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1. Introduction. In studying Waring’s problem and other additive
questions involving kth powers, a fundamental role is played by estimates
for the exponential sum

f(α) = fk(α;P ) =
∑

1≤x≤P
e(αkxk + · · ·+ α1x),

where we have written e(y) = e2πiy. When αk lies in a suitable set of minor
arcs, methods based on Weyl differencing and Vinogradov’s mean value
theorem yield non-trivial upper bounds for |f(α)|. In Vinogradov’s method,
which is more effective for larger k, one obtains minor-arc estimates for
|f(α)| from bounds for the mean values

Js,k(P ) =
�

[0,1]k

|f(α)|2s dα.

When s is an integer, one sees by orthogonality that Js,k(P ) is the number
of solutions of the system of equations

(1.1) xi1 + · · ·+ xis = yi1 + · · ·+ yis (1 ≤ i ≤ k)

with xj , yj ∈ [1, P ]∩Z. By using a p-adic iteration method, one may obtain
estimates of the shape

(1.2) Js,k(P )� P 2s−k(k+1)/2+η(s,k)+ε,

where the sharpest values for η(s, k) are due to the repeated efficient differ-
encing technology of Wooley [9]. We observe that the mean value Js,k(P ) is
well-defined for non-integral s as well. Although it then lacks an interpreta-
tion as the number of solutions of (1.1), estimates of the shape (1.2) follow
by interpolation via Hölder’s inequality.
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When αk has a rational approximation with relatively large denominator,
arguments of Bombieri [2] and Korobov [5] produce estimates of the shape
|f(α)| � P 1−σ(k)+ε, where σ(k) is determined by the available mean value
estimates. This technique, when combined with the results of Wooley [11] on
smaller moduli, yields the sharpest currently available Weyl exponents for
k ≥ 14. The main purpose of this note is to provide an alternative method
for obtaining the results for larger moduli. In contrast to the arguments of
Bombieri and Korobov, our derivation makes use of a standard Weyl shift
and the large sieve in a manner familiar to additive number theorists. In
the process, we make an additional observation that yields modest improve-
ments in the existing Weyl exponents. In the standard arguments (see for
example [1, Chapter 4] and [7, Chapter 5]) the Weyl shift initially makes use
of a rather arbitrary set of integers within the set [1, P ], which is later spe-
cialized in order to achieve the spacing condition required for an application
of the large sieve. In our argument, we retain the arbitrary nature of the
set and simply split the relevant sum into a bounded number of sub-sums,
each having the desired property. Moreover, because of an interchange in
the order of summation, we obtain an effect similar to that of Wooley [11,
Lemma 4], in that the main mean values relevant to our argument involve
variables restricted to this set. Thus we can potentially gain an advantage
by using a convenient set of integers. The same principle may be applied to
the arguments of [1] and [7] by interchanging the roles of the variables. We
first state a result essentially equivalent to Theorem 8 of Bombieri [2].

Theorem 1.1. Let A ⊆ [1, P ] ∩ Z with |A| = Q, and write Js,k(A) for
the number of solutions of (1.1) with xj , yj ∈ A. If |qαk − a| ≤ q−1 with
(q, a) = 1 and r, s, and t are positive integers with t ≤ k − 1, then one has

|f(α)|2rs � Q−2s(log 2P )2rsH(q, P )P 2rs−r+k(k−1)/2Jr/2,t(2P )Js,k−1(A),

where

H(q, P ) =
k−1∏
j=k−t

(1 + qP−j)(1 + P k−jq−1).

We now describe an interesting special case of the theorem. Let

A(P,R) = {n ∈ [1, P ] ∩ Z : p |n, p prime⇒ p ≤ R}
denote the set of R-smooth numbers up to P , and let Us,k(P,R) denote the
number of solutions of the system (1.1) with xj , yj ∈ A(P,R). When R is a
sufficiently small power of P , the technology of Wooley [13] yields estimates
of the shape

(1.3) Us,k(P,R)� P 2s−k(k+1)/2+∆(s,k)+ε,

where ∆(s, k) behaves essentially like η(s, k) for large k but may in fact be
somewhat smaller for specific moderately-sized values of k. We sometimes
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refer to exponents η(s, k) and ∆(s, k) satisfying (1.2) and (1.3) as admissible.
The advantages of using smooth numbers would be much more significant if
we were dealing with an incomplete system, but we can nevertheless expect
some modest improvements.

