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1. Introduction. Write ‖ ‖ to denote distance to the nearest integer.
Throughout this paper n (without subscript) denotes a positive integer.
A central question in the metric theory of Diophantine approximation is
to obtain asymptotic formulae for the number of solutions to the inequality

‖αn‖ < ψ(n), n ≤ N,
for almost all α under suitable conditions on ψ, where ψ(n) ∈ [0, 1/2) for
n ≤ N . This subject is covered in Chapters 3 and 4 of [9] (see also [10]).

The question has been generalised to simultaneous approximation and
approximation to linear forms. In these cases we consider x = (x1, . . . , xk) ∈
Rk and count solutions to

(1) max(‖nx1‖, . . . , ‖nxk‖) < ψ(n), n ≤ N,
or

(2) ‖n1x1 + n2x2 + . . .+ nkxk‖ < ψ(max
j
|nj |), max

j
|nj | ≤ N,

or (as later in this paper), we consider (2) with all the nj non-negative. If
we write

Ψ1(N) = 2k
N∑

n=1

ψ(n)k, Ψ2(N) = 2k
N∑

n=1

nk−1ψ(n),

then we expect the number of solutions to (1) and (2) (in the case all nj
non-negative) to be asymptotically equal to Ψ1(N) and Ψ2(N) respectively,
for almost all x ∈ Rk.

In general, having more variables makes such problems easier. However,
if one restricts x to a submanifold of Rk then the question becomes much
more difficult. As is well known, it is very non-trivial even to prove that the
convergence of Ψ1(∞) implies that there are only finitely many solutions to
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(1) for almost all x on a manifold (see Chapter 9 of [9] for a brief intro-
duction, or [5] for a more thorough discussion). The question of obtaining
asymptotic formulae on manifolds has received relatively little attention to
date (see [3, 4, 7]) and it is the purpose of this paper to address this issue.

Before introducing the notation required to state our main theorems
we give a corollary which illustrates the strengths and weaknesses of our
results. The rational normal curve (α, α2, . . . , αk) has been of fundamental
significance in the development of the theory of Diophantine approximation
on manifolds and so we use it here as an example.

Theorem 1. Let ε > 0, k ≥ 2 be given. Then the number of solutions to

(3) max
1≤j≤k

‖αjn+ βj‖ <
(

log2+ε n

n

)1/k

, n ≤ N,

is, for almost all α ∈ R and any (β1, . . . , βk) ∈ Rk, asymptotically equal to

2k
N∑

n=1

log2+ε n

n
.

Also, the number of solutions to

(4) ‖αn1 + α2n2 + . . .+ αknk + β‖ < log2k+ε n

nk
, n = max

j
nj ≤ N,

is asymptotically equal to

2k
N∑

n=1

log2k+ε n

n

for almost all α and any β.

The reader will note that we are a factor log3 n away from obtaining
a best possible result for (3) and a factor log1+2k n adrift for (4). It is an
inherent weakness in our method (which is similar to, but more efficient
than the method of [3]) that we cannot obtain the best possible result.
The reader should contrast the method of [7] which gives a result log n
away from best possible (one requires Ψ(N)� (logN)1+δ there in order to
obtain a non-trivial result as is made explicit in their Theorem 2), but does
not work for the rational normal curve (manifolds there need to be at least
two-dimensional in Rk with k ≥ 7). It is conceivable that their method, if
suitably refined, would yield a best possible result on certain manifolds. The
reader should also note that we have made the problem inhomogeneous. This
has not affected the quality of the results since our methods are based on
uniform distribution ideas. To date there have been very few inhomogeneous
results for Diophantine approximation on manifolds (see [2]).
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We use the following notation from [5] to state our results. Let M be
a submanifold of Rk with induced Lebesgue measure µ (see p. 15 of [5]).
In the following, whenever we use the phrase “almost all x ∈M”, we shall
mean “with respect to µ”. We say that M is a Khinchin type manifold
for convergence if the convergence of Ψ1(∞) implies that there are only
finitely many solutions to (1) for almost all x ∈ M. Similarly we call M a
Groshev type manifold for convergence if the convergence of Ψ2(∞) implies
that there are only finitely many solutions to (2) for almost all x ∈M. We
write S(N,x, β) for the number of solutions to

