Rational points on certain quintic hypersurfaces

by
Maciej Ulas (Kraków)

1. Introduction. In this paper we are interested in the existence of integer and rational points on the hypersurface given by the equation

$$
\mathcal{V}_{f}: f(p)+f(q)=f(r)+f(s)
$$

where $f \in \mathbb{Q}[X]$ and $\operatorname{deg} f=5$. We assume that for each pair $a, b \in \mathbb{Q} \backslash\{0\}$ we have $f(a x+b) \neq c x^{5}+d$ for any $c, d \in \mathbb{Q}$. This assumption guarantees that \mathcal{V}_{f} is an affine algebraic variety of dimension three. The set of rational points on \mathcal{V}_{f} will be denoted by $\mathcal{V}_{f}(\mathbb{Q})$. In other words,

$$
\mathcal{V}_{f}(\mathbb{Q})=\left\{(p, q, r, s) \in \mathbb{Q}^{4}: f(p)+f(q)=f(r)+f(s)\right\} .
$$

Similarly, $\mathcal{V}_{f}(\mathbb{Z})$ denotes the set of integer points on \mathcal{V}_{f}, so $\mathcal{V}_{f}(\mathbb{Z})=$ $\mathcal{V}_{f}(\mathbb{Q}) \cap \mathbb{Z}^{4}$.

We say that the point $P=(p, q, r, s) \in \mathcal{V}_{f}$ is nontrivial if $\{p, q\} \cap$ $\{r, s\}=\emptyset$ and $\{f(p), f(q)\} \cap\{f(r), f(s)\}=\emptyset$. We denote by T_{f} the set of trivial rational points on \mathcal{V}_{f}. Note that each singular point is trivial, and the number of singular points (rational or not) is finite. In the following, a rational point will mean a nontrivial rational point.

The problem of the existence of integer points on \mathcal{V}_{f} was investigated in the interesting work of Browning [1], who showed that

$$
M(f ; B)<_{\varepsilon, f} B^{1+\varepsilon}\left(B^{1 / 3}+B^{2 / \sqrt{5}+1 / 4}\right)
$$

for each $\varepsilon>0$; here $M(f ; B)$ is the number of solutions $(p, q, r, s) \in \mathbb{Z}^{4}$ of the equation which defines \mathcal{V}_{f} with $0<p, q, r, s \leq B$ and $\{p, q\} \cap\{r, s\}=\emptyset$. The above estimate shows that the set of positive integer points on \mathcal{V}_{f} is rather "thin". To the author's knowledge no example is known of a polynomial f of degree five with $\mathcal{V}_{f}(\mathbb{Z}) \backslash T_{f}$ infinite. Moreover, we have been unable to find in the literature any example of a polynomial f of degree five which gives a positive answer to the following:

[^0]QuEstion 1.1. Let $N>1$ be given. Is it possible to construct a polynomial f of degree five such that $\sharp\left(\mathcal{V}_{f}(\mathbb{Z}) \backslash T_{f}\right)>N$?

It is clear that the question of existence of a polynomial f of degree five with $\mathcal{V}_{f}(\mathbb{Q})$ infinite should be easier to tackle. So, it is natural to ask the following:

Question 1.2. For which polynomials f of degree five the set $\mathcal{V}_{f}(\mathbb{Q})$ is infinite?

It seems that these questions have not been considered before. It is also clear that in the case of Question 1.2 we can only consider polynomials of the form $f(X)=X^{5}+a X^{3}+b X^{2}+c X$, where $a, b, c \in \mathbb{Z}$ and at least one of a, b, c is nonzero. We will see that if $b \neq 0$, then the diophantine equation $f(p)+$ $f(q)=f(r)+f(s)$ has a rational two-parameter solution (Theorem 2.1). In geometrical terms this means that there is a unirational surface contained in \mathcal{V}_{f}. From this we can deduce easily that the answer to Question 1.1 is positive. Moreover, we will prove that for any polynomial f of degree five there exists a $\mathbb{Q}(i)$-rational surface contained in \mathcal{V}_{f} (Theorem 2.5).
2. Construction of rational points on \mathcal{V}_{f}. Let $f \in \mathbb{Q}[X]$ with $\operatorname{deg} f=5$. In this section we will construct parametric solutions of the equation defining the hypersurface

$$
\mathcal{V}_{f}: f(p)+f(q)=f(r)+f(s)
$$

Since we are interested in rational solutions, we can assume without loss of generality that $f(X)=X^{5}+a X^{3}+b X^{2}+c X, a, b, c \in \mathbb{Z}$ and at least one of a, b, c is nonzero.

