
ACTA ARITHMETICA

138.4 (2009)

On the discrepancy of some hybrid sequences

by

Harald Niederreiter (Linz and Salzburg)

To the memory of Edmund Hlawka

1. Introduction. This work is motivated by applications of the theory
of uniform distribution modulo 1 to numerical analysis. The applications of
low-discrepancy sequences to quasi-Monte Carlo methods for multidimen-
sional numerical integration are classical and well known; see [8], [9], [17],
[18] for accounts of the classical theory and [21] for a recent survey. The
stochastic counterparts of quasi-Monte Carlo methods, namely Monte Carlo
methods, work with sequences of pseudorandom numbers. The theoretical
analysis of sequences of pseudorandom numbers also involves tools from the
theory of uniform distribution modulo 1 (see [10, Chapter 3], [17], [18]).

The relative effectiveness of quasi-Monte Carlo methods and Monte Carlo
methods for multidimensional numerical integration depends on the nature
and the dimensionality of the integrand. As a general rule of thumb, quasi-
Monte Carlo methods are more effective in low dimensions. On the other
hand, Monte Carlo methods work reasonably well in arbitrarily high di-
mensions as long as the variance of the integrand is under control. This
has led to the idea, first proposed by Spanier [32], of combining the advan-
tages of quasi-Monte Carlo methods and Monte Carlo methods by using
hybrid sequences. The principle here is to sample a relatively small number
of “dominating” variables of the integrand by low-discrepancy sequences and
the remaining variables by sequences of pseudorandom numbers. Thus, in
effect, one works with sequences of points in a high-dimensional unit cube
that are obtained by “mixing” low-discrepancy sequences and sequences of
pseudorandom numbers, in the sense that certain coordinates of the points
stem from low-discrepancy sequences and the remaining coordinates stem
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from sequences of pseudorandom numbers. Various successful applications of
hybrid sequences to challenging computational problems have been reported
in the literature (see e.g. [29], [30], [32], [33]).

In view of the well-known Koksma–Hlawka inequality (see [7], [11, Sec-
tion 2.5]), the analysis of numerical integration methods based on hybrid
sequences requires the study of the discrepancy of hybrid sequences. So far,
only two papers have been devoted to the discrepancy of hybrid sequences
(see [28], [30]), and both of them prove only probabilistic results on this
discrepancy.

In this paper, we establish the first nontrivial deterministic discrepancy
bounds for various hybrid sequences. We consider four families of basic se-
quences which can be classified into two types. The first type consists of se-
quences that are used in quasi-Monte Carlo methods: (i) Halton sequences;
(ii) nα sequences. The second type consists of sequences of pseudorandom
numbers: (iii) linear congruential sequences; (iv) inversive sequences. The
detailed definitions of these sequences are reviewed in Section 2. We con-
sider all five possibilities of “mixing” different families of basic sequences
such that at least one basic sequence belongs to the first type.

The organization of this paper is straightforward. In Section 2 we collect
some definitions and basic facts. Each of the following five sections is de-
voted to one of the five cases of “mixed” sequences mentioned above. Some
concluding remarks are given in Section 8.

2. Definitions and basic facts. For an arbitrary integer m ≥ 1, let λm
denote the m-dimensional Lebesgue measure. For points y0,y1, . . . ,yL−1 ∈
[0, 1)m, their discrepancy DL is defined by

(1) DL = sup
J

∣∣∣∣A(J ;L)
L

− λm(J)
∣∣∣∣,

where the supremum is extended over all half-open subintervals J of [0, 1)m

and the counting function A(J ;L) is given by

(2) A(J ;L) = #{0 ≤ n ≤ L− 1 : yn ∈ J}.

Note that we always have LDL ≥ 1 (see [11, p. 93]) and DL ≤ 1. The
star discrepancy D∗L of y0,y1, . . . ,yL−1 is obtained by letting the supremum
in (1) run only over the half-open intervals J ⊆ [0, 1)m with one vertex at
the origin. According to [18, Proposition 2.4] we have

(3) DL ≤ 2mD∗L.

For any integer B ≥ 1 and any z ∈ Rm, put zn = {Byn + z} ∈ [0, 1)m

for n = 0, 1, . . . , L − 1, where {u} denotes the fractional part of u ∈ Rm.
Let D(B,z)

L be the discrepancy of the points z0, z1, . . . , zL−1.
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Lemma 1. We have

D
(B,z)
L ≤ 2mBmDL.

Proof. For 0 ≤ y < 1, z ∈ R, and a fixed half-open subinterval J1 of
[0, 1), we have the following equivalences: {By + z} ∈ J1 ⇔ {By} is in one
of at most two disjoint half-open subintervals of [0, 1)⇔ By is in one of at
most 2B disjoint half-open subintervals of [0, B) ⇔ y is in one of at most
2B disjoint half-open subintervals of [0, 1). In the m-dimensional case, for a
fixed half-open subinterval J of [0, 1)m we have: zn = {Byn + z} ∈ J ⇔ yn
is in one of at most (2B)m disjoint half-open subintervals of [0, 1)m. This
implies the desired inequality.

A standard tool for estimating the discrepancy is the Erdős–Turán–
Koksma inequality, which provides an upper bound on the discrepancy in
terms of exponential sums. First we introduce the following two functions
on Zm.

Definition 1. For any h = (h1, . . . , hm) ∈ Zm, put

M(h) = max
1≤j≤m

|hj |, r(h) =
m∏
j=1

max(|hj |, 1).

Now we state the Erdős–Turán–Koksma inequality (compare with [3,
Theorem 1.21] and [11, p. 116]). In the following, we use · to denote the
standard inner product in Rm. We write e(u) = e2πiu for u ∈ R. We also
use the convention that the parameters on which the implied constant in a
Landau symbol O depends are written in the subscript of O. A symbol O
without a subscript indicates an absolute implied constant.

Lemma 2. Let y0,y1, . . . ,yL−1 be arbitrary points in [0, 1)m and let DL

be their discrepancy. Then for any integer K ≥ 1 we have

DL = Om

(
1
K

+
1
L

∑
h∈Zm

0<M(h)≤K

r(h)−1
∣∣∣ L−1∑
n=0

e(h · yn)
∣∣∣).

We now recall the definitions of the specific sequences on which we focus
in this paper. We start with the Halton sequences (see [6], [18, Chapter 3]).
For integers b ≥ 2 and n ≥ 0, let

n =
∞∑
k=0

ak(n)bk

be the digit expansion of n in base b, where ak(n) ∈ {0, 1, . . . , b − 1} for
all k ≥ 0 and ak(n) = 0 for all sufficiently large k. Then we define the
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radical-inverse function φb in base b by

φb(n) =
∞∑
k=0

ak(n)b−k−1.

