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1. Introduction. For a positive integer e > 2, the Jacobi sums of order
e are algebraic integers in the cyclotomic field Q((.), where (. = exp(2mi/e).
They are defined in terms of a finite field F, with ¢ = p” where ¢ = 1 (mod e),
p prime. (See Section 2.) Jacobi sums are important objects in the theory of
cyclotomy and their congruences have been studied by many authors. Ear-
lier authors (e.g. [4]) obtained congruences for Jacobi sums defined in terms
of Fp, p=1 (mod e), and later authors (e.g. [7]) considered ¢ =1 (mod e).

(1) It is well known (see [4], [12]) that for Jacobi sums of odd prime
order [,

J(1, ) = =1 (mod (1= G)?).
This congruence also holds modulo (1 — ¢)3. (See [9], [13].)
(2) Congruences for Jacobi sums of order 2/ (I odd prime) were obtained
by V. V. Acharya and S. A. Katre [I]. They showed that
J(1,n)y = —¢™" ) (mod (1 - ¢)?),

where n is an odd integer such that 1 <n < 2]/ — 3 and m = ind 2.
(3) A congruence for the Jacobi sum J(1,1)g of order 9 was obtained by
S. A. Katre and A. R. Rajwade [I0]. They showed that

J(1,1)g = -1 — (ind 3)(1 — w) (mod (1 — ¢g)h),

where w = (3.
(4) If k is an odd prime power > 3, then (see [8])

J(i, )k = —1 (mod (1 — G)?).
R. J. Evans [7] generalised this result to all £ > 2 by elementary

methods, getting sharper congruences in some cases, especially when
k > 8 is a power of 2.
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It may be noted that an element a coprime to [ in the cyclotomic ring Z[(],
[ prime, can be uniquely determined if we know its prime ideal decompo-
sition, absolute value and congruence modulo (1 — ¢;)2. To determine an
element in the ring Z[(;2] which is coprime to [, the congruence is required
modulo (1 — ¢2)"*!. In this sense, the congruences in (1), (2) and (3) above
are appropriate congruences which determine the Jacobi sums.

In this paper (see Section 5) for ¢ = p” = 1 (mod I2), | > 3 and p primes,
we obtain congruences for Jacobi sums of order /2 modulo (1—¢)"* in terms
of cyclotomic numbers of order [. These are the determining congruences for
Jacobi sums of order [? and they sharpen the congruences in (4). In Section 6,
we obtain cyclotomic numbers of order 2 in terms of coefficients of Jacobi
sums of order I and [2.

2. Preliminaries. Let e be a positive integer > 2 and ¢ = p" = 1
(mod e), p prime. Let F, be a finite field with ¢ elements. Write p" = ¢ =
ef + 1. Let ¢ be a complex primitive eth root of unity. If v is a generator
of I} then define the multiplicative character x : F, — Q(¢) by x(v) = ¢,
x(0) = 0. Given a generator v of Fy define the Jacobi sum by

J(i,5) = J(ij)e= D> X' (1+v), 0<ij<e—1.
v€ElFy

Here x°(0) = 0. Also, i and j can be considered modulo e, with the under-
standing that x*(0) = 0 for any integer . Note that J(i,j). € Z[(], the ring
of integers of Q(().

A variation of the Jacobi sum is defined as

TG )e =D X' (1-v), 0<ij<e—1.
veEF,

Observe that J(i,j)e= x*(—=1)J(x%, X?)e. When q = 2", x*(—1) = x(1) = 1
and both the Jacobi sums coincide. Otherwise x*(—1) = (—1)* and hence
the two Jacobi sums differ at most in sign. For multiplicative characters x
and ¢ on Fy, J(x,v) can be analogously defined. The prime ideal decom-
position of Jacobi sums is well-known. See [3, p. 346, Corollary 11.2.4] for
details.

In the following theorem we state some standard results about Jacobi
sums.

THEOREM 2.1 (Elementary properties of Jacobi sums).

