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1. Introduction and the statement of main results. The value-
distribution of the Riemann zeta function ζ(s) and Dirichlet L-functions
L(s, χ) were investigated by numerous mathematicians (see for example [7]).
In 1975, S. M. Voronin showed the universality theorem. To state it, we need
some notation. Let meas{A} denote the Lebesgue measure of the set A, and,
for T > 0, write νT {. . .} := T−1meas{τ ∈ [0, T ] : . . .} where the dots stand
for a condition satisfied by τ . Let D := {s ∈ C : 1/2 < <(s) < 1}, and K and
K1, . . . ,Km be compact subsets of the strip D with connected complements.

The modern version of Voronin’s theorem is as follows.

Theorem A (see [4, Theorem 6.5.2]). Let f(s) be a non-vanishing con-
tinuous function on K which is analytic in the interior of K. Then for every
ε > 0, we have

lim inf
T→∞

νT {sup
s∈K
|ζ(s+ iτ)− f(s)| < ε} > 0.

Roughly speaking, this theorem implies that any non-vanishing analytic
function can be uniformly approximated by the Riemann zeta function. As
a generalization of Theorem A, Voronin also proved the joint universal-
ity theorem, which implies that a collection of Dirichlet L-functions with
non-equivalent characters uniformly and simultaneously approximates non-
vanishing analytic functions. In a slightly different form this was also es-
tablished by Gonek and Bagchi, independently (both of these papers are
unpublished doctoral theses). The strongest version of the joint universality
for Dirichlet L-functions states:

Theorem B (see [7, Theorem 1.10]). Let χ1 mod q1, . . . , χm mod qm be
pairwise non-equivalent Dirichlet characters, and fl(s) be a non-vanishing
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continuous function on Kl which is analytic in the interior of Kl for 1 ≤
l ≤ m. Then for every ε > 0, we have

lim inf
T→∞

νT { sup
1≤l≤m

sup
s∈Kl

|L(s+ iτ, χl)− fl(s)| < ε} > 0.

Many mathematicians have considered generalizations of the universal-
ity (see for example [7]). On the other hand, B. Bagchi proved that the
(generalized) Riemann hypothesis is true if and only if the Riemann zeta
function (resp. Dirichlet L-functions) can be approximated by itself (resp.
by Dirichlet L-functions) in the sense of universality.

Theorem C (see [1, Theorem 3.7]). The (generalized) Riemann hypoth-
esis is true if and only if , for any K and ε > 0,

lim inf
T→∞

νT {sup
s∈K
|L(s+ iτ, χ)− L(s, χ)| < ε} > 0.

This property is called strong recurrence (see also [7, Theorem 8.3]).
Another property similar to strong recurrence follows from Kaczorowski,
Laurinčikas and Steuding [3] (see also [7, Section 10.6]).

Theorem D (see [3, Theorem 4]). Let K be a compact subset of D with
connected complement and let λ ∈ R be such that K and K+ iλ := {s+ iλ :
s ∈ K} are disjoint. Then

lim inf
T→∞

νT {sup
s∈K
|L(s+ iλ+ iτ, χ)− L(s+ iτ, χ)| < ε} > 0.

In this paper, we will show the following joint universality theorem.

Theorem 1.1. Let 1 = d1, d2, . . . , dm be algebraic real numbers linearly
independent over Q, and d ∈ R \ {0}. Suppose fl(s) is a non-vanishing
continuous function on Kl which is analytic in the interior of Kl for each
1 ≤ l ≤ m. Then for every ε > 0, we have

(1.1) lim inf
T→∞

νT { sup
1≤l≤m

sup
s∈Kl

|L(s+ iddlτ, χ)− fl(s)| < ε} > 0.

The assumption on 1 = d1, d2, . . . , dm in Theorem 1.1 is essential (see
the proof of Theorem 1.1 and Remark 2.6).

By putting K := Kj = Kk and 1 ≡ fj(s) ≡ fk(s) in Theorem 1.1, and
using the triangle inequality

|L(s+iddjτ, χ)−L(s+iddkτ, χ)| ≤ |L(s+iddjτ, χ)−1|+|L(s+iddkτ, χ)−1|,
we also obtain the following corollary, generalized strong recurrence.

Corollary 1.2. Let d1, . . . , dm and d be as in Theorem 1.1. Then for
any K and ε > 0, we have

(1.2) lim inf
T→∞

νT {sup
s∈K
|L(s+ iddjτ, χ)− L(s+ iddkτ, χ)| < ε} > 0.
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We will also show the next theorem and corollary, a kind of generalization
of Theorem 1.1 and Corollary 1.2, respectively.

Theorem 1.3. Let δ1 = 1, f1(s), f2(s) and K1,K2 be as in Theorem
1.1. Then for almost all δ2 ∈ R and every ε > 0, we have

(1.3) lim inf
T→∞

νT { sup
1≤l≤2

sup
s∈Kl

|L(s+ iδlτ, χ)− fl(s)| < ε} > 0.