Corollary 1.2. Suppose that |qαk − a| ≤ q−1, where P r ≤ q ≤ P k−r

and (q, a) = 1. Whenever 1 ≤ r ≤ k/2 and ∆(s, k − 1) is an admissible
exponent for (1.3), one has |f(α)| � P 1−µ(k)+ε, where

µ(k) =
r −∆(s, k − 1)

2rs
.

One may now optimize over r in conjunction with Lemma 4 of Wooley
[11] to obtain new Weyl exponents. We give a description of these compu-
tations in §4.

2. Preliminaries. We begin by recalling a standard Weyl shift (see
equation (5.23) of Vaughan [7]).

Lemma 2.1. Let A ⊆ [1, P ] ∩ Z with |A| = Q. Then

|f(α)| � Q−1 log 2P sup
β∈[0,1]

∑
y∈A
|g(α;β, y)|,

where

g(α;β, y) =
2P∑
x=1

e
( k∑
i=1

αi(x− y)i + βx
)
.

We also need the following multi-dimensional version of the large sieve
(see Vaughan [7, Lemma 5.3]).

Lemma 2.2. Suppose that Γ ⊆ Rl and that the sets

R(γ) = {β : ‖βj − γj‖ < δj : 0 ≤ βj < 1}
with γ ∈ Γ are pairwise disjoint. Let M denote the set of integer l-tuples
m with 1 ≤ mj ≤Mj , and write

S(β) =
∑

m∈M
a(m)e(β ·m).

Then ∑
γ∈Γ
|S(γ)|2 �

∑
m∈M

|a(m)|2
l∏

j=1

(Mj + δ−1
j ).

Finally, we recall a result on the number of solutions of a diophantine
inequality (see Bombieri [2, Lemma 3]).

Lemma 2.3. If α is a real number with |qα− a| ≤ q−1 for some integers
a and q with (q, a) = 1 and m is a positive integer , then the number of
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solutions of the inequality

‖mαx+ β‖ ≤ 1/Y

with |x| ≤ X and x ∈ Z does not exceed (1 + 4q/Y )(1 + 4mX/q).

3. The alternative proof. In this section we obtain the Weyl-type
estimates advertised in Theorem 1.1. Suppose that |qαk − a| ≤ q−1, where
(q, a) = 1, let A be a set of integers in [1, P ] with |A| = Q, and let r, s,
and t be positive integers with t ≤ k − 1. Then by Lemma 2.1 and Hölder’s
inequality we have

|f(α)|r � Q−1Lr
∑
y∈A

∣∣∣ 2P∑
x=1

e
( k∑
i=1

αi(x− y)i + βx
)∣∣∣r

for some β ∈ [0, 1], where we have written L = log 2P . Hence there exist
complex numbers ζy with |ζy| = 1 such that

|f(α)|r � Q−1Lr
∑
y∈A

ζy
∑

x∈[1,2P ]r

e
( k∑
i=1

αiSi(x, y) + β(x1 + · · ·+ xr)
)
,

where we have written

Si(x, y) = (x1 − y)i + · · ·+ (xr − y)i.

Now by interchanging the order of summation and using Hölder’s inequality
again we obtain

|f(α)|2rs � Q−2sL2rsP r(2s−1)
∑

x∈[1,2P ]r

∣∣∣∑
y∈A

ζy e
( k∑
i=1

αiSi(x, y)
)∣∣∣2s.

We next observe that
k∑
i=1

αi(x− y)i = (−1)kαkyk +
k−1∑
j=1

Aj(x)yj +
k∑
i=1

αix
i,

where

Aj(x) = (−1)j
k∑
i=j

(
i

j

)
αix

i−j .

