tm+ sn)2 + kn2 + tY 2 = 0.
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We now use Lemma 2.1 with (−1, k, t) in place of (a, b, c). We remark that
these coefficients are pairwise coprime. We obtain

P (tm+ sn) = Q(R1u
2 − 2S1uv + T1v

2), Pn = Q(R2u
2 − 2S2uv + T2v

2),

where, since gcd(m,n) = 1, it follows that gcd(u, v) = 1.
Solving the above equations for m and n, and using m2 − Dn2 = 1, it

follows that

(4.2) [(R1 − sR2)u2 − 2(S1 − sS2)uv + (T1 − sT2)v2]2

−D(R2tu
2 − 2S2tuv + T2tv

2)2 = (Pt/Q)2.

5. The hypotheses of Theorem 1.1. The purpose of this section is
to show that the Thue equation in (4.2) satisfies all of the hypotheses of
Theorem A stated in Section 1. In the situation at hand

(5.1) F (u, v) = a0u
4 + a1u

3v + a2u
2v2 + a3uv

3 + a4v
4,

where, by the identity s2 −Dt2 = k, the coefficients are given explicitly by

a0 = R2
1 − 2sR1R2 + kR2

2,

a1 = −4(R1S1 − sR1S2 − sR2S1 + kR2S2),
a2 = 6(R1T1 − sR2T1 − sR1T2 + kR2T2),
a3 = −4(S1T1 − sS1T2 − sS2T1 + kS2T2),

a4 = T 2
1 − 2sT1T2 + kT 2

2 .

The quantity JF stated in Theorem A is given by

−72a0a2a4 − 9a1a2a3 + 2a3
2 + 27a0a

2
3 + 27a4a

2
1,

and the result of substituting the expressions for the ai into JF is a poly-
nomial of degree 6 in R1, R2, S1, S2, T1, T2. We forego displaying this rather
lengthy polynomial here, but make the important remark that this polyno-
mial can be written as another polynomial with integer coefficients in terms
of R1, R2, T1, T2, S

2
1 , S

2
2 , 2S1S2. Remarkably, upon using the identities (2.2)

and (2.3), replacing the quantities S2
1 , S

2
2 , 2S1S2 by their respective values,

it is readily found that JF = 0. We performed this check using the symbolic
algebra package Maple.

Theorem A requires that F (u, v) be reduced. This condition can be de-
scribed in terms of the Hessian

H(u, v) =
∂2F

∂u2

∂2F

∂v2
−
(
∂2F

∂u∂v

)2

.

As noted in Section 7 of [1], since JF = 0,

(−1/9)H(u, v) = M2(u, v),
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where M(u, v) = au2 + buv + cv2 ∈ Z[u, v] is a positive definite quadratic
form. M(u, v) is said to be reduced if |b| ≤ a ≤ c, and F (u, v) is defined as
being reduced if M(u, v) is reduced.

In the case at hand, it will be shown that b = 0, from which it immedi-
ately follows that F (u, v) is reduced.

With F (u, v) as in (5.1), then

H(u, v) = A0u
4 +A1u

3v +A2u
2v2 +A3uv

3 +A4v
4,

where the coefficients are given explicitly in terms of F (u, v) by

A0 = 3(8a0a2 − 3a2
1), A3 = 12(6a1a4 − a2a3),

A1 = 12(6a0a3 − a1a2), A4 = 3(8a2a4 − 3a2
3).

A2 = 6(3a1a3 + 24a0a4 − 2a2
2),

Substituting the above expressions for a0, a1, a2, a3, a4 into A1 and A3, and
using (2.2),(2.3) to simplify the result, we find that

A1 = 288(s2 − k)(R1T2 −R2T1)(S2R1 − S1R2),

A3 = −288(s2 − k)(R1T2 −R2T1)(S2T1 − S1T2),

which both vanish by the assertion in Lemma 2.1 that R1T2 − R2T1 = 0.
Therefore, the coefficients of M(u, v) satisfy ab = bc = 0, from which it
follows that b = 0, since M(u, v) is positive definite.

To complete the analysis of the hypotheses of Theorem A, we study the
roots of the two quadratic polynomials

[R1 −R2(s+ νt
√
D)]Z2 − 2[S1 − S2(s+ νt

√
D)]Z

+ [T1 − T2(s+ νt
√
D)] (ν = ±1),

the product of which is the dehomogenization of the homogeneous quartic
in (4.2).

Using the quadratic formula, we find that the discriminants of these
quadratic factors are given by

4(S1 − S2(s± t
√
D))2 − 4(R1 −R2(s± t

√
D))(T1 − T2(s± t

√
D))

= 4[S2
1 − 2S1S2(s± t

√
D) + S2

2(s± t
√
D)2]

− 4[R1T1 − (R1T2 +R2T1)(s± t
√
D) +R2T2(s± t

√
D)2].

By (2.2), the middle terms vanish, which after some rearranging, and ap-
plying Lemma 2.1 again, results in

4(S2
1 −R1T1) + 4(s± t

√
D)2(S2

2 −R2T2) = 4(−ktz2
1) + 4(s± t

√
D)2(tz2

1).

Some further simplifications result in that the discriminants of the two
quadratic polynomials above are given by

(5.2) 8t2z2
1

√
D(±s+ t

√
D).
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Recall that s2 −Dt2 = k < 0, and so ±s+ t
√
D is positive for both choices

of sign. It follows that all of the roots of the two quadratic polynomials
above are real, and since these are precisely the roots of F (u, 1), we see that
F (u, v) splits over R.

