
ACTA ARITHMETICA

147.3 (2011)

Noether forms for the study of
non-composite rational functions and their spectrum
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Salah Najib (Brive)

Introduction. Consider a non-constant polynomial f ∈ K[X1, . . . , Xn],
n ≥ 2, where K is a field. Denoting by K the algebraic closure of K, the
spectrum of f is the set

σ(f) := {λ ∈ K : f − λ is reducible in K[X1, . . . , Xn]} ⊂ K.

We recall that a polynomial f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] is said to be
absolutely irreducible if it is irreducible in K[X1, . . . , Xn].

It is customary to say that f is non-composite if it cannot be written in
the form u(h(X)) with h(X) ∈ K[X], u(t) ∈ K[t] and deg(u) ≥ 2. A famous
theorem of Bertini states that f is non-composite if and only if σ(f) is finite;
see for instance [20, Theorem 37]. Furthermore, Stein proved in [22] that if
f is non-composite, then the cardinality of σ(f) does not exceed deg(f)−1;
see also [17, 16, 7, 12].

Recently in [4], A. Bodin, P. Dèbes, and S. Najib have studied the behav-
ior of the spectrum of a polynomial via a ring morphism. Here we generalize
this study to the spectrum of a rational function and we give explicit bounds.

Let f and g be two non-constant relatively prime polynomials in
K[X1, . . . , Xn], n ≥ 2. The spectrum of the rational function r = f/g ∈
K(X1, . . . , Xn) is the set

σ(f, g) := {(λ : µ) ∈ P1
K : µf ] − λg] is reducible in K[X0, X1, . . . , Xn]}

with

f ] := X
deg(r)
0 f

(
X1

X0
, . . . ,

Xn

X0

)
, g] := X

deg(r)
0 g

(
X1

X0
, . . . ,

Xn

X0

)
,
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where deg(r) := max(deg(f),deg(g)). That is,

σ(f, g) := {(λ : µ) ∈ P1
K : µf − λg is reducible in K[X1, . . . , Xn]

or deg(µf − λg) < deg(r)}.

In a more geometric terminology, σ(f, g) counts the number of reducible
hypersurfaces in the pencil of hypersurfaces defined by the equations
µf ] − λg] = 0 with (λ : µ) ∈ P1

K.
Again, r is said to be non-composite if it cannot be written in the form

u(h(X)) with h(X) ∈ K(X) and u(t) ∈ K(t), deg(u) ≥ 2. Actually, σ(f, g)
is finite if and only if r is non-composite and if and only if the pencil of
projective algebraic hypersurfaces µf ]−λg] = 0, (µ : λ) ∈ P1

K, has its general
element irreducible (see for instance [10, Chapitre 2, Théorème 3.4.6] or [3,
Theorem 2.2] for detailed proofs). Notice that the study of σ(f, g) is trivial
if d = 1 or n = 1. Therefore, throughout this paper we will always assume
that d ≥ 2 and n ≥ 2.

The study of the spectrum is related to the computation of the number of
reducible curves in a pencil of algebraic plane curves. This problem has been
widely studied. As far as we know, the first related result was obtained by
Poincaré [18]. Poincaré’s bound was improved by many writers: see e.g. [19,
16, 23, 1, 3]. In [5] the authors study the number (counted with multiplicity)
of reducible curves in a pencil of algebraic plane curves. The method used
relies on an effective Noether irreducibility theorem given by W. Ruppert
in [19].

In this article, we follow the strategy of [5] using in addition basic results
of elimination theory. More precisely, in the first section we give some pre-
liminaries which are used throughout this work. In the second section, we
show that the spectrum consists of the roots of a particular homogeneous
polynomial denoted Spectf,g. If ϕ is a morphism then we find that, under
some suitable hypothesis, ϕ(Spectf,g) is equal to Spectϕ(f),ϕ(g). For two spe-
cial situations, namely when f, g ∈ Z[X] and ϕ is the reduction modulo a
prime number p, or when f, g ∈ K[Z1, . . . , Zs][X] and ϕ sends Zi to zi ∈ K,
we give explicit results in terms of the degree, the height and the number of
variables of f/g.