Our aim is to prove the following theorem.
Theorem 2.1. Let $f(X)=X^{5}+a X^{3}+b X^{2}+c X \in \mathbb{Z}[X]$, where $b \neq 0$. Then there exists a \mathbb{Q}-unirational elliptic surface \mathcal{E}_{f} such that $\mathcal{E}_{f}(\mathbb{Q}) \subset$ $\mathcal{V}_{f}(\mathbb{Q})$. In particular, the set $\mathcal{V}_{f}(\mathbb{Q})$ is infinite.

Proof. In the equation defining \mathcal{V}_{f} we make a (noninvertible) substitution

$$
\begin{equation*}
p=x, \quad q=y-x, \quad r=z, \quad s=y-z \tag{1}
\end{equation*}
$$

As a result,

$$
f(x)+f(y-x)-f(z)-f(y-z)=(x-z)(x-y+z) G(x, y, z)
$$

where $G(x, y, z)=2 b+3 a y+5 x^{2} y-5 x y^{2}+5 y^{3}-5 y^{2} z+5 y z^{2}$. From the geometric point of view this substitution amounts to intersecting the hypersurface \mathcal{V}_{f} with the hyperplane $L: p+q=r+s((1)$ gives a parametrization of L).

Note that the equation $G(x, y, z)=0$ has a solution in rational numbers if and only if the discriminant of the polynomial G with respect to z is the square of a rational number, say v. Thus, we are interested in the rational points on the surface

$$
\mathcal{S}: v^{2}=-5 y\left(15 y^{3}+20 x y(x-y)+12 a y+8 b\right)=: \Delta(x, y)
$$

If we make a change of variables

$$
(x, y, w)=\left(-\frac{5 b(t+1)}{X+5 a},-\frac{10 b}{X+5 a}, \frac{20 b Y}{(X+5 a)^{2}}\right)
$$

with the inverse

$$
(X, t, Y)=\left(-\frac{5(2 b+a y)}{y}, \frac{2 x-y}{y}, \frac{5 b w}{y^{2}}\right)
$$

the surface \mathcal{S} is transformed to

$$
\mathcal{E}: Y^{2}=X^{3}-75 a^{2} X-125\left(5 b t^{2}+10 b^{2}+2 a^{3}\right)
$$

Note that the surface \mathcal{E} is of degree three and contains a rational curve at infinity $[X: Y: t: Z]=[0: 1: t: 0]$, so the Segre theorem shows that \mathcal{E} is unirational. This implies the existence of a two-parameter solution of the equation defining \mathcal{E}. For the convenience of the reader we will show how this solution can be constructed.

Set $F(X, Y, t)=Y^{2}-\left(X^{3}-75 a^{2} X-125\left(5 b t^{2}+10 b^{2}+2 a^{3}\right)\right)$. We use the method of undetermined coefficients to find a two-parameter solution of $F(X, Y, t)=0$. Let u, v be parameters and set

$$
\begin{equation*}
X=T^{2}+10 u T+p, \quad Y=T^{3}+q T^{2}+r T, \quad t=(v / 5 b) T^{2}+s \tag{2}
\end{equation*}
$$