(1) Ifi and j are congruent to 0 modulo e then J(x*,x")e = q — 2.
(2) If exactly one of i and j is congruent to 0 modulo e then J(x*, x?)e
- 1.
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(3) If i is nonzero modulo e and i + j is congruent to 0 modulo e then
TG )e = = (=1). o

(4) JOXx)e =T xDe = X (=1DJT (XX e

(5) If e divides neither i, j nor i+ j then |J(x",x?)e| = /4.

Proof. See [4] for ¢ = p and [14] for g =p". =

REMARK. If f is even or ¢ = 27 then J(i,5)e = J(X*,X’)e, s0 (4)
gives J(iyj)e = J(jvi)e = J<_i _jaj>e = J(], —i— j)e = J(_i _jai)e =
J(i,—i — j)e. In particular J(i,i)e = J(—2i,4)e = J(i, —2i)e.

3. Cyclotomy. Let v, ¢ and x be as in Section 2. For 0 < <e—-1
(4,7 (mod e)), define the e? cyclotomic numbers (i, j)e by (i, j)e = Card(X;;)
where

Xij ={v €Fq| x(v) =, x(v+1) = '}
={veF,—{0,-1}|indyv =7 (mod e), indy(v+1) = j (mod e)}.

We state some basic properties of the cyclotomic numbers. (See [5] for ¢ = p,
and [14]). For ¢ = p",

(1, 7)e = (
(1,7)e =(e— 1,5 — i)

(Js1)e if fisevenor q=2",
{ (j+e/2,i+e/2). otherwise.
Thus if f is even or ¢ = 2" with r > 2 then

= (=4,J —i)e = (=4, — J)e-

For e odd > 3, the equation (3.1 partitions the e? cyclotomic numbers
into classes (groups). (0,0). forms a singleton class. For 1 < i < e — 1,
(4,7)e, (0, —1)e, and (—1i,0), form classes of three elements. The remaining
cyclotomic numbers are grouped into classes of six elements. (e = 3 is ex-

ceptional; (1,2)3 = (2, 1)3 is a class of only two elements.) We also have the
following properties. For e > 2,

e—1 . if i —
(3:2) Z(z‘,y')e:{f bt=0

= f ifl<j<e-—1.

i',7)e ifi=4i and j = j' (mod e).

If g = p", p odd prime,
o1 f—1 if fiseven and i =0,
(3.3) D (ij)e=14 f—1 if fisoddandi=e¢/2,

J=0 f otherwise.
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Also, if ¢ = 2" then e is odd. In this case

e—1 .p -
o f—1 ifi=0,

34 Ji)e =
(34) ;}(Z Pe { f otherwise.
In any case,

e—1e—1
(3.5) S lifle=q-2

i=0 j=0

Let ¢ = p" =1 (mod e) and d be any divisor of e. Write F = e/d. A cy-

clotomic number of order E can be expressed as the sum of d? cyclotomic
numbers of order e by

T&.
—_
T&.
—_

(3.6) (k,h)g = (k+7rE,h+ sE)e.

o
Il
o

S

See L. E. Dickson ([6], eq. (2)]) for ¢ = p. We will use this formula in Section 5.

4. Relation between Jacobi sums and cyclotomic numbers. The
e? Jacobi sums and the e? cyclotomic numbers are related by

(4.1) ZZC_(aHbj)J(ivj)e = 62(% b)e,

(4.2) Z Z(i,j)ec‘”“’j = J(a,b)e.