For a given dimension s ≥ 1, let b1, . . . , bs be pairwise coprime integers ≥ 2.
Then the Halton sequence (in the bases b1, . . . , bs) is given by

xn = (φb1(n), . . . , φbs(n)) ∈ [0, 1)s, n = 0, 1, . . . .

It is a classical low-discrepancy sequence.
Our second family of sequences is that of nα sequences, also called

Kronecker sequences. Let t ≥ 1 be a given dimension and let α ∈ Rt.
Then we consider the sequence ({nα}), n = 0, 1, . . . , of fractional parts.
If α = (α1, . . . , αt), then this sequence is uniformly distributed if and only
if 1, α1, . . . , αt are linearly independent over Q (see [3, Theorem 1.76]). If
α is badly approximable in the sense of diophantine approximations, then
this sequence has a small discrepancy (compare also with Lemmas 5 and 6
below).

Next we recall the linear congruential sequences which go back to Lehmer
[13] and are classical sequences of pseudorandom numbers. Let p be a prime
(in practice, p will be large) and let g and a be integers with gcd(g, p) =
gcd(a, p) = 1. Then a linear congruential sequence is given as the sequence
({gna/p}), n = 0, 1, . . . , of fractional parts. This sequence is purely peri-
odic with least period τ = ordp(g), where here and in the following ordp(g)
denotes the multiplicative order of g modulo p. Therefore it is meaningful
to study only the first N ≤ τ terms of the sequence. The maximum period
τ = p− 1 is attained if and only if g is a primitive root modulo p. Without
loss of generality, we can assume that 1 ≤ g < p and 1 ≤ a < p. Linear con-
gruential sequences have been intensively investigated in the area of uniform
pseudorandom number generation (see e.g. [5, Chapter 1], [10, Chapter 3],
[18, Chapter 7]).

Our last family of sequences is that of inversive sequences. These are
sequences of pseudorandom numbers that are generated by an algorithm
which involves the multiplicative inverse in residue class rings of Z or in
finite fields (see [4], [20], [25] for surveys of inversive sequences). The family
of inversive sequences is quite large, and so we consider only the inversive se-
quences with the currently strongest pseudorandomness properties, namely
those introduced recently by Niederreiter and Rivat [22]; see also [23], [24],
[26] for further results on these sequences. Here it is convenient to work
with the finite field Fp of prime order p which can be identified with the set
{0, 1, . . . , p − 1} ⊆ Z. In practice, p will again be large. Fix a, b ∈ F∗p and
define the sequence R0, R1, . . . of rational functions over Fp by

R0(X) = X, Rn(X) = Rn−1(aX−1 + b) for n = 1, 2, . . . .
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The sequence R0, R1, . . . is purely periodic with least period T ≤ p+ 1. For
1 ≤ n ≤ T −1, each Rn has a unique pole en ∈ Fp. Now choose c0 ∈ Fp with
c20 6= bc0 + a. Then for 1 ≤ n ≤ T − 1 we put

cn =

{
Rn(c0) if c0 6= en,

b− en if c0 = en.

By extending with period T , we get a sequence c0, c1, . . . of elements of Fp
which is called an inversive generator. This sequence has least period T
according to [22, Lemma 2]. A simple sufficient condition for obtaining the
maximum period T = p+ 1 is given in [22, Theorem 1], and for any p there
are always choices of a, b ∈ F∗p such that this maximum period is attained
(see [22, p. 255]). The inversive sequence that we want to consider is the
normalized sequence (cn/p), n = 0, 1, . . . , of numbers in [0, 1). Because of
its periodicity, it is meaningful to study only the first N ≤ T terms of this
sequence.

3. Mixing Halton sequences and nα sequences

3.1. Preliminaries. We consider sequences that are obtained by “mix-
ing” Halton sequences and nα sequences. Let s ≥ 1 and t ≥ 1 be given
dimensions. For an integer b ≥ 2, let φb denote the radical-inverse function
in base b (see Section 2). Let b1, . . . , bs be pairwise coprime integers ≥ 2 and
let α ∈ Rt. Define

(4) xn = (φb1(n), . . . , φbs(n), {nα}) ∈ [0, 1)s+t, n = 0, 1, . . . .

Since we want the sequence x0,x1, . . . to be uniformly distributed in [0, 1)s+t,
we assume that α = (α1, . . . , αt) is such that 1, α1, . . . , αt are linearly in-
dependent over Q. In fact, it is easily seen that this is the necessary and
sufficient condition on α for the uniform distribution of the sequence (4);
compare with the first few steps of the proofs of Theorems 1 and 2 below.

We write ‖u‖ = min({u}, 1 − {u}) for the distance from u ∈ R to the
nearest integer. Note that if α = (α1, . . . , αt) is such that 1, α1, . . . , αt are
linearly independent over Q, then ‖h · α‖ > 0 for all h ∈ Zt \ {0}. In the
following lemma, we use the notation of Definition 1.

Lemma 3. Let α ∈ Rt be such that there exist real numbers σ ≥ 1 and
c > 0 with

r(h)σ‖h ·α‖ ≥ c for all h ∈ Zt \ {0}.
Then for any integers K ≥ 1 and N ≥ 1 we have∑

h∈Zt
0<M(h)≤K

r(h)−1
∣∣∣N−1∑
n=0

e(n(h ·α))
∣∣∣ = Oα,ε(K(σ−1)t+ε) for all ε > 0.
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Proof. We follow the method in the proof of [14, Theorem 9]. We fix the
positive integers K and N . For any h ∈ Zt \ {0}, we have∣∣∣N−1∑

n=0

e(n(h ·α))
∣∣∣ ≤ 2
|e(h ·α)− 1|

=
1

sinπ‖h ·α‖
≤ 1

2‖h ·α‖
.

Therefore

(5)
∑
h∈Zt

0<M(h)≤K

r(h)−1
∣∣∣N−1∑
n=0

e(n(h ·α))
∣∣∣ = O

( ∑
h∈Zt

0<M(h)≤K

r(h)−1‖h ·α‖−1
)
.

Put f(n) = 1/(n(n + 1)) for 1 ≤ n < K and f(K) = 1/K. For
(n1, . . . , nt) ∈ Zt with 1 ≤ nj ≤ K for 1 ≤ j ≤ t, put

F (n1, . . . , nt) =
t∏

j=1

f(nj).

Then we claim that

(6)
∑
h∈Zt

0<M(h)≤K

r(h)−1‖h ·α‖−1 =
K∑

n1,...,nt=1

F (n1, . . . , nt)
∑

h∈Zt\{0}
|hj |≤nj

‖h ·α‖−1,

where we write h = (h1, . . . , ht). To prove (6), we compute, for fixed h ∈ Zt
with 0 < M(h) ≤ K, the total coefficient of ‖h · α‖−1 on the right-hand
side of (6). Since r(h) = max(|h|, 1) for h ∈ Z, this coefficient is given by

K∑
n1=r(h1)

· · ·
K∑

nt=r(ht)

F (n1, . . . , nt)=
t∏

j=1

( K∑
nj=r(hj)

f(nj)
)

=
t∏

j=1

r(hj)−1 = r(h)−1,

and so it is equal to the coefficient of ‖h ·α‖−1 on the left-hand side of (6).
Thus, (6) is shown.