‖x.n + β‖ < ψ(n∗), n∗ = max(n1, . . . , nk) ≤ N, n ∈ Nk,
and T (N,x,y) for the number of solutions to

max
1≤j≤k

‖nxj + yj‖ < ψ(n), n ≤ N.

Our main results are then as follows.

Theorem 2. Let ε > 0, k ≥ 2 and M ⊂ Rk a Khinchin type manifold
for convergence. Suppose ψ(n) ∈ (0, 1/2) is decreasing and satisfies

ψ(n) >
log1+ε n

nk
.

Then, for almost all x ∈M, for every β ∈ R, we have, as N →∞,

Ψ2(N)� S(N,x, β)� Ψ2(N).

Here the implied constants depend on ε and x but not on β. If we suppose
that ψ(n) satisfies

ψ(n) >
logk+1+ε n

nk
,

then, as N →∞, for almost all x ∈M,

S(N,x, β) ∼ Ψ2(N).

Suppose, in addition, that for 1 ≤ n < m ≤ 2n we have

(5) ψ(n)− ψ(m)� m− n
n

ψ(n).

Then, for almost all x ∈M,

(6) S(N,x, β) = Ψ2(N) +O(Θ(N))

where

Θ(N) =
N∑

n=1

nk−1ψ(n)
φ(n)

with φ(n) =
(

nkψ(n)
1 + (logn)k+1+ε

)1/(2k+1)

.

Remark. An alternative hypothesis to (5) would be “φ(n) increasing”.
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Theorem 3. Let ε > 0, k ≥ 2 and M ⊂ Rk a Groshev type manifold for
convergence. Suppose ψ(n) ∈ (0, 1/2) is decreasing and satisfies

ψ(n)k >
log1+ε n

n
.

Then, for almost all x ∈M, for every y ∈ Rk, we have

Ψ1(N)� T (N,x,y)� Ψ1(N).

Here the implied constants depend on ε and x but not on y. If we suppose
that ψ(n) satisfies

ψ(n)k >
log2+ε n

n
,

then, for almost all x ∈M, for every y ∈ Rk, we have, as N →∞,

T (N,x,y) ∼ Ψ1(N).

Suppose, in addition, that for 1 ≤ n < m ≤ 2n we have

(7) ψ(n)k − ψ(m)k � m− n
n

ψ(n)k.

Then, for almost all x ∈M,

(8) T (N,x,y) = Ψ1(N) +O(Ξ(N)),

where

Ξ(N) =
N∑

n=1

ψ(n)k

λ(n)
with λ(n) =

(
nψ(n)k

1 + (logn)2+ε

)1/(k+2)

.

Remarks. Theorem 3 improves Theorem 1 of [3]. The condition that
M be a Khinchin or Groshev type manifold for convergence can be relaxed
at the expense of imposing stricter conditions on ψ. For example, if the
manifold is extremal in the sense that, for every ε > 0,

‖x.n‖ > n∗−k−ε

has only a finite number of solutions, then (8) holds with (logn)2+ε replaced
by nε in the conditions on ψ. To date better results are known for manifolds
of Groshev type for convergence than for those of Khinchin type. One could
use Theorems 2 and 3 to demonstrate that a manifold of Groshev type for
convergence is “almost” of Khinchin type for convergence as well, and vice
versa. In fact, it is more efficient to use “Transference Theorems”. We leave
it to the reader to verify that Theorems 2 and 6 of [6, Chapter 5] lead to
the following two results.