We want to find $p, q, r, s, T \in \mathbb{Q}(u, v)$ such that the equation $F(X, Y, t)=0$ is satisfied identically. For the quantities given by (2) we have

$$
F(X, Y, t)=a_{0}+a_{1} T+a_{2} T^{2}+a_{3} T^{3}+a_{4} T^{4}+a_{5} T^{5}
$$

where

$$
\begin{array}{ll}
a_{0}=250 a^{3}+1250 b^{2}+75 a^{2} p-p^{3}+625 b^{2} s^{2}, & a_{1}=30(5 a-p)(5 a+p) u \\
a_{2}=75 a^{2}-3 p^{2}+r^{2}-300 p u^{2}+250 b s v, & a_{3}=2\left(q r-30 p u-500 u^{3}\right) \\
a_{4}=-3 p+q^{2}+2 r-300 u^{2}+25 v^{2}, & a_{5}=2(q-15 u)
\end{array}
$$

The system of equations $a_{2}=a_{3}=a_{4}=a_{5}=0$ has exactly one solution in $\mathbb{Q}(u, v)$ given by

$$
\begin{array}{ll}
p=25\left(u^{2}-3 v^{2}\right) / 3, & q=15 u \\
r=50\left(u^{2}-v^{2}\right), & s=\left(25 u^{4}-450 u^{2} v^{2}-75 v^{4}-9 a^{2}\right) / 30 b v \tag{3}
\end{array}
$$

If p, q, r, s are given by (3) then $F\left(T^{2}+10 u T+p, T^{3}+q T^{2}+r T,(v / 5 b) T^{2}+s\right)$ $\in \mathbb{Q}(u, v)[T]$ and $\operatorname{deg}_{T} F=1$. So this polynomial has a root in the field
$\mathbb{Q}(u, v)$ given by

$$
T=-\frac{250 a^{3}+1250 b^{2}+75 a^{2} p-p^{3}+625 b^{2} s^{2}}{30(5 a-p)(5 a+p) u}
$$

Putting the calculated values p, q, r, s, T into (2) we get the desired solutions depending on two parameters u, v.

Remark 2.2. The same method was used by Whitehead [4] to prove the unirationality of the surface $z^{2}=h(x, y)$, where $h \in \mathbb{Q}[x, y]$ has degree three. This theorem can also be found in [3, p. 85].

Thanks to the theorem above we can easily prove that the answer to the Question 1.1 is positive.

Corollary 2.3. For any $N \in \mathbb{N}_{+}$there are infinitely many polynomials $f \in \mathbb{Z}[X]$ of degree five such that on the hypersurface $\mathcal{V}_{f}: f(p)+f(q)=$ $f(r)+f(s)$ there are at least N nontrivial integer points.

Proof. Let $f(X)=X^{5}+a X^{3}+b X^{2}+c X$ with $b \neq 0$. From the previous theorem, the diophantine equation $f(p)+f(q)=f(r)+f(s)$ has infinitely many solutions in rational numbers. Let $\left(p_{i} / p_{i}^{\prime}, q_{i} / q_{i}^{\prime}, r_{i} / r_{i}^{\prime}, s_{i} / s_{i}^{\prime}\right)$, $i=1, \ldots, N$, be such distinct solutions, and define

$$
d=\operatorname{LCM}\left(p_{1}^{\prime}, q_{1}^{\prime}, r_{1}^{\prime}, s_{1}^{\prime}, \ldots, p_{N}^{\prime}, q_{N}^{\prime}, r_{N}^{\prime}, s_{N}^{\prime}\right)
$$

If we now define $F(X)=X^{5}+a d^{2} X^{3}+b d^{3} X^{2}+c d^{4} X$, then on the hypersurface $\mathcal{V}_{f}: F(p)+F(q)=F(r)+F(s)$ we have the points

$$
\left(d p_{i} / p_{i}^{\prime}, d q_{i} / q_{i}^{\prime}, d r_{i} / r_{i}^{\prime}, d s_{i} / s_{i}^{\prime}\right)
$$

for $i=1, \ldots, N$, which are tuples of integers.
This corollary gives a positive answer to Question 1.1. However, if N grows then the coefficients of the polynomial F grow too. Therefore, we can ask the following:

QUESTION 2.4. Let $N>1$ be given. Is it possible to construct a polynomial $f(X)=X^{5}+a X^{3}+b X^{2}+c X$ with $\sharp\left(\mathcal{V}_{f}(\mathbb{Z}) \backslash T_{f}\right) \geq N$ and at least one nonzero coefficient a, b or c independent of N ?