The next step is the estimation of the inner sum on the right-hand side
of (6). Let n = (n1, . . . , nt) ∈ Zt with nj ≥ 1 for 1 ≤ j ≤ t be given.
Consider two lattice points h,h′ ∈ Zt \ {0} with h′ 6= ±h which belong to
the range of summation of the inner sum on the right-hand side of (6). Then

‖h ·α± h′ ·α‖ = ‖(h± h′) ·α‖ ≥ cr(h± h′)−σ ≥ cr(2n)−σ =: δ.

Using simple properties of the function ‖u‖, we then conclude that∣∣‖h ·α‖ − ‖h′ ·α‖∣∣ ≥ δ.
Since we also have ‖h · α‖ ≥ δ, it follows that in each of the intervals
[0, δ), [δ, 2δ), . . . , [kδ, (k + 1)δ), where k = b1/(2δ)c, there are at most two
numbers of the form ‖h ·α‖, with no such number lying in the first interval.
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Therefore∑
h∈Zt\{0}
|hj |≤nj

‖h ·α‖−1 ≤ 2
k∑

m=1

1
mδ
≤ 2
δ

(1 + log k) = Oα,ε(r(n)σ+ε/t)

for all ε > 0.
Now we return to (6). Using the estimate that we have just obtained,

we get∑
h∈Zt

0<M(h)≤K

r(h)−1‖h ·α‖−1 = Oα,ε

( K∑
n1,...,nt=1

F (n1, . . . , nt)(n1 · · ·nt)σ+ε/t
)

= Oα,ε

( K∑
n1,...,nt=1

t∏
j=1

f(nj)n
σ+ε/t
j

)

= Oα,ε

(( K∑
n=1

f(n)nσ+ε/t
)t)

= Oα,ε(K(σ−1)t+ε)

for all ε > 0. The result of the lemma now follows from (5).

3.2. An interesting special case. We first consider the special case of the
sequence (4) where t = 1 and the irrational number α is of constant type
according to the following standard definition (see e.g. [11, p. 121]).

Definition 2. Let c ≥ 2 be a real number. The irrational number α is
of constant type c if

h‖hα‖ ≥ 1
c

for all integers h ≥ 1.

Lemma 4. If α is of constant type c and

(7) α = [a0; a1, a2, . . .]

is the continued fraction expansion of α, then ai < c for all i ≥ 1.

Proof. If pi/qi, i = 0, 1, . . . , are the convergents to α, then by the theory
of continued fractions,

qi−1‖qi−1α‖ ≤ qi−1|qi−1α− pi−1| <
qi−1

qi
for all i ≥ 1.

On the other hand, qi−1‖qi−1α‖ ≥ 1/c by Definition 2, and so qi < cqi−1 for
all i ≥ 1. Now qi = aiqi−1 + qi−2 (with q−1 = 0), hence

aiqi−1 ≤ aiqi−1 + qi−2 = qi < cqi−1,

and so ai < c for all i ≥ 1.

Remark 1. The converse of Lemma 4 is also true, in the sense that
if α has bounded partial quotients, then α is of constant type (see [12,
Chapter II, Theorem 6]).
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The following result was shown in [18, Corollary 3.5].

Lemma 5. Let α be an irrational number for which there exists a positive
integer K such that in the continued fraction expansion (7) of α we have
ai ≤ K for all i ≥ 1. Then for any integer L ≥ 1 the discrepancy DL of the
first L terms of the sequence ({nα}), n = 0, 1, . . . , satisfies

LDL = O

(
K log(L+ 1)
log(K + 1)

)
.

Let the irrational number α be of constant type c and consider the special
case of the sequence (4) given by

(8) xn = (φb1(n), . . . , φbs(n), {nα}) ∈ [0, 1)s+1, n = 0, 1, . . . .

Theorem 1. If b1, . . . , bs are pairwise coprime integers ≥ 2 and α is of
constant type c, then for any integer N ≥ 1 the discrepancy DN of the first
N terms of the sequence (8) satisfies

DN = Ob1,...,bs(c
1/(2s+1)N−1/(2s+1))

with an implied constant depending only on b1, . . . , bs.

Proof. We introduce the integers

fi :=
⌈

log(N/c)
(2s+ 1) log bi

⌉
for 1 ≤ i ≤ s.

We claim that we can assume fi ≥ 2 for 1 ≤ i ≤ s. Indeed, otherwise
log(N/c)

(2s+ 1) log bi
≤ 1

for some i, hence (
c

N

)1/(2s+1)

≥ 1
bi

for some i, and the discrepancy bound is trivial.
We put

B := bf11 · · · b
fs
s .

Since fi ≥ 2 for 1 ≤ i ≤ s, the definition of the fi implies that(
N

c

)1/(2s+1)

≥ bfi−1
i ≥ bfi/2i for 1 ≤ i ≤ s.

Multiplying together these inequalities, we get (N/c)s/(2s+1) ≥ B1/2, and so
N ≥ cB(2s+1)/2s ≥ B.

Let A(J ;N) be the counting function in (2), but relative to the points
x0,x1, . . . ,xN−1 in (8). We first choose an interval J ⊆ [0, 1)s+1 of the form

J =
s∏
i=1

[
vi

bfii
,
vi + 1

bfii

)
× [0, w)
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with v1, . . . , vs ∈ Z, 0 ≤ vi < bfii for 1 ≤ i ≤ s, and 0 < w ≤ 1. By the
construction of the Halton sequence, we have xn ∈ J if and only if

n ≡ d (mod B) and {nα} ∈ [0, w)

for some integer d with 0 ≤ d < B which depends only on J . Thus, n =
kB + d for some integer k, and the condition 0 ≤ n ≤ N − 1 is equivalent
to 0 ≤ k ≤ b(N − d− 1)/Bc. Recall that N ≥ B ≥ d+ 1. It follows that

A(J ;N) = #
{

0 ≤ k ≤
⌊
N − d− 1

B

⌋
: {kBα+ dα} ∈ [0, w)

}
,

and so

A(J ;N) =
⌊
N − d− 1 +B

B

⌋
w +O

(⌊
N − d− 1 +B

B

⌋
D

(B)
b(N−d−1+B)/Bc

)
,

where D(B)
b(N−d−1+B)/Bc is the discrepancy of the first b(N − d− 1 +B)/Bc

terms of the sequence ({kBα}), k = 0, 1, . . . . Therefore

(9) A(J ;N) = Nλs+1(J) +O

(⌊
N − d− 1 +B

B

⌋
D

(B)
b(N−d−1+B)/Bc

)
.