Theorem 4A. Let M be a Groshev type manifold for convergence. Then,
given ε > 0, for almost all x ∈M there are only finitely many solutions to

(9) max(‖x1n‖, . . . , ‖xkn‖) < n−1/k(logn)−1−ε.
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Theorem 4B. Let M be a Khinchin type manifold for convergence.
Then, given ε > 0, for almost all x ∈ M there are only finitely many solu-
tions to

‖x.n‖ < n∗−k(log n∗)−k−ε.

As an example of the simple principle behind our method we prove first
the following theorem which would give a weaker result than Schmidt’s work
([12], [9, Chapter 4]) for small ψ, but is stronger for the case of larger ψ we
state.

Theorem 5. Let ε > 0, 0 < θ < 1. For almost all real α, and any given
real β, the number of solutions to

(10) ‖αn+ β‖ < n−θ, n ≤ N,
is, for N ≥ 2,

(11)
2N1−θ

1− θ +O(N (1−θ)/2(logN)1/2+ε).

Remark. We have lowered the exponent of the logarithm here from 2
(in Schmidt’s work) to 1/2.

2. Proof of Theorem 5. We will give a lower bound for the number
of solutions, the upper bound follows by a similar argument. Write

ψ(n) = n−θ.

Let
DM (nα) = sup

γ∈[0,1)

∣∣∣
∑

n≤M
{αn}≤γ

1− γM
∣∣∣.

Then it is well known (see [9, Theorem 5.15], the original result goes back
to the work of Khinchin [11]) that, for almost all α,

DM (nα)� (logM)1+ε as M →∞.
We write φ(n) for an increasing function whose definition will not appear
until it can be justified. We split up the range 1 ≤ n ≤ N as follows: N1 = 1,
Nj (j > 1) is the smallest integer exceeding

Nj−1

(
1 +

1
φ(Nj−1)

)
.

We also write Mj = Nj − Nj−1, ψj = ψ(Nj), Dj = DMj (nα). Suppose
Nk ≥ N > Nk−1 and redefine Nk if necessary to be N . Then the number of
solutions to (10) is at least the number of solutions to

(12) ‖αn+ β‖ < ψj , Nj−1 < n ≤ Nj , 1 ≤ j ≤ k.
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Let Sj be the number of solutions to (12) for one j. Then

Sj = 2ψjMj +O(Dj).

Hence, a lower bound for the number of solutions, for almost all α, is

(13) 2
k∑

j=1

ψjMj +O
( k∑

j=1

(logMj)1+ε
)
.

Now
k∑

j=1

ψjMj ≥
N∑

n=1

ψ(n)−
k∑

j=1

Mj(ψj−1 − ψj)

=
N∑

n=1

ψ(n) +O

( k∑

j=1

MjN
−θ
j−1

φ(Nj−1)

)
,

and

(14)
k∑

j=1

MjN
−θ
j−1

φ(Nj−1)
�

k∑

j=1

N1−θ
j−1

φ2(Nj−1)
.

To balance the errors in (13) and (14) we must choose

φ2(n) =
n1−θ

1 + (logn)1+ε ,

which leads to an error term of size (for N ≥ 2)
N∑

n=1

(logn)1/2+εn−(1+θ)/2 � N (1−θ)/2(logN)1/2+ε

as required to complete the proof.

3. Proof of Theorem 2. We will give a complete proof of the case

ψ(n) >
logk+1+ε n

nk
, ψ(n)− ψ(m)� m− n

n
ψ(n).

We will mention the modifications for the other cases later. We begin by
splitting the range 1 ≤ n ≤ N into subranges as in the previous section. Put
N1 = 1, let φj = φ(Nj−1), and write, for j ≥ 2, Nj−1 ≤ N ,

Nj =
[
Nj−1

(
1 +

1
φj

)]
+ 1.