Jacobi sums and cyclotomic numbers are related to Dickson—-Hurwitz sums.
The latter are defined for 7,5 (mod e) by (for ¢ = p, see [4])
e—1

(4.3) B(i,j) = B(i,j)e = Y _(h,i— jh)e.
h=0
They satisfy the relation B(i,j). = B(i,e — j — 7). Also,

—1 ifi=0,
(4.4) B0y, = {7 =l

f ifl<i<e—1,
and

e—1
(4.5) > B(i,j)e=q—2
=0

Dickson-Hurwitz sums and Jacobi sums J(x, x? ). are related by (for ¢ = p,
see [4])
. . . 671 .
(46) A (=1)JIC0x)e = X (~DX(=DI(L, e = 3 Bl 1)
i=0
Hence if f is even or ¢ = 2" then J(1,j). = Zf;& B(i,7)eCt
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5. Congruences for Jacobi sums J(1,n);2 of order [?. Let [ > 3 be
a prime and ¢ = p” = 1 (mod [?), p prime. Let F, be a finite field with ¢
elements. Write ¢ = I2f +1 = [f’ + 1. Hence f' = 0 (mod [). Note also that
if p is an odd prime then f and f’ are even. Let ¢ be a complex primitive
I?th root of unity and w = ¢*. Recall that (1) = (1 — )", where (1 —¢) is
a prime ideal in the ring Z[(]. The following lemma determines an element
in the ring Z[¢] uniquely.

LEMMA 5.1. Letl be an odd rational prime and ¢ be a complex primitive
I2th root of unity. If o, B € Z[(] are coprime to (1 — () and

(i) (@) = (B),

(i) o] = |81,
(i) =4 (mod (1—¢)),
then o = (3.

Proof. (a) = (B) implies that a = [u, where u is a unit in Z[¢]. Also
la] = |B| gives wu = 1. Let u = f(({), a polynomial in ¢ with coefficients
from Z. Therefore f(¢)f(¢) = 1 and hence f(¢*)f(¢?) = 1 for every i rela-
tively prime to /2. From this it follows that w is a root of unity. But the only
roots of unity in Z[¢] are £¢*. So u = £¢%, 0 < i < [2 — 1. From condition
(iii), £6¢* = B (mod (1 — ¢)'*!). Hence

£¢' =1 (mod (1-¢)™)  (as ged(B, (1)) =1).
The — sign in the above congruence does not hold as 1+¢* = 2 (mod (1—()).
Hence ¢! =1 (mod (1 — ¢)"*1).

Now, by the binomial theorem, ¢! = 1+ (¢ — 1)! (mod (1 — ¢)"*1).
Hence ¢! # 1 (mod (1 — ¢)"*1). However ¢"” = 1. Therefore the order of ¢
(mod (1 — ¢)"*1) is I2. Hence i = 0. Thus the result follows. m

From (i the Jacobi sum J(1,n);2 = Zé(:lal)_l binC® (biy € Z uniquely
determined) of order /2 is given in terms of Dickson-Hurwitz sums by

?-1
(5.1) J(1,n)p =Y B(i,n)p(.
=0
Here
(5.2) bin = B(i,n)2 — B(I(1 — 1) + j,n)pe,

where 0 < j <[ —1, and j =4 (mod I).

LEMMA 5.2. Let 1 <u<l—1andl1<n<I[P?—1. Writen =dl + 7/,
0<n' <l—1. Then
-2
Z blitun = B(u, n/)l (mod ).
=0
Further this sum is zero modulo 1 if ged(l,n) = L.
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Proof. From (j5.2)),

-2 -2
> Bigun =Y B(li+u,n)p — (1 —1)BU(1—1) +u,n)pe
=0 =0
-1
= B(li+u,n)p (mod 1)
=0
1-11%2-1
:Z (a,li +u—an)p
i=0 a=0
-1 -1
=3 s+t li+u—(Is+t)n)e
i=0 s,t=0
-1 -1
=3 (Is+t,1(i — sn) + u—nt)p
=0 s,t=0
-1 -1
:Z (Is+t,1(i — sn' — dt) +u —n't)2
t=0 s,i=0
-1
=Y (t,u—n't), using (3.6)
t=0
= B(u,n’)l.