Since α is of constant type c, it follows immediately from Definition 2 that
Bα is of constant type Bc. By combining (9) with Lemmas 4 and 5, we
obtain

A(J ;N) = Nλs+1(J) +O

(
Bc

log(Bc+ 1)
log
(
N

B
+ 2
))

.

The definition of the fi yields bfii ≥ (N/c)1/(2s+1) for 1 ≤ i ≤ s, and so
B ≥ (N/c)s/(2s+1). Therefore

log(N/B + 2)
log(Bc+ 1)

≤ log(cs/(2s+1)N (s+1)/(2s+1) + 2)
log(c(s+1)/(2s+1)N s/(2s+1) + 1)

≤ 2,

which implies in turn that

(10) A(J ;N) = Nλs+1(J) +O(Bc).

Next we consider an interval J ⊆ [0, 1)s+1 of the form

J =
s∏
i=1

[
0,
vi

bfii

)
× [0, w)

with v1, . . . , vs ∈ Z, 1 ≤ vi ≤ bfii for 1 ≤ i ≤ s, and 0 < w ≤ 1. By adding at
most B identities of the form (10), we obtain

(11) A(J ;N) = Nλs+1(J) +O(B2c).
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Finally, we consider an arbitrary half-open interval J ⊆ [0, 1)s+1 with
one vertex at the origin, i.e.,

J =
s∏
i=1

[0, ui)× [0, w)

with 0 < ui ≤ 1 for 1 ≤ i ≤ s and 0 < w ≤ 1. By approximating the ui from
below and above by the nearest fractions of the form vi/b

fi
i with vi ∈ Z, we

deduce from (11) that

(12) D∗N ≤
s∑
i=1

b−fii +O(B2cN−1),

where D∗N is the star discrepancy of the points x0,x1, . . . ,xN−1. Using again
bfii ≥ (N/c)1/(2s+1) for 1 ≤ i ≤ s, we get

D∗N = Os(c1/(2s+1)N−1/(2s+1) +B2cN−1).

As noted earlier in this proof, we have bfii ≤ bi(N/c)1/(2s+1) for 1 ≤ i ≤ s,
hence by squaring and multiplying together these inequalities we obtain

B2 ≤ (b1 · · · bs)2
(
N

c

)2s/(2s+1)

.

This yields
D∗N = Ob1,...,bs(c

1/(2s+1)N−1/(2s+1)),

and an application of (3) completes the proof.

3.3. The general case. We now consider the sequence (4). In order to
get a reasonable discrepancy bound, we assume that α ∈ Rt is of finite type
according to the following standard definition (see e.g. [15, Definition 6.1]),
where we use the notation of Definition 1.

Definition 3. Let η be a real number. Then α ∈ Rt is of finite type η
if η is the infimum of all real numbers σ for which there exists a positive
constant c = c(σ,α) such that

r(h)σ‖h ·α‖ ≥ c for all h ∈ Zt \ {0}.

As noted in [15, p. 164], it is an easy consequence of Minkowski’s linear
forms theorem that we always have η ≥ 1.

Lemma 6. If α ∈ Rt is of finite type η, then for any integer L ≥ 1 the
discrepancy DL of the first L terms of the sequence ({nα}), n = 0, 1, . . . ,
satisfies

DL = Oα,ε(L−1/((η−1)t+1)+ε) for all ε > 0.
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Proof. By Lemma 2 we have

DL = Ot

(
1
K

+
1
L

∑
h∈Zt

0<M(h)≤K

r(h)−1
∣∣∣L−1∑
n=0

e(n(h ·α))
∣∣∣)

for any integer K ≥ 1. Then we apply Lemma 3 to obtain

DL = Oα,ε

(
1
K

+
1
L
K(η−1)t+ε

)
for all ε > 0.

Choosing K = bL1/((η−1)t+1)c yields the assertion of the lemma. We note
that this result is also an immediate consequence of Exercise 3.17 on p. 132
of [11], but for the sake of completeness we have included a proof here.

Theorem 2. If b1, . . . , bs are pairwise coprime integers ≥ 2 and α ∈ Rt

is of finite type η, then for any integer N ≥ 1 the discrepancy DN of the
first N terms of the sequence (4) satisfies

DN = Ob1,...,bs,α,ε(N
− 1

(η−1)(st2+t)+s(t+1)+1
+ε

) for all ε > 0

with an implied constant depending only on b1, . . . , bs, α, and ε.

Proof. We apply a method similar to that in the proof of Theorem 1.
We put

fi :=
⌈

1
(η − 1)(st2 + t) + s(t+ 1) + 1

· logN
log bi

⌉
for 1 ≤ i ≤ s

and
B := bf11 · · · b

fs
s .

We fix ε > 0. We first consider the case where N ≥ B. Let the interval
J ⊆ [0, 1)s+t be of the form

J =
s∏
i=1

[
vi

bfii
,
vi + 1

bfii

)
×

t∏
j=1

[0, wj)

with v1, . . . , vs ∈ Z, 0 ≤ vi < bfii for 1 ≤ i ≤ s, and 0 < wj ≤ 1 for 1 ≤ j ≤ t.
As in (9) we get

A(J ;N) = Nλs+t(J) +O

(⌊
N − d− 1 +B

B

⌋
D

(B)
b(N−d−1+B)/Bc

)
,

where D
(B)
L denotes the discrepancy of the first L terms of the sequence

({kBα + dα}), k = 0, 1, . . . . By Lemmas 1 and 6 we obtain

D
(B)
L = Oα,ε(BtL−1/((η−1)t+1)+ε)
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for all integers L ≥ 1. Therefore

A(J ;N) = Nλs+t(J) +Oα,ε

(
Bt

(
N

B

)1− 1
(η−1)t+1

+ε)
.

For J ⊆ [0, 1)s+t of the form

J =
s∏
i=1

[
0,
vi

bfii

)
×

t∏
j=1

[0, wj)

with v1, . . . , vs ∈ Z, 1 ≤ vi ≤ bfii for 1 ≤ i ≤ s, and 0 < wj ≤ 1 for 1 ≤ j ≤ t,
the analog of (11) is

A(J ;N) = Nλs+t(J) +Oα,ε

(
Bt+1

(
N

B

)1− 1
(η−1)t+1

+ε)
= Nλs+t(J) +Oα,ε(B

t+ 1
(η−1)t+1N

1− 1
(η−1)t+1

+ε).

In analogy with (12) we obtain

D∗N ≤
s∑
i=1

b−fii +Oα,ε(B
t+ 1

(η−1)t+1N
− 1

(η−1)t+1
+ε).

This bound is trivial for 1 ≤ N < B, and so it holds for all integers N ≥ 1.
By the definition of the fi, we have

bfii ≥ N
1

(η−1)(st2+t)+s(t+1)+1 for 1 ≤ i ≤ s,
and so

(13) D∗N = Os,α,ε(N
− 1

(η−1)(st2+t)+s(t+1)+1 +B
t+ 1

(η−1)t+1N
− 1

(η−1)t+1
+ε).