As we will see, the answer to this question is also positive. First, let us go back to Question 1.2 for $f(X)=X^{5}+a X^{3}+c X$. Unfortunately, we are unable to prove a theorem similar to Theorem 2.1 in this case. However, we can prove the following:

Theorem 2.5. Let $f(X)=X^{5}+a X^{3}+c X \in \mathbb{Z}[X]$. If $a<0$ and $a \not \equiv 2,18,34(\bmod 48)$ then the diophantine equation $f(p)+f(q)=f(r)+$ $f(s)$ has a two-parameter rational solution.

Proof. Set

$$
\begin{equation*}
p=\frac{-x+y+3 z}{5}, \quad q=\frac{2 x+y}{5}, \quad r=\frac{3 y}{5}, \quad s=\frac{x-y+3 z}{5} . \tag{4}
\end{equation*}
$$

Then

$$
f(p)+f(q)-f(r)-f(s)=\frac{6(x-y)(x+2 y-3 z)(x+2 y+3 z) F(x, y, z)}{625}
$$

where $F(x, y, z, a)=x^{2}+2 y^{2}+3 z^{2}+5 a$. The first three brackets in the numerator lead to trivial solutions of our equation. Thus we obtain a nontrivial solution if and only if $F(x, y, z)=0$. In particular, we must have $a<0$. For diophantine equations of degree two, the local to global principle of Hasse is true: the equation $x^{2}+2 y^{2}+3 z^{2}+5 a=0$ has a solution in rational numbers if and only if it has solutions in the field \mathbb{Q}_{p} of p-adic numbers for any given $p \in \mathbb{P} \cup\{\infty\}$, where as usual $\mathbb{Q}_{\infty}=\mathbb{R}$.

The theorem below gives the well-known criterion of the solvability of the diophantine equation $a_{1} X_{1}^{2}+a_{2} X_{2}^{2}+a_{3} X_{3}^{2}+a_{4} X_{4}^{2}=0$. This criterion is taken from [2].

Theorem 2.6. If $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=a_{1} X_{1}^{2}+a_{2} X_{2}^{2}+a_{3} X_{3}^{2}+a_{4} X_{4}^{2}$, where $a_{i} \in \mathbb{Z} \backslash\{0\}$ are square-free and no three have a factor in common, then f represents zero if and only if the following three conditions hold:
(1) Not all coefficients have the same sign.
(2) If p is an odd prime dividing two coefficients and $\left(d / p^{2} \mid p\right)=1$, then $\left(-a_{i} a_{j} \mid p\right)=1$, where $\operatorname{GCD}\left(a_{i} a_{j}, p\right)=1$ and $d=a_{1} a_{2} a_{3} a_{4}$ is the discriminant of the form f.
(3) If $d \equiv 1(\bmod 8)$ or $d / 4 \equiv 1(\bmod 8)$ then $\left(-a_{1} a_{2},-a_{2} a_{3}\right)_{2}=1$.

Here $(\alpha, \beta)_{2}$ takes two values: +1 or -1 , depending on whether the equation $\alpha x_{1}^{2}+\beta x_{2}^{2}=1$ has a solution in \mathbb{Q}_{2} or not. If $\alpha=2^{u} \alpha_{1}, \beta=2^{v} \beta_{1}$ and $\operatorname{GCD}\left(2, \alpha_{1} \beta_{1}\right)=1$, then $(\alpha, \beta)_{2}=\left(2 \mid \alpha_{1}\right)^{v}\left(2 \mid \beta_{1}\right)^{u}(-1)^{\left(\alpha_{1}-1\right)\left(\beta_{1}-1\right) / 4}$, where $(\cdot \mid \cdot)$ is the usual Legendre symbol.