If ged(l,n) =1 then n’ =0, and by (4.4)), B(u,0); = f'=0 (mod l). m

LEMMA 5.3. Let 1> 3 be a prime and 1 <n <[> —1. Write n = dl +n/
as before. For 1 < h <Il—1, let

'h —h(n' +1
M = An(n) = [”l%{(nlﬂ]
and for 1L < h,k<Il—1, h#k, let

h+n'k k+n'h n'k—h(n' +1
et (22 5] e

+[n’h—kz(n’+1)] . [k—h(n’+1)] . {h—k‘(n’+1)]

l l

For a given n, A\ depends only on the class of siz elements (cf. (3.1])) to
which (h, k); belongs. Define

-11-1

S(n) = "> tB(it+ jn)pe.

t=0 j=0
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Then
-1
S(n) = Z An(h, 0); + Z Ak (R, k) (mod 1)
h=1 c

where ). is taken over a set of representatives of classes of sixz elements
of cyclotomic numbers of order I, obtained in view of (3.1)). Furthermore
S(n) =0 (mod 1) if ged(l,n) = 1.

Proof. Let (a,b);2 be a cyclotomic number of order I2. We count the
number of times (a,b);2 appears in the expression for S(n), and consider
this count modulo [. If (a,b);2 appears in S(n) (in some B(i,n);2) then it is
of the form (h,i—nh);2 for some 0 < h,i < [? — 1. Therefore a = h (mod [?)
and b =i — nh (mod [2). Hence we see that b+ na =i (mod [?).

Thus, (a,b);2 = (h,i — nh);2 comes from exactly one B(i,n);z and it is
counted as many times as B(i,n);2 is counted in S(n), i.e. [i/l] times. As
[i/l] = [(b+ na)/l] (mod 1), (a,b);2 is counted [(b+ na)/l] times (modulo )
in S(n).

CASE (i). Consider the cyclotomic number (lz,ly);2, where 0 < z,y <
[ —1. Now we count the number of times this cyclotomic number appears in
S(n) in all its different forms with respect to (3.1). (0,0);2 appears 0 times
in S(n).

SUBCASE (1). If z = y # 0 then (lz, ly);2 forms a group of three, namely
(lz,lx);2 = (0, —lz);2 = (—lx,0);2. Hence the number of times (lz,ly);2 will
be counted in these three different forms in S(n) is

= [lx—i—nl:v} + [—lwn] + [—lw} (mod 1) = 0 (mod ).

l l l
SUBCASE (2). If ¢ # y, x,y # 0 then (lz,ly);2 forms a group of six (cf.
(13.1)), viz.
(lz, ly)pe = (l(z — y), —ly)z = ((y — x), —lz);2 = (ly, lx)p
= (=ly, iz —y))e = (=12, l(y — ).
So the number of times this cyclotomic number will be counted in all its six
forms is

_ [l:c%—nly} n [(w—y)ll —nly} N [l(y—:v) —nlw] N [ly—{—nl;v]

N l l l

N [—ly +n(lx — ly)] N [—l:p +n(ly — lx)
l l
This shows that the contribution to S(n) from all the cyclotomic num-

bers (lz,ly);2 corresponding to the cyclotomic number (0,0); (cf. (3.6))) is O
(mod ).

] (mod 1) =0 (mod ).
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CAsE (ii). Consider a cyclotomic number of the type (lz+ h,ly);2 where
1< h<l-—1andisfixed, and 0 < x,y < [—1, together with two of its other
forms, viz. (I(y — x) — h, —h — lz);2 and (—ly,l(z — y) + h);2. The number
of times (lz + h,ly);2 appears in S(n) in these three forms is

_ [ly—l—n(lx—i—h)} N [—h—lw—i—n(l(y—:r) —h)

N [l(a;ly)-;-hynq (mod 1) l
[T [P

=\, (mod [), putting n=dl +n'.

Note that if y # 0, by there are six forms of (lz+h, ly);2, but we are
content with only three mentioned above. The other three forms correspond
to (I(x —y) + h, —ly);2. Hence the contribution to S(n) of (Ix + h,ly);» with
two of its other forms as mentioned is A, (lz + h,ly);z (mod ). Hence the
total contribution of (I + h,ly);2, (lx — h,ly — h);2 and (lz,ly + h);2 for all
0<z,y<l—11is = M(h,0); (mod ).