Again by the definition of the fi, we have

bfii ≤ biN
1

(η−1)(st2+t)+s(t+1)+1 for 1 ≤ i ≤ s,
and so

B ≤ b1 · · · bsN
s

(η−1)(st2+t)+s(t+1)+1 .

Using this bound in (13) and a straightforward computation, we arrive at

D∗N = Ob1,...,bs,α,ε(N
− 1

(η−1)(st2+t)+s(t+1)+1
+ε

).

An application of (3) completes the proof.

Corollary 1. If b1, . . . , bs are pairwise coprime integers ≥ 2 and α ∈
Rt is of finite type η = 1, then for any integer N ≥ 1 the discrepancy of the
first N terms of the sequence (4) satisfies

DN = Ob1,...,bs,α,ε(N
− 1
s(t+1)+1

+ε) for all ε > 0

with an implied constant depending only on b1, . . . , bs,α, and ε.
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Remark 2. Well-known examples of points α ∈ Rt of finite type η = 1
are the following: (i) α = (α1, . . . , αt) with real algebraic numbers α1, . . . , αt
such that 1, α1, . . . , αt are linearly independent over Q (see [31]); (ii) α =
(er1 , . . . , ert) with distinct nonzero rational numbers r1, . . . , rt (see [1]).

4. Mixing Halton sequences and linear congruential sequences.
Let p ≥ 3 be a prime, let g ∈ Z with 2 ≤ g < p, and let a ∈ Z with
gcd(a, p) = 1. For an integer b ≥ 2, let φb denote the radical-inverse function
in base b (see Section 2). Let b1, . . . , bs be pairwise coprime integers ≥ 2 and
consider the sequence

(14) xn = (φb1(n), . . . , φbs(n), {gna/p}) ∈ [0, 1)s+1, n = 0, 1, . . . .

Theorem 3. Let p, g, a be as above and put τ = ordp(g). Let b1, . . . , bs
be pairwise coprime integers ≥ 2 with gcd(bi, τ) = 1 for 1 ≤ i ≤ s. Then for
1 ≤ N ≤ τ the discrepancy DN of the first N terms of the sequence (14)
satisfies

DN = Ob1,...,bs((N
−1p1/2(log p) log τ)1/(s+1))

with an implied constant depending only on b1, . . . , bs.

Proof. The discrepancy bound is trivial if N ≤ p1/2(log p) log τ , and so
we can assume that p1/2(log p) log τ < N ≤ τ . We introduce the positive
integers

fi :=
⌈

1
(s+ 1) log bi

log
N

p1/2(log p) log τ

⌉
for 1 ≤ i ≤ s

and
B := bf11 · · · b

fs
s .

We assume next that N ≥ B. We proceed as in the proof of Theorem 1.
We first consider an interval J ⊆ [0, 1)s+1 of the form

J =
s∏
i=1

[
vi

bfii
,
vi + 1

bfii

)
× [0, w)

with v1, . . . , vs ∈ Z, 0 ≤ vi < bfii for 1 ≤ i ≤ s, and 0 < w ≤ 1. As in (9) we
get

(15) A(J ;N) = Nλs+1(J) +O

(⌊
N − d− 1 +B

B

⌋
D

(B)
b(N−d−1+B)/Bc

)
,

where D
(B)
L denotes the discrepancy of the first L terms of the sequence

({gkB+da/p}), k = 0, 1, . . . . Recall that N ≥ B ≥ d + 1. The last se-
quence can be written as ({(gB)kgda/p}), k = 0, 1, . . . . The hypothesis
gcd(bi, τ) = 1 for 1 ≤ i ≤ s implies that gcd(B, τ) = 1, and so the mul-
tiplicative order of gB modulo p is equal to τ . Then [16, Theorem 2] shows
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that
LD

(B)
L = O(p1/2(log p) log τ) for 1 ≤ L ≤ τ

with an absolute implied constant. It thus follows from (15) that

A(J ;N) = Nλs+1(J) +O(p1/2(log p) log τ)

with an absolute implied constant.
For J ⊆ [0, 1)s+1 of the form

J =
s∏
i=1

[
0,
vi

bfii

)
× [0, w)

with v1, . . . , vs ∈ Z, 1 ≤ vi ≤ bfii for 1 ≤ i ≤ s, and 0 < w ≤ 1, the analog
of (11) is

A(J ;N) = Nλs+1(J) +O(Bp1/2(log p) log τ)

with an absolute implied constant.
In analogy with (12) we obtain

D∗N ≤
s∑
i=1

b−fii +O(N−1Bp1/2(log p) log τ).

This bound is trivial for N < B, and so it holds for all integers N with
p1/2(log p) log τ < N ≤ τ . By the definition of the fi we have(

N

p1/2(log p) log τ

)1/(s+1)

≤ bfii ≤ bi
(

N

p1/2(log p) log τ

)1/(s+1)

for 1 ≤ i ≤ s, and so

B ≤ b1 · · · bs
(

N

p1/2(log p) log τ

)s/(s+1)

.

This yields

D∗N = Ob1,...,bs((N
−1p1/2(log p) log τ)1/(s+1)).

An application of (3) completes the proof.

Remark 3. We can extend the analysis to the case where a Halton se-
quence is “mixed” with several linear congruential sequences. The crucial
ingredient of this generalization is the following result of Bourgain [2, The-
orem 2]. Let p be a prime and fix ε with 0 < ε < 1. For an arbitrary integer
m ≥ 1, let g1, . . . , gm ∈ Z with gcd(gj , p) = 1 for 1 ≤ j ≤ m. Assume that
ordp(gj) > pε for 1 ≤ j ≤ m and ordp(gjgl) > pε for 1 ≤ j < l ≤ m, where
gl ∈ Z is such that glgl ≡ 1 (mod p). Then there exists a δ > 0 depending
only on m and ε such that for any h1, . . . , hm ∈ Z that are not all divisible
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by p, and any integer N > pε, we have

(16)
∣∣∣∣N−1∑
n=0

e
(

1
p

m∑
j=1

hj g
n
j

)∣∣∣∣ < p−δN.

Now we choose a1, . . . , am ∈ Z with gcd(aj , p) = 1 for 1 ≤ j ≤ m and we
consider, for a given N > pε, the discrepancy DN of the points

({gn1 a1/p}, . . . , {gnm am/p}) ∈ [0, 1)m, n = 0, 1, . . . , N − 1.

Then as an immediate consequence of (16) and [18, Corollary 3.11] we obtain

(17) DN = Om(p−δ(log p)m).