We therefore deduce that

|f(α)|2rs � Υ
∑

x∈[1,2P ]r

∣∣∣∑
y∈A

ζye
(

(−1)krαkyk +
k−1∑
j=1

Bj(x)yj
)∣∣∣2s,
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where Υ = Q−2sL2rsP r(2s−1) and

Bj(x) = (−1)j
k∑
i=j

(
i

j

)
αi(x

i−j
1 + · · ·+ xi−jr ).

Let b(n) denote the number of solutions of the system

xl1 + · · ·+ xlr = nl (1 ≤ l ≤ t)

with x ∈ [1, 2P ]r, and write

γj(n) = (−1)j
k∑
i=j

(
i

j

)
αini−j .

Further, let c(m) denote the number of solutions of the system

yj1 + · · ·+ yjs = mj (1 ≤ j ≤ k − 1)

with y ∈ As, and let c̃(m) denote the corresponding weighted count, where
each solution is counted with weight

wy = ζy1 · · · ζyse((−1)krαk(yk1 + · · ·+ yks )).

We then have

|f(α)|2rs � Υ
∑
n,x

∣∣∣∑
m,y

wye
( k−1∑
j=k−t

γj(n)mj +
k−t−1∑
j=1

Bj(x)mj

)∣∣∣2,
where the summations are over x counted by b(n) and y counted by c(m).
Write

M1 =
k−t−1∑
j=1

j =
(
k − t

2

)
and M2 =

k−1∑
j=k−t

j =
(
k

2

)
−
(
k − t

2

)
,

and view m = (m1,m2) as an element of Zk−t−1 × Zt. Using Cauchy’s
inequality to isolate the contribution from the indices j with k−t ≤ j ≤ k−1,
we obtain

(3.1) |f(α)|2rs � Υ
∑
n

b(n)PM1
∑
m1

∣∣∣∑
m2

c̃(m)e
( k−1∑
j=k−t

γj(n)mj

)∣∣∣2.
Now for each j with k− t ≤ j ≤ k−1 we have γj(n) = djαknk−j +$j(n) for
some integer dj , where $j(n) depends only on nk−j−1, . . . , n1 and α. Hence
we may successively apply Lemma 2.3, starting with j = k − 1, to deduce
that the system of diophantine inequalities

‖γj(n)− γj(n′)‖ < P−j (k − t ≤ j ≤ k − 1)
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has at most

H = H(q, P )�
k−1∏
j=k−t

(1 + qP−j)(1 + P k−jq−1)

solutions n for every fixed n′. We may therefore split the sum over n into
H sub-sums over sets N1, . . . ,NH with the property that for each i the sets{

β ∈ [0, 1)t : ‖γj(n)− βj‖ < 1
2P
−j : 0 ≤ βj < 1

}
corresponding to distinct n ∈ Ni are pairwise disjoint. It therefore follows
from Lemma 2.2 that for each m1 and each i one has

(3.2)
∑
n∈Ni

∣∣∣∑
m2

c̃(m)e
( k−1∑
j=k−t

γj(n)mj

)∣∣∣2 �∑
m2

|c̃(m)|2
k−1∏
j=k−t

P j .

Notice that

b(n) =
�

[0,1]t

g(α)re(−α · n) dα ≤
�

[0,1]t

|g(α)|r dα = Jr/2,t(2P )

for all n, where g(α) = ft(α; 2P ). On inserting (3.2) into (3.1), we therefore
obtain

|f(α)|2rs � Q−2sL2rsH(q, P )P r(2s−1)+M1+M2Jr/2,t(2P )
∑
m

|c̃(m)|2.

Moreover, one has |c̃(m)| ≤ c(m) and∑
m

c(m)2 = Js,k−1(A),

so on noting that M1 +M2 = 1
2k(k − 1) we find that

|f(α)|2rs � Q−2sL2rsH(q, P )P 2sr−r+k(k−1)/2Jr/2,t(2P )Js,k−1(A),

and this completes the proof of Theorem 1.1.