In the last section we study the behavior of a composite rational func-
tion. More precisely we show that, under some suitable hypothesis, “f/g
is composite over its coefficient field” if and only if “f/g is composite over
any extension of its coefficient field”. Thanks to the effective Noether ir-
reducibility theorem, we then show that if r is a non-composite rational
function with integer coefficients and p is a large prime, then r modulo p
is also non-composite. An explicit lower bound is given for such a prime.
Finally, with the same approach we also study the specialization of a non-



Noether forms for rational functions 219

composite rational function with coefficients in K[Z1, . . . , Zn] after the eval-
uation Zi = zi ∈ K, i = 1, . . . , n. We end the paper with a Bertini-like result
for non-composite rational functions.

Notation. If

f(X1, . . . , Xn) =
∑
i1,...,in

ci1,...,inX
i1
1 . . . Xin

n ∈ Z[X1, . . . , Xn]

then we set

H(f) = max
i1,...,in

|ci1,...,in | and ‖f‖1 =
∑
i1,...,in

|ci1,...,in |.

The field with p elements, Z/pZ, is denoted by Fp. Given a polynomial
f ∈ Z[X] and a prime p ∈ Z, we will use the notation f

p for the reduction
of f modulo p, that is, the class of f in Fp[X]. Finally, for any field K we
denote by K its algebraic closure.

For simplicity, given a ring morphism ρ : A→ B, we will still denote by
ρ its canonical extensions to polynomials, A[X] → B[X], and to matrices,
Matp,q(A)→ Matp,q(B).

1. Preliminaries. This section is devoted to the statement of some
algebraic properties that are deeply rooted in elimination theory.

1.1. Noether reducibility forms. We recall some effective results
about Noether forms that give a necessary and sufficient condition on the
coefficients for a polynomial to be absolutely irreducible. We refer the reader
to [21, 20, 13, 19] for different types of such forms.

Theorem 1. Let K be a field of characteristic zero, d, n ≥ 2 and

f(X1, . . . , Xn) =
∑

0≤e1+···+en≤d
ce1,...,enX

e1
1 . . . Xen

n ∈ K[X1, . . . , Xn].

There exists a finite set of polynomials

Φt(. . . , Ce1,...,en , . . . ) ∈ Z[. . . , Ce1,...,en , . . . ]

such that

∀t, Φt(. . . , ce1,...,en , . . . ) = 0

⇔ f is reducible in K[X1, . . . , Xn] or deg(f) < d,

⇔ F (X0, . . . , Xn) is reducible in K[X0, . . . , Xn],

where F is the homogeneous polynomial Xdeg(f)
0 f(X1/X0, . . . , Xn/X0). Fur-

thermore,

deg(Φt) ≤ d2 − 1 and ‖Φt‖1 ≤ d3d2−3

((
n+ d

n

)
2d
)d2−1

.
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If K has positive characteristic p > d(d − 1), then the above statement re-
mains valid save that the Φt are now polynomials with coefficients in Fp.

Proof. In characteristic zero the conclusion has been proved by Rup-
pert [19]. Gao [8, Lemma 2.4] showed that the conclusion is implied by the
non-vanishing of a certain resultant. This covers the case of positive char-
acteristic p > d(d− 1).

It should be noticed that a similar theorem is true without any hypothesis
on the characteristic of the ground field K (see e.g. [13, Theorem 7]), but
then the estimates for the degrees and heights are much weaker than the
ones given here.

1.2. GCDs of several polynomials under specialization. The fol-
lowing theorem is a classical result of elimination theory. Modern statements
and proofs can be found in [11, §2.10] and [14, Corollaire of Théorème 1].