For pairwise coprime integers b1, . . . , bs ≥ 2, we now consider the sequence

(18) xn = (φb1(n), . . . , φbs(n), {gn1 a1/p}, . . . , {gnm am/p}) ∈ [0, 1)s+m,
n = 0, 1, . . . ,

under the same conditions on g1, . . . , gm and a1, . . . , am as above and with
the additional hypothesis gcd(bi, ordp(gj)) = 1 for all 1 ≤ i ≤ s and 1 ≤
j ≤ m. Then on the basis of (17) and adapting the method in the proof
of Theorem 3, we obtain a bound on the discrepancy of sufficiently long
initial segments of the sequence (18). This yields a weak, but nevertheless
nontrivial discrepancy bound. The bound is of the form

Ob1,...,bs,m(max(N−1/s, p−δ(log p)m))

for the discrepancy of the first N > pε terms of (18).

5. Mixing nα sequences and linear congruential sequences. Let
α ∈ Rt for an arbitrary dimension t ≥ 1, let p ≥ 3 be a prime, let g ∈ Z
with 2 ≤ g < p, and let a ∈ Z with gcd(a, p) = 1. Consider the sequence

(19) xn = ({nα}, {gna/p}) ∈ [0, 1)t+1, n = 0, 1, . . . .

We first establish a bound for the following exponential sum. For h1 ∈ Zt,
h ∈ Z, and an integer N ≥ 1, put

(20) EN (h1, h) :=
N−1∑
n=0

e(n(h1 ·α) + hgna/p).

We use the following result shown in [16, Lemma 3].

Lemma 7. Let p ≥ 3 be a prime, let g ∈ Z with 2 ≤ g < p, and let h ∈ Z
with gcd(h, p) = 1. Put τ = ordp(g). Then∣∣∣N−1∑

n=0

e(hgn/p)
∣∣∣ = O(p1/2 log τ) for 1 ≤ N ≤ τ.
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Lemma 8. Let p, g, a be as above and put τ = ordp(g). Let α ∈ Rt,
h1 ∈ Zt, and h ∈ Z with gcd(h, p) = 1. Then for the exponential sum
EN (h1, h) in (20) we have

|EN (h1, h)| = O(N1/2p1/4(log τ)1/2) for 1 ≤ N ≤ τ.

Proof. We have

|EN (h1, h)|2 =
N−1∑
k,n=0

e((k − n)(h1 ·α) + h(gk − gn)a/p)

≤ N + 2
∣∣∣ N−1∑
k,n=0
k>n

e((k − n)(h1 ·α) + hgn(gk−n − 1)a/p)
∣∣∣

= N + 2
∣∣∣N−1∑
d=1

N−1−d∑
n=0

e(d(h1 ·α) + hgn(gd − 1)a/p)
∣∣∣

≤ N + 2
N−1∑
d=1

∣∣∣N−1−d∑
n=0

e(hgn(gd − 1)a/p)
∣∣∣.

Since 1 ≤ N ≤ τ , we have gd 6≡ 1 (mod p) for 1 ≤ d ≤ N − 1. It therefore
follows from Lemma 7 that∣∣∣N−1−d∑

n=0

e(hgn(gd − 1)a/p)
∣∣∣ = O(p1/2 log τ).

Hence

|EN (h1, h)|2 = O(Np1/2 log τ),

which yields the desired result.

In the following theorem, we again use the notion of finite type η intro-
duced in Definition 3.

Theorem 4. Let p, g, a be as above and put τ = ordp(g). Let α ∈ Rt

be of finite type η. Then for 1 ≤ N ≤ τ the discrepancy DN of the first N
terms of the sequence (19) satisfies

DN = Oα,ε(max(N−1/((η−1)t+1)+ε, N−1/2p1/4(log τ)1/2(logN)t+1))

for all ε > 0 with an implied constant depending only on α and ε.

Proof. Since the discrepancy bound is trivial for N = 1, we can as-
sume that 2 ≤ N ≤ τ . We apply the Erdős–Turán–Koksma inequality (see
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Lemma 2) with K = dN1/((η−1)t+1)e, so that

(21) DN = Ot

(
1
K

+
1
N

∑
h∈Zt+1

0<M(h)≤K

r(h)−1
∣∣∣N−1∑
n=0

e(h · xn)
∣∣∣).

Note that 2 ≤ K ≤ N < p. For h = (h1, . . . , ht+1) ∈ Zt+1 with h 6= 0 and
ht+1 = 0, we have

N−1∑
n=0

e(h · xn) =
N−1∑
n=0

e(n(h1 ·α)),

where h1 = (h1, . . . , ht) ∈ Zt. Now fix an ε > 0. Then by Lemma 3 we get∑
h∈Zt+1, ht+1=0

0<M(h)≤K

r(h)−1
∣∣∣N−1∑
n=0

e(h · xn)
∣∣∣ = Oα,ε(K(η−1)t+ε)

= Oα,ε(N (η−1)t/((η−1)t+1)+ε).

Furthermore, for h ∈ Zt+1 with M(h) ≤ K and ht+1 6= 0, we can apply
Lemma 8 to obtain∣∣∣N−1∑

n=0

e(h · xn)
∣∣∣ = |EN (h1, ht+1)| = O(N1/2p1/4(log τ)1/2).

Therefore∑
h∈Zt+1, ht+1 6=0

0<M(h)≤K

r(h)−1
∣∣∣N−1∑
n=0

e(h · xn)
∣∣∣

= O
(
N1/2p1/4(log τ)1/2

∑
h∈Zt+1, ht+1 6=0

0<M(h)≤K

r(h)−1
)

= Ot(N1/2p1/4(log τ)1/2(logK)t+1)

= Ot(N1/2p1/4(log τ)1/2(logN)t+1).

By combining the above bounds with (21), we arrive at the desired result.

Corollary 2. Let p, g, a be as above and put τ = ordp(g). Let α ∈ Rt

be of finite type η = 1. Then for 2 ≤ N ≤ τ the discrepancy DN of the first
N terms of the sequence (19) satisfies

DN = Oα(N−1/2p1/4(log τ)1/2(logN)t+1)

with an implied constant depending only on α.
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Remark 4. Fix α ∈ Rt of finite type. For each prime p ≥ 3, choose a
primitive root g modulo p and a ∈ Z with gcd(a, p) = 1. Note that then
τ = ordp(g) = p− 1. Choose also positive integers Np ≤ p− 1 with

lim
p→∞

p1/2(log p)(logNp)2t+2

Np
= 0.

Then DNp → 0 as p→∞ by Theorem 4. It follows therefore by the Koksma–
Hlawka inequality that the corresponding quasi-Monte Carlo method yields
a convergent numerical integration scheme for integrands of bounded varia-
tion in the sense of Hardy and Krause.

Remark 5. The estimate (16) in Remark 3 allows us to treat the more
general case where we “mix” an nα sequence with several linear congru-
ential sequences. Let α ∈ Rt be of finite type η and let p be a prime. For
an arbitrary integer m ≥ 1, let g1, . . . , gm ∈ Z and a1, . . . , am ∈ Z with
gcd(gj , p) = gcd(aj , p) = 1 for 1 ≤ j ≤ m. Then we consider the sequence

(22) xn = ({nα}, {gn1 a1/p}, . . . , {gnm am/p}) ∈ [0, 1)t+m, n = 0, 1, . . . .