In order to deduce Corollary 1.2, we take t = r and A = A(P,R) with
R a small power of P , so that Q � P . By applying the argument of the
proof of Vaughan [7, Lemma 5.1], one sees that Jr/2,r(2P ) ≤ r!. Moreover,
the hypothesis that P r ≤ q ≤ P k−r with r ≤ k/2 shows that H(q, P ) � 1.
The corollary now follows immediately on substituting the estimate

Js,k−1(A) = Us,k−1(P,R)� P 2s−k(k−1)/2+∆(s,k−1)+ε.

One could also reverse the roles of the variables in the Weyl shift (see
Wooley [11, Lemma 2]) and then attempt to take r > t and inject smooth
number technology into the analogue of b(n), but this seems to produce
inferior results.
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4. An application. As mentioned in the introduction, the flexibility
arising from the set A in Theorem 1.1 permits modest improvements on the
Weyl exponents calculated by Ford [3]. Our aim in this section is to briefly
describe the ingredients involved in using Corollary 1.2 to carry out such
computations. As a starting point for our mean value estimates, we recall
that Js,k(P ) and Us,k(P,R) exhibit diagonal behavior for s ≤ k+1 (see Hua
[4, Lemma 5.4]). Hence the exponents η(s, k) = ∆(s, k) = 1

2k(k+ 1)− s are
admissible when s ≤ k+1. We obtain further admissible exponents for (1.3)
using the iterative method of Wooley [13].

Lemma 4.1. Suppose that ∆s = ∆(s, k) is an admissible exponent for
(1.3). Given j with 1 ≤ j ≤ k, define φj = 1/k and for J = j, . . . , 2, set

φ∗J−1 =
1
2k

+
(

1
2

+
J(J − 1)− 2∆s

4k(k − J + 1)

)
φJ

and φJ−1 = min{1/k, φ∗J−1}. Then the exponent

∆s+k = ∆s(1− φ1) + k(kφ1 − 1)

is also admissible.

Proof. This is a special case of [13, Lemma 6.1]. Here one has

t = k, ki = k − i+ 1, r̃J = k − J + 1, and ΩJ = 1
2J(J + 1)

in the notation of that lemma.

Note that the parameter φ1 depends on the number of differences j (in
addition to s), so for each s we minimize over 1 ≤ j ≤ k to obtain the
optimal value. As mentioned in [10], the methods of [13] also permit one to
establish quasi-diagonal behavior for the system (1.1) restricted to smooth
numbers. The fundamental relationship is embodied in the following lemma.

Lemma 4.2. Let l = bk/2c, and suppose that r and t are natural numbers
satisfying 3 ≤ r ≤ k, 1 ≤ t < 2l, and r + t ≥ k. If v = s(1 − t/2l)−1 and
0 < θ ≤ 1/r then one has

Us+t,k(P,R)� P (2s+ω(r,t,k))θ(P tUs,k(Q,R) + P (t/2)(2−rθ)(Uv,k(Q,R))s/v),

where Q = P 1−θ and

ω(r, t, k) = 1
2(r + t− k − 1)(r + t− k).

Proof. This follows by applying the arguments of [13, Lemmas 4.1 and 4.2],
within the argument of [10, Lemma 4.2], after adjusting the application of
Hölder’s inequality in the latter proof to accommodate a fractional mo-
ment.

If one has estimates of the shape Us,k(Q,R) � Qλs+ε, then the two
terms in Lemma 4.2 are equal when
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θ =
2(sλv − vλs)

2sλv + rtv − 2vλs
.

We take this value for θ whenever it does not exceed 1/r and take θ = 1/r
otherwise. As in the computations of Ford [3], we apply Lemmas 4.1 and 4.2
iteratively to obtain the best results. We may then apply the argument of
Wooley [11, Theorem 2], using Corollary 1.2 in place of [11, Lemma 3], and
optimize over 1 ≤ r ≤ k/2 to obtain new Weyl exponents. For larger k,
our improvements are not significant, as the advantage of restricting to
smooth numbers is not overwhelming when already considering the com-
plete Vinogradov-type system.

After obtaining some preliminary admissible exponents, one can apply
the method of Baker [1, Chapter 4], to generate Weyl-type estimates on
a set of minor arcs in [0, 1]k. By employing a suitable Hardy–Littlewood
dissection, these estimates can be used in conjunction with the preliminary
Vinogradov exponents and standard major arc information to show that
η(s, k) = 0 and ∆(s, k) = 0 are admissible whenever s is sufficiently large in
terms of k. Improved admissible exponents can then be calculated by further
iterating the above lemmas.