In order to finish the proof of Theorem 2.5 we apply the above procedure to the quadratic form $X_{1}^{2}+2 X_{2}^{2}+3 X_{3}^{2}+5 a X_{4}^{2}$. We have to consider four cases depending on the values of $\operatorname{GCD}(a, 6)$. Because this reasoning is very simple we leave it to the reader.

Example 2.7. Let $f(X)=X^{5}-X^{3}+c X$ and consider the equation $f(p)+f(q)=f(r)+f(s)$. We will show how to use the previous theorem in practice.

Consider the equation $(*) x^{2}+2 y^{2}+3 z^{2}-5=0$. It has a rational solution $(x, y, z)=(0,1,1)$. Set $x=u T, y=v T+1, z=T+1$. Next solve the equation $(u T)^{2}+2(v T+1)^{2}+3(T+1)^{2}-5=0$ with respect to T. After some simplifications we get a parametrization of rational solutions of
equation $(*)$ in the form

$$
x=-\frac{2 u(2 v+3)}{u^{2}+2 v^{2}+3}, \quad y=\frac{u^{2}-2 v^{2}-6 v+3}{u^{2}+2 v^{2}+3}, \quad z=\frac{u^{2}+2 v^{2}-4 v-3}{u^{2}+2 v^{2}+3} .
$$

Hence we get a solution of the equation $f(p)+f(q)=f(r)+f(s)$:

$$
\begin{gathered}
p=\frac{2\left(2 u^{2}+(2 v+3) u+2 v^{2}-9 v-3\right)}{5\left(u^{2}+2 v^{2}+3\right)}, \\
q=\frac{u^{2}-4(2 v+3) u-2 v^{2}-6 v+3}{5\left(u^{2}+2 v^{2}+3\right)}, \\
r=\frac{3\left(u^{2}-2 v^{2}-6 v+3\right)}{5\left(u^{2}+2 v^{2}+3\right)}, \quad s=\frac{2\left(u^{2}-(2 v+3) u+4 v^{2}-3(v+2)\right)}{5\left(u^{2}+2 v^{2}+3\right)} .
\end{gathered}
$$

Using the method of proof of Theorem 2.5 we will show the following:
Corollary 2.8. The answer to Question 2.4 is positive.
Proof. This is a simple consequence of the fact that for any number N we can find a negative number a_{N} such that the equation $x^{2}+2 y^{2}+3 z^{2}=-5 a_{N}$ has at least N solutions in positive integers x, y, z all divisible by 5 . To prove this, we set $g_{N}=\prod_{k=1}^{N}\left(k^{2}+2\right)$ and $a_{N}=-\left(5 g_{N}\right)^{2}$. Next, we define
$x_{k}=\frac{5 g_{N}}{k^{2}+2}(2 k+3), \quad y_{k}=\frac{5 g_{N}}{k^{2}+2}\left(k^{2}+3 k-2\right), \quad z_{k}=\frac{5 g_{N}}{k^{2}+2}\left(k^{2}-2 k-1\right)$, for $k=1, \ldots, N$. Note that x_{k}, y_{k}, z_{k} are integers divisible by 5 .

Since

$$
\left(\frac{2 k+3}{k^{2}+2}\right)^{2}+2\left(\frac{k^{2}+3 k-2}{k^{2}+2}\right)^{2}+3\left(\frac{k^{2}-2 k-1}{k^{2}+2}\right)^{2}=5
$$

we see that

$$
x_{k}^{2}+2 y_{k}^{2}+3 z_{k}^{2}=-5 a_{N} \quad \text { for } k=1, \ldots, N
$$