If Nt > N then put Nt = N + 1. Let ψj = ψ(Nj), Lj = ψ−1
j φj , Mj =

Nj −Nj−1. Put
g(L) = L1/k(logL)(1+ε)/k.
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Also, if yj > 0 for j = 1, . . . , k, let N(L,x,y) denote the number of solutions
to

‖lxh‖ < yh, h = 1, . . . , k, l ≤ L.
Lemma 1. For almost all x ∈M we have

(15) N(L,x,y)�
k∏

h=1

max(1, g(L)yh).

Proof. Since M is a Khinchin-type manifold for convergence, we have

(16) min
1≤l≤L

max(‖lx1‖, . . . , ‖lxk‖) > g(L)−1

for almost all x ∈M for all sufficiently large L. If (15) is violated, say

N(L,x,y) ≥ T k
k∏

h=1

max(1, g(L)yh),

then, by the pigeon-hole principle, we can find an l ≤ L with, for 1 ≤ h ≤ k,

‖lxh‖ ≤
c(k)yh

T max(1, g(L)yh)
< g(L)−1

for sufficiently large T . This contradicts (16) and so establishes the lemma.

Proof of Theorem 2. We shall only establish a lower bound of the form
(6); the corresponding upper bound follows similarly. We have

S(N,x, β) ≥
t∑

j=1

Sj

where Sj counts the number of solutions to

‖x.n + β‖ < ψj , Nj−1 ≤ n∗ < Nj .

By a familiar argument from Fourier analysis (see [1, Chapter 2]) we have

Sj ≥ Dj +Ej

where

Dj =
(

2ψj −
1
Lj

) ∑

Nj−1≤n∗<Nj

1

=
(

2ψj −
1
Lj

) ∑

Nj−1≤n<Nj
knk−1(1 +O(n−1)),

and

Ej � ψj

Lj∑

l=1

∣∣∣
∑

Nj−1≤n∗<Nj

e(ln.x)
∣∣∣.
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Here e(α) = exp(2πiα). Now, for Nj−1 ≤ n < Nj ,

ψj = ψ(n)−O
(
ψ(n)(Nj − n)

n

)
.

Since, for Nj−1 ≤ n < Nj ,

Nj − n
n

� 1
φj

and
1
Lj
� ψ(n)

φ(n)

this gives

Dj = 2k
∑

Nj−1≤n<Nj
nk−1ψ(n) +O

( ∑

Nj−1≤n<Nj

nk−1ψ(n)
φ(n)

)
.

Also,

Ej � ψj

Lj∑

l=1

k∏

r=1

(
min

(
Nj ,

1
‖xrl‖

))
.

We divide up the values taken by ‖xrl‖ so that either ‖xrl‖ < g(Lj)−1, or

2sr−1 ≤ g(Lj)‖xrl‖ < 2sr , sr = 1, 2, . . .

Put

Gr =
{
Nj if sr = 0,

g(Lj)2−sr if sr > 0,

and let y = y(s1, . . . , sk) = g(L)(2−s1 , . . . , 2−sk). It follows that

Ej � ψj

k∏

r=1

(∑

sr

Gr

)
N(j,x,y)

� ψj

k−1∑

r=0

(g(Lj) logLj)1+rNk−1−r
j by Lemma 1

� ψj(g(Lj)k logk Lj +Nk−1
j g(Lj) logLj)

�
ψjMjN

k−1
j

φj

(
g(Lj)kφ2

j logk Lj
Nk
j

+
g(Lj)φ2

j logLj
Nj

)
.

We have

g(Lj)k(logLj)kφ2
j

Nk
j

�
φ2
j

Nk
j

ψ−1
j φj(logLj)k+1+ε �

φ2k+1
j (logLj)k+1+ε

Nk
j ψj

< 1.

Also,
(
g(Lj) logLjφ2

j

Nj

)k
�

φ2k+1
j (logLj)k+1+ε

Nk
j ψj

< 1.