Corollary 1.4. For almost all δ2 ∈ R and for any K and ε > 0,

(1.4) lim inf
T→∞

νT {sup
s∈K
|L(s+ iτ, χ)− L(s+ iδ2τ, χ)| < ε} > 0.

If we could take δ2 = 0 in (1.4), we could obtain strong recurrence, which
is equivalent to the (generalized) Riemann hypothesis (see Theorem C).

2. Proof of main theorems. Firstly, we quote Baker’s theorem.

Lemma 2.1 (see [2, Theorem 2.4]). The numbers αβ1
1 · · ·α

βn
n are tran-

scendental for any algebraic numbers α1, . . . , αn other than 0 or 1, and any
algebraic numbers β1, . . . , βn with 1, β1, . . . , βn linearly independent over the
rationals.

Proposition 2.2. Let pn be the nth prime number and 1=d1, d2, . . . , dm
be algebraic real numbers which are linearly independent over Q. Then
{log pdl

n }
1≤l≤m
n∈N is linearly independent over Q.

Proof. Suppose the contrary,
r∑

n=1

c1n log pn +
r∑

n=1

c2n log pd2n + · · ·+
r∑

n=1

cmn log pdm
n = 0, cln ∈ Q.

By the above formula, we have

(2.1) pc111 · · · p
c1r
r = (pc211 · · · p

c2r
r )−d2 · · · (pcm1

1 · · · pcmr
r )−dm .

The left-hand side of (2.1) is an algebraic number. But the right-hand side
of (2.1) is transcendental when (c21, . . . , c2r, . . . , cm1, . . . , cmr) 6= (0, . . . , 0)
by Lemma 2.1 and the unique factorization of prime numbers. If ck1 = · · · =
ckr = 0, for some of 2 ≤ k ≤ m, we can apply a lower-dimensional case
of Baker’s theorem. When (c21, . . . , c2r, . . . , cm1, . . . , cmr) = (0, . . . , 0), we
obtain c11 = · · · = c1n = 0 by the unique factorization of prime numbers.

In order to prove some limit theorem for the Riemann zeta function and
Dirichlet L-functions, we will modify some definitions and theorems of [4,
Section 5] and [7, Section 4]. Let B(S) stand for the class of Borel sets of the
space S. Denote by H(D) the space of functions analytic on D, equipped
with the topology of uniform convergence on compacta, and Hm(D) :=
H(D)×· · ·×H(D). Define on (Hm(D),B(Hm(D))) the probability measure

PT (A) := ντT {(L(s+ id1τ, χ), . . . , L(s+ idmτ, χ)) ∈ A}, A ∈ B(Hm(D)).
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What we need is a limit theorem in the sense of weak convergence of
probability measures for PT as T → ∞, with an explicit form of the limit
measure. Denote by γ the unit circle on C, and let Ω :=

∏
p γ(p), where

γ(p) = γ for all prime numbers. With the product topology and pointwise
multiplication, the infinite-dimensional torus Ω is a compact topological
Abelian group.

Denoting by mH the probability Haar measure on (Ωm,B(Ωm)), where
Ωm := Ω × · · · × Ω, we obtain a probability space (Ωm,B(Ωm),mH). Let
ωl(p) be the projection of ωl ∈ Ω to the coordinate space γ(p), and define on
the probability space (Ωm,B(Ωm),mH) the Hm(D)-valued random element
L(s, χ, ω) := (L(s, χ, ω1), . . . , L(s, χ, ωm)), where

(2.2) L(s, χ, ωl) :=
∏
p

(
1− χ(p)ωl(p)

ps

)−1

, s ∈ D, 1 ≤ l ≤ m.

Let PL stand for the distribution of the random element L(s, χ, ω), i.e.

PL(A) := mH(ω ∈ Ωm : L(s, χ, ω) ∈ A), A ∈ B(Hm(D)).

Proposition 2.3. The probability measure PT converges weakly to PL
as T →∞.

Proof. The key for the proof of [5, Theorem 1] and [6, Theorem 1] is
the linear independence over Q of {log(n + αl)}1≤l≤mn∈N0

resp. {log pn}n∈N ∪
{log(n + α)}n∈N0 , where N0 := N ∪ {0}, α ∈ R \ Q, and α1, . . . , αm are
algebraically independent over Q. In our case, {log pdl

n }
1≤l≤m
n∈N is linearly in-

dependent over Q by Proposition 2.2. Firstly, we have to show that the
probability measure

QT (A) := νT
{

(pid1τn , . . . , pidmτ
n ) ∈ A

}
, A ∈ B(Ωm),

converges weakly to the Haar measure mH on (Ωm,B(Ωm)) as T →∞. We
can show this by modifying the proof of [5, Lemma 4] or [6, Lemma 3] and
using Proposition 2.2 (see also [4, Theorem 1.3.19] or [7, Lemma 4.4]). In
addition, we can show that the one-parameter group {Φτ : τ ∈ R}, where

Φτ (ω) := (pid1τn ω1(pn), . . . , pidmτ
n ωm(pn)),

is ergodic, by modifying the proof of [5, Lemma 9] or [6, Lemma 7] and using
Proposition 2.2 (see also [4, Theorem 5.3.6] or [7, Lemma 4.7]). Hence we
obtain the desired assertion by modifying the proof of [5, Theorem 1] or [6,
Theorem 1].