Theorem 2. Let A be a domain and f1, . . . , fn be n ≥ 2 homogeneous
polynomials in A[U, V ] of degrees d1 ≥ · · · ≥ dn ≥ 1 respectively. The polyno-
mials f1, . . . , fn have a common root in the projective line over the algebraic
closure of the fraction field of A if and only if the multiplication map (1)

n⊕
i=1

A[U, V ]d1+d2−di−1
ϕ−→ A[U, V ]d1+d2−1 : (g1, . . . , gn) 7→

n∑
i=1

gifi

does not have (maximal) rank d1 + d2.
In particular, given a field L and a ring morphism ρ : A → L, ρ(f1),

. . . , ρ(fn) have a common root in the projective line over L if and only if
ρ(ϕ) does not have (maximal) rank d1 + d2.

This theorem allows us to control the behavior of GCDs of several poly-
nomials with coefficients in a UFD under specialization. Hereafter, we will
always assume that polynomial GCDs over a field are taken to be monic
with respect to a certain monomial order (e.g. the lexicographical order).

Corollary 3. Let A be a UFD, let f1, . . . , fn be n≥ 2 non-zero homo-
geneous polynomials in A[U, V ] and let ρ : A → L be a ring morphism into
a field L. Let α ∈ A be the leading coefficient of gcd(f1, . . . , fn) ∈ A[U, V ].
There exists a finite collection (ci)i∈I of computable elements in A with the
following property: if ρ(ci) 6= 0 for some i ∈ I then

ρ(gcd(f1, . . . , fn)) = ρ(α) · gcd(ρ(f1), . . . , ρ(fn)) ∈ L[U, V ].

Proof. Set gρ = gcd(ρ(f1), . . . , ρ(fn)) ∈ L[U, V ], which is a monic poly-
nomial, and g = gcd(f1, . . . , fn) ∈ A[U, V ]. For all i = 1, . . . , n there exists a

(1) The notation A[U, V ]d, d ∈ N, stands for the free A-module of homogeneous
polynomials of degree d.
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polynomial hi ∈ A[U, V ] such that fi = ghi. It follows that ρ(fi) = ρ(g)ρ(hi)
and hence ρ(g) divides gρ. Furthermore, h1, . . . , hn have no homogeneous
common factor of positive degree in A[U, V ], so by Theorem 2 there exists a
multiplication map, say ϕ, with the property that ρ(h1), . . . , ρ(hn) have no
homogeneous common factor in L[U, V ] if the rank of ρ(ϕ) is maximal. De-
noting by (ci)i∈I the collection of maximal minors of a matrix of ϕ, the fact
that the rank of ρ(ϕ) is not maximal is equivalent to the fact that ρ(ci) = 0
for all i ∈ I. Therefore, we deduce that ρ(g) and gρ are equal in L[U, V ] up
to an invertible element if ρ(ci) 6= 0 for some i ∈ I. Since gρ is monic by
convention, the claimed equality is obtained by comparison of the leading
coefficients.

In this paper we will be mainly interested in two particular cases: when
A = Z and ρ is the reduction modulo p, and when A = K[Z1, . . . , Zs] and
ρ : A→ K is an evaluation morphism. Our next task is to detail Corollary 3
in these two situations.

Proposition 4. Let f1, . . . , fn ∈ Z[U, V ] be n ≥ 2 homogeneous polyno-
mials of positive degree and set

d = max
i

deg(fi), H = max
i
H(fi).

(i) If f1, . . . , fn have no (homogeneous) common factor of positive degree
in Z[U, V ], then f

p
1, . . . , f

p
n have no (homogeneous) common factor

of positive degree in Fp[U, V ] for all primes

p > ddH2d.

(ii) Denoting by α∈Z the leading coefficient of gcd(f1, . . . , fn)∈Z[U, V ],
we have

αp · gcd(f p1, . . . , f
p
n) = gcd(f1, . . . , fn)

p ∈ Fp[U, V ]

for all primes
p > dd(d+ 1)d22d2H2d.