Now define $f_{N}(x)=x^{5}+a_{N} x^{3}+c x$, where c is an integer. From our reasoning we see that on the hypersurface $\mathcal{V}_{f_{N}}$ there are at least N integer points given by

$$
p_{k}=\frac{-x_{k}+y_{k}+3 z_{k}}{5}, \quad q_{k}=\frac{2 x_{k}+y_{k}}{5}, \quad r_{k}=\frac{3 y_{k}}{5}, \quad s_{k}=\frac{x_{k}-y_{k}+3 z_{k}}{5}
$$

for $k=1, \ldots, N$ and the c is independent of N.
The results of this section suggest the following:
Conjecture 2.9. Let $f(x)=x^{5}+a x^{3}+c x$, where $a, c \in \mathbb{Z} \backslash\{0\}$. Then the set $\mathcal{V}_{f}(\mathbb{Q}) \backslash T_{f}$ is infinite.
3. Construction of $\mathbb{Q}(i)$-rational points on \mathcal{V}_{f}. In this section we will construct $\mathbb{Q}(i)$-rational points on the hypersurface \mathcal{V}_{f}.

Let us go back to the equation of the surface \mathcal{S} from the proof of Theorem 2.1 and note that the polynomial Δ has $\operatorname{deg}_{x} \Delta=2$. Now we view \mathcal{S} as a curve defined over the field $\mathbb{Q}(i)(y)$, where $i^{2}+1=0$. It is easy to see that it is a rational curve. Indeed, on \mathcal{S} there is a $\mathbb{Q}(i)(y)$ rational point $[x: v: w]=[i: 10 y: 0]$ (it is a point at infinity). Setting $x=i p, w=10 y p+u$ and solving the resulting equation for p we get the parametrization of our curve given by

$$
x=i \frac{u^{2}+75 y^{4}+60 a y^{2}+40 b y}{20 y\left(5 i y^{2}-u\right)}, \quad w=\frac{u^{2}-10 i u y^{2}-75 y^{4}-60 a y^{2}-40 b y}{2\left(u-5 i y^{2}\right)} .
$$

Hence a two-parameter solution of the equation defining \mathcal{V}_{f} is

$$
\begin{aligned}
& p=-i \frac{u^{2}+75 y^{4}+60 a y^{2}+40 b y}{20 y\left(u-5 i y^{2}\right)} \\
& q=i \frac{u^{2}-20 i y^{2} u-25 y^{4}+60 a y^{2}+40 b y}{20 y\left(u-5 i y^{2}\right)} \\
& r=\frac{u^{2}+10(1-i) y^{2} u-25(3+2 i) y^{4}-60 a y^{2}-40 b y}{20 y\left(u-5 i y^{2}\right)} \\
& s=-\frac{u^{2}-10(1+i) y^{2} u-25(3-2 i) y^{4}-60 a y^{2}-40 b y}{20 y\left(u-5 i y^{2}\right)} .
\end{aligned}
$$

We sum up the discussion concerning the existence of $\mathbb{Q}(i)$-rational points on \mathcal{V}_{f} in the following:

Theorem 3.1. Let $f(X)=X^{5}+a X^{3}+b X^{2}+c X \in \mathbb{Z}[X]$. If $a=b=0$ then there exists $a \mathbb{Q}(i)$-rational curve contained in \mathcal{V}_{f}. If $a \neq 0$ or $b \neq 0$, then there exists a $\mathbb{Q}(i)$-rational surface contained in \mathcal{V}_{f}.

Note that in the above expressions for p, q, r, s the number c does not appear explicitly, and the solution obtained is nontrivial for all $a, b, c \in \mathbb{Z}$. If we put $a=b=c=0$, then we get a parametric solution (defined over $\mathbb{Q}(i))$ of the diophantine equation $p^{5}+q^{5}=r^{5}+s^{5}$. After simplifications the solution is (in homogeneous form)

$$
\begin{aligned}
& p=u^{2}+75 v^{2} \\
& q=-u^{2}+20 i u v+25 v^{2} \\
& r=i u^{2}+10(1+i) u v+25(2-3 i) v^{2} \\
& s=-i u^{2}-10(1-i) u v+25(2+3 i) v^{2} .
\end{aligned}
$$