We fix ε with 0 < ε < 1 and assume that ordp(gj) > pε for 1 ≤ j ≤ m
and ordp(gjgl) > pε for 1 ≤ j < l ≤ m. Now we choose an integer N with
pε < N ≤ min1≤j≤m ordp(gj). Then by using (16) and adapting the proofs
of Lemma 8 and Theorem 4, we get a bound on the discrepancy DN of the
first N terms of the sequence (22). As in Remark 3, this yields a weak, but
nontrivial discrepancy bound. The bound is of the form

DN = Oα,m,κ(max(N−1/((η−1)t+1)+κ, p−δ/2(logN)t+m, pεN−1(logN)t+m))

for all κ > 0, where δ = δ(m, ε) > 0 is as in (16).

6. Mixing Halton sequences and inversive sequences. For a given
dimension s ≥ 1, let b1, . . . , bs be pairwise coprime integers ≥ 2. We consider
the Halton sequence in the bases b1, . . . , bs (see Section 2) and “mix” it with
an inversive sequence as described in Section 2. For a given prime p ≥ 3,
let c0, c1, . . . be a sequence of elements of Fp = {0, 1, . . . , p− 1} which is an
inversive generator. Let T denote the least period of this sequence. Then we
define

(23) xn = (φb1(n), . . . , φbs(n), cn/p) ∈ [0, 1)s+1, n = 0, 1, . . . .

The following lemma is a special case of [24, Lemma 3]. Note that we
have shifted the indices by 1 to conform with the notation in the present
paper.

Lemma 9. Let p ≥ 3 be a prime and let χ be a nontrivial additive charac-
ter of the finite field Fp. Let c0, c1, . . . ∈ Fp be an inversive generator and let
T be the least period of this sequence. Let m ≥ 1 and 0 ≤ d1 < · · · < dm < T
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be integers. Let B ≥ 1 and L ≥ 1 be integers with B(L − 1) + dm < T . If
h1, . . . , hm ∈ Fp are not all 0, then∣∣∣L−1∑

n=0

χ
( m∑
j=1

hj cBn+dj

)∣∣∣ = Om(L1/2p1/4).

Theorem 5. Let b1, . . . , bs be pairwise coprime integers ≥ 2. Let p ≥ 3
be a prime, let c0, c1, . . . ∈ Fp be an inversive generator , and let T be the
least period of this sequence. Then for 1 ≤ N ≤ T the discrepancy DN of
the first N terms of the sequence (23) satisfies

DN = Ob1,...,bs((N
−1p1/2(log p)2)1/(s+2))

with an implied constant depending only on b1, . . . , bs.

Proof. The discrepancy bound is trivial if N ≤ p1/2(log p)2, and so we
can assume that p1/2(log p)2 < N ≤ T . We introduce the positive integers

fi :=
⌈

1
(s+ 2) log bi

log
N

p1/2(log p)2

⌉
for 1 ≤ i ≤ s

and
B := bf11 · · · b

fs
s .

We assume next that N ≥ B. We proceed by a method similar to that
in the proof of Theorem 1. We start with an interval J ⊆ [0, 1)s+1 of the
form

J =
s∏
i=1

[
vi

bfii
,
vi + 1

bfii

)
× [0, w)

with v1, . . . , vs ∈ Z, 0 ≤ vi < bfii for 1 ≤ i ≤ s, and 0 < w ≤ 1. As in (9)
we get

(24) A(J ;N) = Nλs+1(J) +O

(⌊
N − d− 1 +B

B

⌋
D

(B)
b(N−d−1+B)/Bc

)
,

where D(B)
L is the discrepancy of the first L terms of the sequence (ckB+d/p),

k = 0, 1, . . . . Recall that N ≥ B ≥ d + 1. We apply Lemma 9 with m = 1
and d1 = d. Note that for L = b(N − d− 1 +B)/Bc we have

B(L− 1) + d ≤ N − d− 1 + d = N − 1 ≤ T − 1 < T,

and so the condition B(L− 1) + dm < T in Lemma 9 is satisfied. Thus, for
any h ∈ Z with gcd(h, p) = 1 we get∣∣∣∣L−1∑

k=0

e
(
h

p
ckB+d

)∣∣∣∣ = O(L1/2p1/4).
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Then [18, Corollary 3.11] yields

LD
(B)
L = O(L1/2p1/4 log p).

It thus follows from (24) that

A(J ;N) = Nλs+1(J) +O(B−1/2N1/2p1/4 log p)

with an absolute implied constant.
For J ⊆ [0, 1)s+1 of the form

J =
s∏
i=1

[
0,
vi

bfii

)
× [0, w)

with v1, . . . , vs ∈ Z, 1 ≤ vi ≤ bfii for 1 ≤ i ≤ s, and 0 < w ≤ 1, the analog
of (11) is

A(J ;N) = Nλs+1(J) +O(B1/2N1/2p1/4 log p)

with an absolute implied constant.
In analogy with (12) we obtain

D∗N ≤
s∑
i=1

b−fii +O(B1/2N−1/2p1/4 log p).

This bound is trivial for N < B, and so it holds for all integers N with
p1/2(log p)2 < N ≤ T . By the definition of the fi we have(

N

p1/2(log p)2

)1/(s+2)

≤ bfii ≤ bi
(

N

p1/2(log p)2

)1/(s+2)

for 1 ≤ i ≤ s,

and so

B ≤ b1 · · · bs
(

N

p1/2(log p)2

)s/(s+2)

.

This yields
D∗N = Ob1,...,bs((N

−1p1/2(log p)2)1/(s+2)).

An application of (3) completes the proof.

Remark 6. Fix the parameters b1, . . . , bs as in Theorem 5. For each
prime p ≥ 3, choose an inversive generator with maximum period T = p+1.
Choose also positive integers Np ≤ p+ 1 with

lim
p→∞

p1/2(log p)2

Np
= 0.

Then DNp → 0 as p→∞ by Theorem 5. It therefore follows by the Koksma–
Hlawka inequality that the corresponding quasi-Monte Carlo method yields
a convergent numerical integration scheme for integrands of bounded varia-
tion in the sense of Hardy and Krause.
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7. Mixing nα sequences and inversive sequences. Let α ∈ Rt for
an arbitrary dimension t ≥ 1, let p ≥ 3 be a prime, and let c0, c1, . . . be a
sequence of elements of Fp = {0, 1, . . . , p−1} which is an inversive generator
as described in Section 2. Let T denote the least period of this sequence.
We consider the sequence

(25) xn = ({nα}, cn/p) ∈ [0, 1)t+1, n = 0, 1, . . . .