CASE (iii). Let 1 < h,k <1 —1 with h # k be fixed. For any 0 < z,y <
[ —1 a cyclotomic number (lz+ h,ly+k);2 forms a group of six. Six different
forms of this cyclotomic number are

(le+hly+k)p=Ux—y)+h—k,—ly—k)p=((y—x)+k—h,—lx—h);
=(y+kilz+h)pe=(ly—Fkllr—y)+h—Fk)p
= (—lz—h,l(y—x)+k—h)p.

So the number of times this cyclotomic number is counted in all its six
different forms in S(n) is

E{ly+k+;l(lx+h)}+[ ly — k+n(l( y) +h— k)}

—lrx —h - k—h)
+{ x —|—n( x) + ]
+

{lm—!—h—knly—kk)}

N
[z y—2)+ k- h—n(lw+h)] (mod 1)

. {z( y)+h— k:—nly—l—k}

l

+{h+lnk}+[h knJrl}Jr

:{k+nh}+[ kn+1 +nh} [ h(n +nk}
]

Putting n = dl + n’ we see that
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Mo — h+n'k N k+n'h N n'k—h(n' +1) N n'h—k(n' +1)
! l l l
N k—h(n'+1) N h—k(n'+1) '
l !
Hence the total contribution of (lz + h,ly + k);2 and of its five other forms
for0<z,y<l—1is
-1
> Anklla + hly + k) = Ay g(h, k).
z,y=0
This ends Case (iii).
Hence by Cases (i)—(iii),

-1
S(n) =Y " An(h,0)1+ > Apg(h, )y (mod 1),
h=1 c

where ) is taken over a set of representatives of classes of six elements of
cyclotomic numbers of order [, obtained from ({3.1]).
Now let n’ =0, i.e. (I,n) =I. Then

P [ ]

whereas

g — h+n'k N k+n'h N n’k—h(n’—kl)__'_ n'h—k(n' 4+ 1)
' l l l | l

k—h(n +1 h—k(n +1

+[ (7+)}+[ (7+)}

NN E I L L
R l l l l Ll -
We use and to obtain

-1

S(n) == (h,0);, =3 (h, k) (mod 1)
h=1 c

= 10,0~ 1~ 5 S 60 )

-1
o Mao2 0035 o)
k=1

=1 40,00~ 3 (g~ 2~ 3(f' 1) +2(0,0))

:%f’—%(q—l)zo (mod 1).

This completes the proof of the lemma. =
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Consider the Jacobi sum of order 12, J(1,n);2 = Zé(:lal)fl binCt. Writing
it in powers of ( — 1 we see that

W(i-1)—1 (1-1)—1
J(1,n)p = Z Cin(C— 1" where Cin = Z < >
1=0 m=1i

But from Y. Thara [8, p. 81] (see also R. J. Evans [7]), J(1,n)z = —1
(mod (1 — ¢)?). Therefore ¢, = —1 (mod I) and ¢} ,, = ¢, = 0 (mod I).
Hence

!
J(1,n)p =—-1+ Z (¢ —1)" (mod (1 —¢)").

We shall now get congruences for c;,, for 3 < i < [. Write m = It + u,
0<u<l—1land 0<t<I[-—2.

CASE 1. Let 3<¢<[—1. Then

<m>_m(m—l)--( m—i+1) u(u—1)-- (U—H‘l):(@.‘) (mod 1),

7

?

2! 2!

where (1;) =0 for 0 < u < i. Therefore

Z [( > (Zblt+un>] (mod 1).

We apply Lemma[5.2) to obtaln
-1

&= li K )(Zbltﬂnﬂ =y (?)B(u,n’)l (mod 7).

u=t U=t

Define, for 3 <i <[ -1,

-1
(5.3) Cim = Z <U>B u,n’
\ i
u=1

Thus ¢}, = ¢ip (mod 1), 3 <i <1 —1.