Proof. Denote by d1 ≥ · · · ≥ dn ≥ 1 the degrees of f1, . . . , fn respec-
tively. Observe that d = d1. By Theorem 2, the hypothesis implies that the
multiplication map

n⊕
i=1

A[U, V ]d1+d2−di−1 → A[U, V ]d1+d2−1 : (g1, . . . , gn) 7→
n∑
i=1

gifi

has maximal rank d1 + d2. Using Hadamard’s inequality [24, Theorem 16.6]
we find that the absolute value of each (d1 + d2)-minor of the matrix of the
above multiplication map is bounded above by

(
√
dH2)d1+d2 = d(d1+d2)/2Hd1+d2 ≤ ddH2d.
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Therefore, one of these minors remains non-zero modulo p, and Theorem 2
implies that f p1, . . . , f

p
n do not have a common root in the projective line

over an algebraically closed field extension of Fp. We deduce that f p1, . . . , f
p
n

do not have a homogeneous common factor of positive degree in Fp[U, V ],
and (i) is proved.

To prove (ii) we use Corollary 3 and the notation introduced in its
proof. For all i = 1, . . . , n there exists a homogeneous polynomial hi ∈
Z[U, V ] such that fi = ghi and we know that the claimed equality holds
if ρ(h1), . . . , ρ(hn) do not have a homogeneous common factor of positive
degree in Fp[U, V ]. Now, for all i = 1, . . . , n we have deg(hi) ≤ d. Moreover,
Mignotte’s bound [24, Corollary 6.33] implies that H(hi) ≤ (d + 1)1/22dH.
Therefore, applying (i) we deduce that the claimed equality holds if

p > ed ln(d)[(d+ 1)1/22dH]2d = ed ln(d)(d+ 1)d22d2H2d.

It should be noticed that a result similar to (i) has been proved in [26,
last paragraph of page 136] but with a larger bound for the prime integer p,
namely e2nd

2
H2d. Also, to convince the reader that the bound given in (ii)

is not too rough, we mention that in the case n = 2 it is not difficult to see
that (see for instance [24, Theorem 6.26] or [25, §4.4])

(1.1) gcd(f1, f2)
p

= α · gcd(f 1, f 2) ∈ Fp[U, V ]

if and only if p - Res(h1, h2) ∈ Z, where fi = gcd(f1, f2)hi, i = 1, 2, and
Res(h1, h2) is the resultant of h1 and h2. Therefore, it appears necessary to
bound H(hi), i = 1, 2, in terms of H(fi), i = 1, 2.

Now, we turn to the second case of application of Corollary 3. For that
purpose, we introduce a new set of indeterminates Z := (Z1, . . . , Zs).

Proposition 5. Let f1, . . . , fn be n ≥ 2 polynomials in K[Z][U, V ] that
are homogeneous with respect to the variables U, V of degree d with coeffi-
cients in K[Z]. Also, let ρ : K[Z]→ K be a ring morphism and assume that
all coefficients of f1, . . . , fn are polynomials in K[Z] of degree ≤ k.

(i) If f1, . . . , fn have no (homogeneous) common factor of positive degree
in K[Z][U, V ], then there exists a finite collection (pi)i∈I of non-zero
elements in K[Z] of degree ≤ 2dk such that ρ(f1), . . . , ρ(fn) have no
(homogeneous) common factor of positive degree in K[U, V ] if ρ(pi),
i ∈ I, are not all zero.

(ii) Denoting by α ∈ K[Z] the leading coefficient of gcd(f1, . . . , fn) ∈
K[Z][U, V ] as a homogeneous polynomial in the variables U , V , there
exists a finite collection (qi)i∈I of non-zero elements in K[Z] of degree
≤ 2dk such that if ρ(qi), i ∈ I, are not all zero, then

ρ(α) · gcd(ρ(f1), . . . , ρ(fn)) = ρ(gcd(f1, . . . , fn)) ∈ K[U, V ].