Simultaneous Diophantine approximation 387

Hence

Ej �
∑

Nj−1≤n<Nj

ψ(n)nk−1

φ(n)
.

This completes the proof on combining the ranges for j = 1, . . . , t.
To prove the result in the absence of condition (5) replace ε by ε/2 and

take
φ(n) = log log 9n.

To complete the proof when only the condition

ψ(n) >
log1+ε n

nk

is given, take φ(n), ε/2 as above, but count the solutions with weights. We
note that

1
M2T−1

∣∣∣
M∑

m=1

e(αm)
∣∣∣
2T

=
2MT∑

m=−2MT

cme(αm)

where

0 ≤ cm ≤ C(T ),
2TM∑

m=−2TM

cm = M.

In this section we take T = 2 and this gives an improved estimate for Ej in
the lower bound case:

Ej �
ψj

MjN
k−1
j

k∏

r=1

(∑

sr

G2
r

)
N(j,x,y)

� ψj

MjN
k−1
j

k−1∑

r=0

(g(Lj))2+2rN2k−2−2r
j � ψj(g(Lj)2k +Nk−1

j g(Lj))

�
ψjMjN

k−1
j

φj

(
g(Lj)2kφ3

j

N2k
j

+
g(Lj)2φ3

j

Nj

)
.

This suffices to complete the proof since

g(Lj)2kφ3
j

N2k
j

�
φ5
j (logLj)2+ε

ψ2
jN

2k
j

� 1,

and similarly
g(Lj)2φ3

j

N2
j

� 1.

4. Proof of Theorem 3. The proof is, in outline, the same as the proof
for Theorem 2, so we shall be very brief. We only sketch the proof of the
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case where

ψ(n)k >
log2+ε n

n
, ψ(n)k − ψ(m)k � m− n

n
ψ(n)k.

Note that λ(n) replaces φ(n) in our previous argument. Define Nj , Mj , ψj ,
Lj as above, and λj = λ(Nj−1). Lower and upper bounds are considered
separately as before. For the lower bound we have

T (N,x,y) ≥
t∑

j=1

Tj ,

where Tj counts solutions to

max
r
‖nxr + yr‖ < ψj , Nj−1 ≤ n < Nj .

From the method used in Section 4 of [8],

(17) Tj ≥ 2kMjψ
k
j −

c(k)Mjψ
k−1
j

Lj
+ Ej ,

where
Ej �

∑

0<|h|<Lj
ψkj

∣∣∣
∑

Nj−1≤n<Nj
e(nx.h)

∣∣∣.

The first two terms in (17) give the main term in (8) with a suitable
error. We have

Ej �
∑

0<|h|<Lj
ψkj min

(
Mj ,

1
‖x.h‖

)
� ψkj

∑

s≥0

2sN(s, Lj),

where N(s, Lj) counts the number of solutions to

‖x.h‖ < 2−s, 0 < |h| ≤ Lj .
Since M is a Groshev type manifold for convergence an application of the
pigeon-hole principle (as in Lemma 1) gives

N(s, L)� Lkj (logLj)1+ε2−s.

This quickly leads to the result

Ej � λkj (logNj)2+ε �
∑

Nj−1≤n<Nj

ψ(n)k

λ(n)

as required to complete the proof.

5. Deduction of Theorem 1. The first part of Theorem 1 follows
immediately from Theorem 3 since the rational normal curve is a Groshev
type manifold for convergence.

At present it is not known whether the rational normal curve is of
Khinchin type for convergence (except for the case k = 2). To prove the
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second part of Theorem 1 we therefore need to start with the weaker asser-
tion (from Theorem 4) that there are only finitely many solutions to

max
1≤j≤k

‖αjn‖ < n−1/k(logn)−1−ε.

We can then modify the proof of Theorem 2, changing g(L) to

g(L) = L1/k(logL)ε/k+1.

Following through the analysis, this changes k + 1 to 2k to complete the
proof.
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