CASE 2. Let i = [. Then for m = It +u as above, ('}') =t (mod ). Using
this observation, from (5.2)) we obtain
1(1-1)-1

-2 1-1
m
CE’n = ( I )bm,n = Z Z tblt-l—j,n (mOd l)

t=0 j=0

o~

b 3

=21

|
—

t(B(lt+j,n);2 — B(I(l—1)+ j,n)pe)

(]

t=0 j=0
-2 -1 -2 -1

- tB(It + j,n lg—( t)(ZB l—l)—i—j,n)lz).
t=0 j=0 t=0 j=0
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O = Z tB(lt 4+ j,n);2 (mod ).

Let Ap, Apx and ¢ be as in Lemma[5.3] Define, for i =1,

-1
(5.4) =Y An(h,0)+ > Al k).
h=1 c
Then by Lemma [5.3
-117-1
Cln = ZZtB(lt +j,n)e = S(n) = ¢ n (mod 1).
t=0 j=0
Thus,

!
J(1,n)p=-14) cin(¢—1)" (mod (1-¢)").
i=3

Furthermore, from Lemmas [5.2f and if [|n then ¢;,, =0 (mod 1) for

3 <i<I, and we get
J(1,n)2 = —1 (mod (1 —¢)"1).

We conclude the above discussion in the following theorem.

THEOREM 5.4. Let | > 3 be a prime and p" = ¢ = 1 (mod (?). If
1 <n <I%2—1, then a (determining) congruence for J(1,n);2 for a finite
field Fy is given by

l
Janp={ 1 Z;Cz;n(C — 1) (mod (1—¢)"*Y) i ged(l,n) =1,
—1 (mod (1 —¢)"*1) if ged(ln) = 1,

where for 3 <i <1—1, ¢;p are described by (5.3) and ¢, = S(n) is given
by Lemma [5.3]
REMARK 1. Since Dickson-Hurwitz sums are sums of cyclotomic num-

bers, for 3 <14 <1, ¢;,, are integral linear combinations of cyclotomic num-
bers of order I.

REMARK 2. For a given [, the ¢;,, and hence the above congruence for
J(1,n);2 depends only on n (mod 1), i.e.

J(1, k)2 = J(1,1+ k)2 (mod (1 — ).

REMARK 3. For ged(l,n) = [, the result in the theorem also follows from
the work of R. J. Evans ([7, Thm. 1]).

REMARK 4. The absolute value of the Jacobi sum J(1,n);2 (see Thm.
2.1(5)) and its prime ideal decomposition (see [3, p. 346, Corollary 11.2.4])
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are known. In view of Lemma the congruence condition for J(1,n);:
obtained in Thm. together with the absolute value and prime ideal de-
composition gives an algebraic characterisation of J(1,7n);2 and hence of all
Jacobi sums of order /2.

REMARK 5. Congruences for Jacobi sums of order 12 (mod (1 — ¢)"*1)
could be obtained in terms of cyclotomic numbers of order [. In the same
fashion it is expected that the determining congruences for Jacobi sums of
order {", which are required modulo (1 —( )lm_1+1, can be obtained in terms
of cyclotomic numbers of order I™ ! (or of order I¥, 1 < k < m—1). Also ap-
propriate congruences for Jacobi sums of order n may be obtained in terms
of cyclotomic numbers of orders d properly dividing n. These expectations
are consistent with the result of P. van Wamelen (2002) who gave an alge-
braic characterization of Jacobi sums of order n in terms of their absolute
value, prime ideal decomposition and the Jacobi sums of orders d properly
dividing n. (See [15].)

6. Cyclotomic numbers of order [?. Let | be an odd prime. In this
section we obtain formulae for the cyclotomic numbers (h,k);2 of order I?
in terms of coefficients of the Jacobi sums of order [? and I. Such formulae
for cyclotomic numbers of order [, and cyclotomic numbers of order 2] were
obtained by S. A. Katre and A. R. Rajwade [I1], and V. V. Acharya and
S. A. Katre [I] respectively.