This solution is probably well known but we have not been able to find it in the literature. Note that this solution can be used to construct a parametric
solution (over $\mathbb{Z}[i]$) of the diophantine equation

$$
p^{5 n}+q^{5}=r^{5}+s^{5}
$$

where n is a given positive integer. Indeed, it is easy to see that the diophantine equation $u^{2}+75 v^{2}=X^{n}$ has a parametric solution given by the solution of the system
$u+\sqrt{-75} v=\left(t_{1}+\sqrt{-75} t_{2}\right)^{n}, u-\sqrt{-75} v=\left(t_{1}-\sqrt{-75} t_{2}\right)^{n}, \quad X=t_{1}^{2}+75 t_{2}^{2}$.
It is clear that the solutions u, v, X lead to a polynomial solution of the equation $p^{5 n}+q^{5}=r^{5}+s^{5}$.
4. Possible generalizations. In this section we consider natural generalizations of the equation defining the hypersurface \mathcal{V}_{f}.

The first natural generalization which comes to mind is

$$
\mathcal{V}_{F, G}: F(p)+G(q)=F(r)+G(s)
$$

where $F(x)=x^{5}+a x^{3}+b x^{2}+c x, \quad G(x)=x^{5}+d x^{3}+e x^{2}+f x$ and $F(x)-F(0) \neq G(x)-G(0)$. It is clear that in order to find rational points on $\mathcal{V}_{F, G}$ we can assume that $a, b, \ldots, e, f \in \mathbb{Z}$.

We will show that for given F, G as above the hypersurface $\mathcal{V}_{F, G}$ contains an elliptic surface defined over \mathbb{Q}. To do this, define

$$
\begin{equation*}
p=t-\frac{U}{V}, \quad q=\frac{U}{V}, \quad r=\frac{1}{V}, \quad s=t-\frac{1}{V} \tag{5}
\end{equation*}
$$

Then

$$
F(p)+G(q)-F(r)-G(s)=-\frac{t V-U-1}{V^{4}} H(U, V, t)
$$

where $H(U, V, t)=\sum_{i+j \leq 3} a_{i, j} U^{i} V^{j}$ and

$$
\begin{array}{ll}
a_{3,0}=-a_{2,0}=5 t, & a_{1,0}=-a_{0,0}=5 t \\
a_{2,1}=-a+d-5 t^{2}, & a_{1,1}=a-d \\
a_{0,1}=-a+d+5 t^{2}, & a_{1,2}=b+e+(2 a+d) t+5 t^{3} \\
a_{0,2}=-b-e-(a+2 d) t-5 t^{3}, & a_{0,3}=f-c+(e-b) t+(d-a) t^{2} \tag{6}
\end{array}
$$

Note that the surface $S_{F, G}: H(U, V, t)=0$ can be viewed as a cubic curve defined over the field $\mathbb{Q}(t)$. This curve has a $\mathbb{Q}(t)$-rational point $P=$ $(U, V)=(1,0)$. We can consider P as the point at infinity and transform $S_{F, G}$ birationally onto the elliptic surface $\mathcal{E}_{F, G}$ with the Weierstrass equation

$$
\mathcal{E}_{F, G}: Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}
$$

where $a_{i} \in \mathbb{Z}[t]$ depend on the coefficients of F, G. We do not give the polynomials a_{i} exactly as they are rather complicated. However, the computations suggest the following.

Conjecture 4.1. Let $a, b, c, d, e, f \in \mathbb{Z}$ and consider the elliptic surface

$$
\mathcal{E}: H(U, V, t)=\sum_{i+j \leq 3} a_{i, j} U^{i} V^{j}=0
$$

where the $a_{i, j}$ are given by (6). Then the set

$$
S=\left\{t \in \mathbb{Q}: \mathcal{E}_{t} \text { is an elliptic curve and has a positive rank }\right\}
$$

is nonempty.
Another generalization which comes to mind is

$$
\mathcal{V}^{f}: f(p, q)=f(r, s)
$$

where f is a symmetric $(f(x, y)=f(y, x))$ quintic polynomial, i.e.