Lemma 4.3. Suppose that ∆(s, k − 1) is admissible for (1.3), and let

τ(k) = max
(k−1)|s

1− 2∆(s, k − 1)
4s

.

If |f(α)| ≥ P 1−β(k), where β(k) < max{21−k, τ(k)}, then there exist integers
q, a1, . . . , ak with (q, a1, . . . , ak) = 1 such that

(4.1) q ≤ P 1/k and |qαj − ai| ≤ P 1/k−j (1 ≤ j ≤ k).

Proof. This follows from Theorem 5.1 and the proof of Theorems 4.3
and 4.4 in Baker [1] upon reversing the roles of the variables in the Weyl
shift.

Let M denote the subset of [0, 1]k for which there exist q and a with
(q, a1, . . . , ak) = 1 satisfying (4.1). Then a standard major arc analysis along
the lines of Vaughan [7, Chapter 7] (see also [8, Lemma 9.2], and [6, Lem-
mas 3.2 and 3.3]) establishes the following.

Lemma 4.4. Whenever s ≥ 1
2k(k + 1), one has�

M

|f(α)|2s dα� P 2s−k(k+1)/2+ε,

and whenever s > 1
2k(k + 1), one has

(4.2)
�

M

|f(α)|2s dα = c(s, k)P 2s−k(k+1)/2(1 +O(P−δ(k)))

for some real numbers c(s, k) and δ(k) > 0.
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Here the number c(s, k) is the product of the expected singular integral
and singular series, and its positivity actually follows directly from (4.2) in
view of the elementary lower bound Js,k(P ) � P 2s−k(k+1)/2, provided that
s is large enough to show that the contribution from the minor arcs has
smaller order of magnitude.

After infusing smooth mean values into Lemma 4 of Wooley [11], we are
finally able to describe some small improvements on existing Weyl exponents
for k ≥ 11.

Theorem 4.5. Suppose that there are coprime integers a and q with
P ≤ q ≤ P k−1 such that |qαk − a| ≤ q−1. Then |f(α)| � P 1−σ(k)+ε, where
σ(k) ≥ 1/ρ1(k) and ρ1(k) is given in Table 4.1.

Table 4.1. Weyl exponents and the asymptotic

formulas

k ρ1(k) H1(k) ρ2(k) H2(k)

11 743.409 706 1489.646 504

12 999.270 873 2027.215 661

13 1223.475 1049 2642.870 803

14 1420.574 1231 3232.507 955

15 1632.247 1431 3834.340 1120

16 1856.535 1645 4501.372 1299

17 2114.819 1879 5209.886 1492

18 2436.255 2134 5988.000 1699

19 2779.680 2410 6815.154 1922

20 3150.605 2701 7705.730 2158

When r = 1, Corollary 1.2 suffices to cover a complete set of minor arcs,
and the resulting estimate turns out to be optimal when 11 ≤ k ≤ 13. As in
the work of Ford [3], r = 2 is optimal for 14 ≤ k ≤ 20. Further computations
reveal that r = 2 continues to be optimal up to k = 24, while r = 3 becomes
optimal starting at k = 25. Combining these values with Lemma 5.4 of Ford
[3], we obtain the upper bounds G̃(k) ≤ H1(k) for the values of H1 recorded
in Table 4.1.

Admissible values for the β(k) arising in Lemma 4.3 satisfy β(k) ≥
1/ρ2(k) for the values of ρ2 recorded in Table 4.1. These may then be used
in conjunction with the Vinogradov exponents and Lemma 4.4 to produce
asymptotic formulas for Js,k(P ) as in the argument of Wooley [12, Theo-
rem 3]. Let F̃ (k) denote the least integer s for which Js,k(P ) has an asymp-
totic formula of the shape given on the right-hand side of (4.2). Then one has
the upper bounds F̃ (k) ≤ H2(k) for the values of H2 recorded in Table 4.1.
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