With the set up of Section 5, write Jacobi sums of order [ as J(1,7); =
S22 4, jwi, where a;; € Z. Let &' = Gal(Q(w)/Q) and G = Gal(Q(¢)/Q).
We compute Tre/q(J(1,7)iw™"). Note that Trg,)/q(w) = —1. Therefore,

-2
(6.1)  Trgu/a(J(Li)w™) = Trguye (X aie'™)
1=0

1—

[\

i

-2
ai; Trou) @™ =la; =Y aij.
=0

Il
o

Similarly, we compute Trg¢)/q(J(1,7)2¢~"). In this case, Trgc)/0(¢)

= 0, where ( is any primitive [?th root of unity, while Tro¢)/o(w) = —I. Let
B(i,n) = B(i,n);2. Therefore, we have

?-1
(6.2)  Trge)e(J(1,n)e¢") = Trge)/o ( > B, ”)CH)
i=0
?—1 -1

=Y B(i,n) Trge)q(¢™") =11 = )B(t,n) — 1> B(ul +t,n).

=0 u=1
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LEMMA 6.1. For t and n modulo 12, define
-1
C(t,n) :=1(l—1)B(t,n) =1 B(ul +t,n).
u=1
Let0<t<[]>—1. Writet =jl+ s, where 0 < j<Il—1and0<s<[—1.
Then
-2

C(t,n) = e(t)ben — lz buittn, where
u=0

0 {12 if0<j<l—2de0<t<l(l—1),
€ =
—l difj=1-1,ielll-1)<t<I*>-1.
Proof. (i) Let 0 < j <1 — 2. Then
-1

C(t,n) =1(1—1)B(t,n) — 1> _ B(ul +t,n)
= -1
=1(1-1)B(jl+s,n) =1 _ B((u+ )l +s,n)
u=1

= 1(l—1)B(jl+s,n) — (1 - 1)B(l(l - 1) +5,1m)

—
+1(1—=2)B(I(l—1) + s,n) zz B((u+ 5)l + s,n)
u=1

—ZZ ((u+j)l +s,n)
u=l—j

=1(l-1)(B(jl+ s,n) — B(l(l—1) + s,n))
1—2—j

—1 Z ((u+ )l +s,n)—B(I(1—-1)+s,n))

l—1
—1 > (B((u+ )l +s,n) = BI(1—1) + s,n)).
u=l—j

In the first sum put u+j = x, and in the second put u+j = x (mod (I —1)).
Hence using ((5.2)) we get

c(t, )_l(l—l)( (jl+ s,n) — BU(l — 1) + s,n))

—lz (zl +s,n) — B((l—1)4+s,n))

—1 Z (xl+s,n)— B((l—1)+ s,n))
r=7+1
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— l(l jl+s n -1 Z b:cl+s n —1 Z b:vl—i—s n

r=j+1
-2 -
= lzblers,n - lz bxl+s,n = l2bt,n - ZZ bwl+s,n~
=0
For every u, we have ul+t = zl+s (mod [(I—1)) for some x € {0,...,[—2}.
Therefore

-2
C(t,n) = Pbin =1 buirim-
u=0
(ii) Let 7 =1 — 1. Then
-1
C(t,n) =1(1—1)B(t,n) =1 B(ul +t,n)
u=1
-1
=1(1- 1B —-1)+s,n) =1 B((u—1+1I+s,n)
u=1

,lz (w—140l+s,n)—B(I(l—1)+s,n))
:_lz (u—=1)l+s,n)—B((l—-1)+s,n))

:—zz (2l +s,n) — B(I(l — 1) + s,n)).
Again, using (5 ,
1-2 -2
n) = -l Z bacl—f—s,n = -l Z bul+t,n~
=0 u=0

So from (i) and (ii) above we get
-2
(6.3) C(t,n) = e(t)brm — 1> buittn, Where
u=0
®) {12 if0<ji<l—-2ie0<t<I(l-1),
€ =
—1 ifj=1-1iell-1)<t<P?-1.m

Now we observe that

2_
( le)/z(git 4o { 2-1 ift=0,
i=1

-1 otherwise.