$$
\begin{equation*}
f(x, y)=\sum_{i=1}^{5} a_{i}\left(x^{i}+y^{i}\right)+x y \sum_{i=1}^{3} b_{i}\left(x^{i}+y^{i}\right)+x^{2} y^{2}\left(c_{0}(x+y)+c_{1}\right) . \tag{7}
\end{equation*}
$$

We will show that there are in general infinitely many $\mathbb{Q}(i)$-rational points on \mathcal{V}^{f}. Indeed, the substitution (5) yields

$$
f(p, q)-f(r, s)=-\frac{(U-1)(t V-U-1)}{V^{4}} G(U, V)
$$

where $G(U, V)=\sum_{i+j \leq 2} b_{i, j} U^{i} V^{j}, b_{i, j} \in \mathbb{Z}[t]$ and

$$
\begin{array}{ll}
b_{2,0}=2 a_{4}-2 b_{2}+c_{1}+t\left(5 a_{5}-3 b_{3}+c_{0}\right), & b_{1,0}=0, b_{0,0}=b_{2,0} \\
b_{0,2}=2 a_{2}+t\left(3 a_{3}-b_{1}\right)+t^{2}\left(4 a_{4}-b_{2}\right)+t^{3}\left(5 a_{5}-b_{3}\right), & b_{0,1}=b_{1,1}=-t b_{2,0}
\end{array}
$$

In order to construct $\mathbb{Q}(i)(t)$-rational points on \mathcal{V}^{f} we must consider the quadratic $C: G(U, V)=0$ defined over the field $\mathbb{Q}(t)$. Note that $G(i, 0)=0$, so we can use standard methods to parametrize $\mathbb{Q}(i)(t)$-rational points on C and in general we get a two-parameter solution of the equation $G(U, V)=0$. This implies the existence of a two-parameter solution defined over the field $\mathbb{Q}(i)$ of the equation defining the hypersurface \mathcal{V}^{f}.

It is clear that this method does not always work. Indeed, if $b_{2,0} \equiv 0 \in$ $\mathbb{Z}[t]$ then the equation $G(U, V)=0$ reduces to the equation $b_{0,2}(t)=0$ which has at most three solutions in $\mathbb{Q}(i)$. However, if $b_{2,0}(t) \neq 0$ for some t, then the curve C is nontrivial and we can apply our method to construct $\mathbb{Q}(i)$-rational points on \mathcal{V}^{f}. This suggests the following

Question 4.2. Consider the hypersurface $\mathcal{V}_{f}: f(p, q)=f(r, s)$ where f is of the form (7). Suppose that $2 a_{4}-2 b_{2}+c_{1}=5 a_{5}-3 b_{3}+c_{0}=0$. Is it possible to construct $\mathbb{Q}(i)$-rational points on \mathcal{V}^{f} ?

Remark 4.3. Although it is possible, we do not give equations defining the parametrization of the curve C in the case when $b_{2,0} \in \mathbb{Z}[t] \backslash\{0\}$. Also note that it is very likely that for a specific choice of a_{i}, b_{j}, c_{k} there is a rational number t_{0} such that the quadric $C_{t_{0}}: G(U, V)=0$ (here we
specialize the curve C which is defined over $\mathbb{Q}(t)$ at $t=t_{0}$) has a rational point. Then we can use a standard method of parametrization of quadrics to get rational solutions of the equation defining the hypersurface \mathcal{V}^{f}.

References

[1] T. D. Browning, Equal sums of like polynomials, Bull. London Math. Soc. 37 (2005), 801-808.
[2] B. Jones, Arithmetic Theory of Quadratic Forms, Math. Assoc. Amer., Baltimore, 1950.
[3] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
[4] R. F. Whitehead, A rational parametric solution of the indeterminate cubic equation $z^{2}=f(x, y)$, J. London Math. Soc. 40 (1944), 68-71.

Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: maciej.ulas@im.uj.edu.pl
maciej.ulas@gmail.com

Received on 2.10.2008
and in revised form on 11.12.2008

[^0]: 2000 Mathematics Subject Classification: 11D41, 11D72, 11G35.
 Key words and phrases: quintic hypersurfaces, rational points, diophantine equations.