We first establish a bound for the following exponential sum. For h1 ∈ Zt,
h ∈ Z, and an integer N ≥ 1, put

(26) GN (h1, h) :=
N−1∑
n=0

e(n(h1 ·α) + hcn/p).

Lemma 10. Let α ∈ Rt, h1 ∈ Zt, and h ∈ Z with gcd(h, p) = 1. Let T
be the least period of the sequence c0, c1, . . . ∈ Fp given above. Then for the
exponential sum GN (h1, h) in (26) we have

|GN (h1, h)| = O(N3/4p1/8) for 1 ≤ N ≤ T.
Proof. We have

|GN (h1, h)|2 =
N−1∑
k,n=0

e((k − n)(h1 ·α) + h(ck − cn)/p)

≤ N + 2
∣∣∣ N−1∑
k,n=0
k>n

e((k − n)(h1 ·α) + h(ck − cn)/p)
∣∣∣

= N + 2
∣∣∣N−1∑
d=1

N−1−d∑
n=0

e(d(h1 ·α) + h(cn+d − cn)/p)
∣∣∣

≤ N + 2
N−1∑
d=1

∣∣∣N−1−d∑
n=0

e(h(cn+d − cn)/p)
∣∣∣.

To bound the inner sum, we apply Lemma 9 with m = 2, d1 = 0, d2 = d,
B = 1, and L = N − d. Note that the condition B(L − 1) + d2 < T in
Lemma 9 is satisfied. Therefore we obtain∣∣∣N−1−d∑

n=0

e(h(cn+d − cn)/p)
∣∣∣ = O(N1/2p1/4).

Hence
|GN (h1, h)|2 = O(N3/2p1/4),

which yields the desired result.

In the following theorem, we again use the notion of finite type η intro-
duced in Definition 3.
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Theorem 6. Let α ∈ Rt be of finite type η. Let T be the least period of
the sequence c0, c1, . . . ∈ Fp given above. Then for 1 ≤ N ≤ T the discrep-
ancy DN of the first N terms of the sequence (25) satisfies

DN = Oα,ε(max(N−1/((η−1)t+1)+ε, N−1/4p1/8(logN)t+1)) for all ε > 0

with an implied constant depending only on α and ε.

Proof. Since the discrepancy bound is trivial for N = 1, we can as-
sume that 2 ≤ N ≤ T . We apply the Erdős–Turán–Koksma inequality (see
Lemma 2) with

K = min(dN1/((η−1)t+1)e, p− 1).

Then 2 ≤ K ≤ N and K < p. Furthermore,

(27) DN = Ot

(
1
K

+
1
N

∑
h∈Zt+1

0<M(h)≤K

r(h)−1
∣∣∣N−1∑
n=0

e(h · xn)
∣∣∣).

For h = (h1, . . . , ht+1) ∈ Zt+1 with h 6= 0 and ht+1 = 0, we have
N−1∑
n=0

e(h · xn) =
N−1∑
n=0

e(n(h1 ·α)),

where h1 = (h1, . . . , ht) ∈ Zt. Now fix an ε > 0. Then by Lemma 3 we get∑
h∈Zt+1, ht+1=0

0<M(h)≤K

r(h)−1
∣∣∣N−1∑
n=0

e(h · xn)
∣∣∣ = Oα,ε(K(η−1)t+ε)

= Oα,ε(N (η−1)t/((η−1)t+1)+ε).

Moreover, for h ∈ Zt+1 with M(h) ≤ K and ht+1 6= 0, we can apply
Lemma 10 to obtain∣∣∣N−1∑

n=0

e(h · xn)
∣∣∣ = |GN (h1, ht+1)| = O(N3/4p1/8).

Therefore∑
h∈Zt+1, ht+1 6=0

0<M(h)≤K

r(h)−1
∣∣∣N−1∑
n=0

e(h · xn)
∣∣∣ = O

(
N3/4p1/8

∑
h∈Zt+1, ht+1 6=0

0<M(h)≤K

r(h)−1
)

= Ot(N3/4p1/8(logK)t+1)

= Ot(N3/4p1/8(logN)t+1).

By combining the above bounds with (27), we arrive at the desired result.
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Corollary 3. Let α ∈ Rt be of finite type η = 1. Let T be the least
period of the sequence c0, c1, . . . ∈ Fp given above. Then for 2 ≤ N ≤ T the
discrepancy DN of the first N terms of the sequence (25) satisfies

DN = Oα(N−1/4p1/8(logN)t+1)

with an implied constant depending only on α.

Remark 7. Fix α ∈ Rt of finite type. For each prime p ≥ 3, choose an
inversive generator with maximum period T = p + 1. Choose also positive
integers Np ≤ p+ 1 with

lim
p→∞

p1/2(logNp)4t+4

Np
= 0.

Then DNp → 0 as p→∞ by Theorem 6. It therefore follows by the Koksma–
Hlawka inequality that the corresponding quasi-Monte Carlo method yields
a convergent numerical integration scheme for integrands of bounded varia-
tion in the sense of Hardy and Krause.

8. Concluding remarks. The discrepancy bounds in this paper are
obtained by combining various number-theoretic techniques. Thus, a certain
loss of precision has to be expected, and there is indeed no reason to believe
that these bounds are best possible. Improvements on these results as well
as lower bounds on the discrepancy of hybrid sequences going beyond known
lower bounds for the constituent sequences would be desirable.

There are of course several other interesting families of basic sequences
that can be used to produce hybrid sequences. For instance, an impor-
tant family of low-discrepancy sequences for quasi-Monte Carlo methods is
formed by digital (t, s)-sequences (see [27, Chapter 8]). A one-dimensional
Halton sequence in base b, i.e., a van der Corput sequence in base b, is obvi-
ously a digital (0, 1)-sequence in base b, so this simple case has been covered
in the paper. However, the main interest in this context is in “mixing” mul-
tidimensional digital (t, s)-sequences with other types of sequences, e.g. with
sequences of pseudorandom numbers. It seems that methods different from
those in the present paper have to be developed to treat such cases.

On a positive note, we observe that there are additional types of hy-
brid sequences for which nontrivial discrepancy bounds can be obtained by
the methods in this paper. For instance, one can consider “mixing” Halton
sequences or nα sequences on the one hand with sequences of nonlinear
congruential pseudorandom numbers (see [18, Section 8.1]) or explicit in-
versive congruential pseudorandom numbers (see [20, Section 3.3]) on the
other hand. As in Remarks 3 and 5, one can adjoin m ≥ 1 sequences of
these pseudorandom numbers to Halton sequences or nα sequences. Then
one can establish nontrivial discrepancy bounds for the resulting hybrid se-



396 H. Niederreiter

quences, provided that some fairly obvious conditions are met (compare e.g.
with [19] for these conditions in the case of explicit inversive congruential
pseudorandom numbers).

It should be quite evident from the remarks above that the question of
discrepancy bounds for hybrid sequences offers a considerable range of new
research activities.
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