Jacobi sums and cyclotomic numbers 47

Therefore,
(12-1)/2
Z J(Z, 0)(Clh + C_Zh + C_lk + Clk + C—zh—Hk + Czh—zkz)
i=1
(*-1)/2 (2-1)/2 (12-1)/2
= — Z (Czh +¢ 1h Z Czk +¢ zk Z (Czh—zk + <—2h+1k)
=1 =1 i=1
=3+ 9d(h, k),

where §(h, k) is given by
—31? if h=k=0 (mod I?),
8(h,k) =< —1?> if exactly one of h,k,h — k is = 0 (mod [?),
0 if h,k,h —k # 0 (mod I?).
From , (6.1), (6.2) and Lemma we get the following

THEOREM 6.2. Let p be a prime and p" = ¢ = 1 (mod 12). Then the
cyclotomic numbers (h,k);2 of order I? are given in terms of coefficients of
the Jacobi sums of order 1 and order 1* by

-2 -2 1-2 2—21-2
P(h k) = q+1+6(h k) + 1) anjn; — Qg =1y Y buthejig
j=1 j=1i=0 j=1 u=0
-2 1-2 12-2 -2
—1 Z Z butyhitk,lit Z e(h+ jk)bnyj,j +Z e(hil + k)bnirgk,ii-
i=1 u=0 j=1 i=1

Proof. Write ¢ = 1+ [?f. Now either f is even and ¢ = p", p odd; or f
is odd and ¢ = 2". Hence by the Remark in Section 2 we get

?2-1
Phk)e =Y J(0,5)e¢ ™% (from (4.1))
i,j=0
(2-1)/2
— J(O,O)ZQ + Z J(i,O)ZQ(Cih—i—C_ih—FC_ik—I—Cik+g_ih+ik+<'ih_ik)
i=1
-2 2-2
+3° S (I E YN o (I (L, )¢
j laeG’ j=1 ceG

+ZZO‘ (il, 1) 2 ¢ ~lih=R)

i=10eG
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-2
=q+1+6(hk)+ Z TrQ(w)/Q(J(l,j)lw*h*jk) (from above)
j=1
12-2 ' -1 .
+ 3 Trgey (L)) + ) Trge (I (1, 1) F)
=1 i=1
-2 -2
— g+ 18k +Y (zahﬂ-m -y am> (from (6.1))
j=1 i=0
2-2 2-1 2—1
+ ZTrQ(C )/ (Z B(i, )¢ " ]k)JFZTf@ 0/e (ZB DI
-2 -2 1-2
=q+1+0(h,k) —l—lzah-wk] Zzaz‘,j
Jj=1 i=0 j=1
12-2 2-1
+ 3 Tigeye (X Bl +h+ ik 5)¢")
j=1 t=0
- ?-1
+ZTI"Q(O/Q ( B(t+lih+k‘,li)§t>
t=0
- -2 1-2
=q+1+0(hk) +lZah+m PIPIE
j=1 7=111=0
122 -1
+3 [zu ~1)B(h+ jk,j) — 1> Bal+h +jk,j)}
j=1 =1
-1 -1
+3 [za — 1)B(lih + k1)) — 1> B(al + hil + k, zz')} (from (6.2))
=1 =1
-2 -2 1-2
=g+ 140(h, k) +1D anije;— > Y ai
j=1 j=1i=0
122 -1
+ Y C(h+ jk,j) + Y C(hil + k, 1)
j=1 i=1
-2 -2 1-2 12-21-2
=q+1+0(hk) +1D antjrg— D> aij =13 > bushtik,
j=1 j=1 i=0 j=1 u=0
-2 -2 12-2 -2
— I > bugniciksi+ Y €4 k)b + > e(hil + k)bnir i
=1 u=0 7j=1 =1

where the last equality is obtained using Lemma .
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REMARK. For cyclotomic numbers of order 9 see also [2].
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