The next lemmas have been obtained only in the case m = 1 (see for
example [4, Section 6] or [7, Section 5]).
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Lemma 2.4. Let {xn} be a sequence in Cm satisfying
∑∞

n=1 |xn|2 < ∞.
Then there exists a sequence {b′n} with b′n ∈ {±1, . . . ,±1} such that the
series

∑∞
n=1(b1nx1n, . . . , bmnxmn) converges.

Proof. The casem = 1 coincides with [4, Lemma 6.5.3] or [7, Lemma 5.5].
Now use this case for each component of

∑∞
n=1(b1nx1n, . . . , bmnxmn).

Lemma 2.5. Let {fn} be a sequence in Hm(D) which satisfies:

(a) If µl are complex measures on (C,B(C)) with compact support con-
tained in D such that

∑∞
n=1 |

	
C fln dµl| < ∞, then

	
C s

r dµl(s) = 0
for all 1 ≤ l ≤ m and r ∈ N0.

(b) The series
∑∞

n=1 fn converges in Hm(D).
(c) For any compact set Kl ⊂ D,

∑∞
n=1 sup1≤l≤m sups∈Kl

|fln(s)|2 <∞.

Then the set of all convergent series
∑∞

n=1(a1nf1n, . . . , amnfmn) with |aln|
= 1 is dense in Hm(D).

Proof. For m = 1, the assertion has been proved in [4, Theorem 6.3.10]
or [7, Theorem 5.7]. Now apply this case to each component of

∞∑
n=1

(a1nf1n, . . . , amnfmn).

Proof of Theorem 1.1. In view of the standard proof of universality (see
[4, Section 6] or [7, Section 5]), we only have to check the three assumptions
of Lemma 2.5. Assumption (a) holds by [4, Theorem 6.4.14] (see the proof
of [4, Lemma 6.5.4] or [7, Theorem 5.10]). Lemma 2.4 yields (b), and (c) is
obvious because 1/2 < <(s) < 1.

Therefore we obtain the assertion for d = 1 by modifying the proof of
[4, Theorem 6.5.2] or [7, Theorem 5.14], which are one-dimensional univer-
sality theorems. For the multi-dimensional case, we refer to the proof of [6,
Theorem 2], which is the two-dimensional universality theorem.

Finally, by changing the parameter τ 7→ dτ , we obtain Theorem 1.1.

Remark 2.6. We have examples for which (1.1) is not true when d1, d2

are linearly dependent over Q. For instance, the case d2 = −1 is proved as
follows. Let K1 = K2 be a one-point set on the real axis in D. In this case,
any τ satisfying |L(σ + iτ, χ) + i| < ε must satisfy |L(σ − iτ, χ)− i| < ε for
any real Dirichlet character.

It should be noted that 1, dd1, dd2 are not always linearly independent
over Q when 1, d1, d2 are linearly independent over Q. For instance 1, d

√
2

and d
√

3 are linearly dependent over Q when d−1 =
√

2 +
√

3.

Next, we will show Theorem 1.3.

Lemma 2.7. For almost all δ2 ∈ R, {log pn} ∪ {log pδ2n } is linearly inde-
pendent over Q.
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Proof. Suppose the contrary. In view of proof of Proposition 2.2, we have

(2.3) pc111 · · · p
c1r
r = (pc211 · · · p

c2r
r )−δ2 .

The left-hand side of (2.3) is an algebraic number. But the right-hand side
of (2.3) is transcendental when (c21, . . . , c2r) 6= (0, . . . , 0) for almost all δ2 ∈
R by the unique factorization of prime numbers and the fact that almost
all real numbers are transcendental. Hence the right-hand side of (2.3) is
transcendental except for a null set of δ2 ∈ R. The set of algebraic numbers
is countable, and a countable union of null sets is also a null set. Thus for all
0 < q ∈ Q \ {1} and for almost all δ2 ∈ R, qδ2 is transcendental. Therefore
we obtain the conclusion by modifying the proof of Proposition 2.2.

Proof of Theorem 1.3 and Corollary 1.4. By using Lemma 2.7 instead
of Proposition 2.2, and modifying the proof of Theorem 1.1, we obtain The-
orem 1.3. We also obtain Corollary 1.4 by using the method of proof of
Corollary 1.2.

Remark 2.8. Theorems 1.1 and 1.3 can be generalized to the Dirichlet
series belonging to the class S̃ introduced in [7] (see [7, Section 2.2 and Nota-
tion]). Roughly speaking, S̃ is the class of Dirichlet series satisfying the Ra-
manujan hypothesis and a condition similar to the prime number theorem,
continued analytically, of finite order, and having polynomial Euler product.
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