The final condition remaining is to verify that F (u, v) is irreducible
over Q. This is actually a consequence of the explicit description of the
discriminants of the two quadratic factors of F (u, 1) given in (5.2). In par-
ticular, from the fact that D is squarefree, it is a simple exercise to verify
that none of the expressions in (5.2) are squares of elements in Q(

√
D).

6. Bounds. The purpose of this section is to prove an upper bound
for |Y | for the nonexceptional solutions, and a bound for the number of
exceptional (large) solutions, where

(6.1) X2 −DY 4 = k,

with k < 0, and both k and D are squarefree.
Let (X,Y ) be a positive integer solution to (6.1). The element X+Y 2

√
D

lies in a class of solutions to

(6.2) X2 −DY 2 = k.

Our conclusions concerning X + Y 2
√
D are stated in Section 4.

The upper bound for |Y | will be given in terms of k,D, εD. It is pre-
ferrable to present the upper bound for |Y | in this way, as it shows the
dependence on εD, and also shows that the bound can be small at times
(when εD is small).

Note that by Lemma 3.1, we have the following upper bounds for x∗, y∗:

(6.3) |x∗| ≤
√
|k|(T − 1)

2
, y∗ ≤ U

√
|k|

2(T − 1)
.

Using (6.3), it follows that

|s| ≤ (1/2)ε3/2D

√
|k|, t ≤ ε3/2D

√
|k|/2D.

We apply Lemma 2.1 to equation (4.1) with specific values a = −1, b = k,
c = t. Because of the fact that k is squarefree, some of the particular values
arising in the proof of Lemma 2.1 are as follows: a0 = −1, A = 1, b0 = k,
B = 1, c0C2 = t, d = e = f = 1, and moreover, a1 = −1, b1 = k, and c1 = c0.

We now apply Lemma 2.2 to the quadratic equation (4.1). By Lemma
2.2, and using the fact that c0 ≤ t, we may assert that there is a positive
integer solution (x1, y1, z1) to (4.1) with

x1 ≤
√
|kt|, y1 ≤

√
t, z1 ≤

√
|k|.

We can now bound the quantity P appearing in the proof of Lemma 2.1. As
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shown in that proof,

|P | = |dABC| ≤ |2a1b1c1defABCz
3
1 |,

but since many of the factors therein are ±1, we get

(6.5) |P | ≤ |2b1c1Cz3
1 | ≤ 2t|k|(

√
|k|)3 ≤ 2t|k|5/2.

We now derive upper bounds for |R2|, |S2|, |T2| by using the quantities each
of these terms represents in the proof of Lemma 2.1. In the case of R2, we
see that

|R2| ≤ | − a1efACy1| ≤ |Cy1| ≤ t.

In fact, a similar argument shows that |S2| ≤ t
√
|k| and that |T2| ≤ t|k|.

An upper bound for |Q| can be determined from the proof of Lemma 2.1.
If M represents gcd(x, y, z), then Q ≤M gcd(A,B,C) = M . Recall that

−x2 + ky2 + z2 = −(tm+ sn)2 + kn2 + tY 2 = 0,

and so if p is a prime dividing M , and pw1 properly divides M , then pw2

properly divides gcd(tm+sn, n) for some w2 ≥ w1. Also, since gcd(m,n) = 1,
it follows that pw2 divides t. Therefore,

|Q| ≤M ≤ t.

We now derive upper bounds for the quantities |m| and |n|. By Theorem A,
we may assume that both |u| and |v| are bounded by ((Pt)2)3/4, but at the
price of there being 24 exceptional solutions instead of 12. We will generously
disregard the factor (3I)1/8 appearing in Theorem A, since it has little effect
on the final bounds obtained here.

Using the expression for Pn in Section 4, and the above bounds, we
deduce that

|Pn| ≤ |Q(R2u
2 − 2S2uv + T2v

2)|
≤ 4tmax(|R2|, |S2|, |T2|) max(|u2|, |uv|, |v2|) ≤ 4t(t|k|)(Pt)3,

and therefore,

|n| ≤ 4t5|k|P 2 ≤ 4t5|k|(2t|k|5/2)2 ≤ 16t7|k|6.

We recall that m2 −Dn2 = 1, and so |m− n
√
D| is very small. By the dis-

creteness of the integers, along with the fact that we were at times somewhat
conservative in estimating |n|, we get

|m| ≤ |n|
√
D ≤ 16

√
D t7|k|6.

We are now in a position to obtain a bound for |Y |. Recall from Section 4
that Y 2 = tm2+2smn+tDn2, so that by the above bounds for |m|, |n|, |s|, t,

Y 2 ≤ 210Dt15k12,
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and so by using the bound

t ≤ ε3/2D

√
|k|/2D,

we deduce that

|Y | ≤
25/4|k|39/4ε

45/4
D

D13/4
.

We complete the proof by estimating the number of exceptional large
solutions. Since D and k are squarefree, any solution in integers x, y to
x2 − Dy2 = k has the property that x and y are coprime. By Lemma 3.2,
the number of classes of solutions to x2 − Dy2 = k is at most 2ω(k). For
each class, the above analysis shows that one gets two cases depending on
the parity of i, and two cases in order to assert that both |u| and |v| are
bounded by ((Pt)2)3/4 = (Pt)3/2. In total then, there are at most

12 · 2ω(k)+2

exceptional solutions.
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