Proof. Analogous to the proof of Proposition 4.
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2. Study of the spectrum of a rational function. Let A be a UFD,
K be its fraction field and r = f/g ∈ K(X1, . . . , Xn) be a rational func-
tion such that f, g ∈ A[X1, . . . , Xn] and gcd(f, g) = 1. Set d := deg(r) =
max(deg(f),deg(g)). We recall that, by definition, the spectrum of r is the
set

σ(f, g) := {(λ : µ) ∈ P1
K : µf ] − λg] is reducible in K[X0, X1, . . . , Xn]}

where

f ] := X
deg(r)
0 f

(
X1

X0
, . . . ,

Xn

X0

)
, g] := X

deg(r)
0 g

(
X1

X0
, . . . ,

Xn

X0

)
.

Assume that σ(f, g) is finite and denote by Φt(U, V ) the Noether re-
ducibility forms associated to the polynomial

V f ](X0, . . . , Xn)− Ug](X0, . . . , Xn) ∈ A[U, V ][X0, X1, . . . , Xn].

These forms are all homogeneous polynomials in A[U, V ] by construction.
We will denote their GCD by Spectf,g(U, V ) ∈ A[U, V ]. By Theorem 1, for
all (λ : µ) ∈ P1

K we have

Spectf,g(λ : µ) = 0 ⇔ (λ : µ) ∈ σ(f, g).

As an immediate consequence of Corollary 3, we have the following prop-
erty. Given a morphism ρ : A→ L, where L is a field, there exists a non-zero
element c of A such that if ρ(c) 6= 0 then

ρ(Spectf,g) = γ · Spectρ(f),ρ(g) for some γ ∈ L \ {0}.

In what follows, we will investigate this property in two particular cases
of interest: when A = Z and ρ is the reduction modulo p, and when A =
K[Z1, . . . , Zs] and ρ : A→ K is an evaluation morphism.

2.1. Spectrum and reduction modulo p

Theorem 6. Let f, g ∈ Z[X1, . . . , Xn] with gcd(f, g) = 1. Set d =
deg(f/g) = max(deg(f), deg(g)). For all primes p > B with

B = 22(d2−1)2d2d2−2(d2 − 1)d
2−1H2d

where

H = d3d2−3

((
n+ d

n

)
2d
)d2−1( d2 − 1

b(d2 − 1)/2c

)
max(H(f), H(g))d

2−1

we have
Spectpf,g = κ · Spectf p

,gp

in the polynomial ring Fp[U, V ] for some κ ∈ Fp \ {0}.
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Proof. From the definition of Spectf,g(U, V ), this is a consequence of
Theorem 1. Indeed, straightforward computations show that

H(Φt(V f ] − Ug])) ≤ ‖Φt‖1H((V f ] − Ug])d2−1)

and

H((V f ] − Ug])d2−1) ≤
(

d2 − 1
b(d2 − 1)/2c

)
max(H(f), H(g))d

2−1.

It follows that

H(Φt(V f ] − Ug]))

≤ d3d2−3

((
n+ d

n

)
2d
)d2−1( d2 − 1

b(d2 − 1)/2c

)
max(H(f), H(g))d

2−1.

Now, applying Proposition 4 with degree d2 − 1 and height H1 we obtain

Spectf,g(U, V )
p

= gcd(Φt(V f ] − Ug]))
p

= κ · gcd(Φt(V f ] − Ug])
p
)

if p > B, for some κ ∈ Fp \ {0}, and therefore

Spectf,g(U, V )
p

= κ · Spectf p
,gp(U, V )

by Theorem 1.

As a consequence we obtain an analog of Ostrowski’s result. The classical
Ostrowski theorem asserts that if a polynomial f is absolutely irreducible
then so is f p providing p is large enough. In our context we get

Corollary 7. In the notation of Theorem 6, if σ(f, g) = ∅ then
σ(f p, gp) = ∅ for all primes p > B.

Before moving on, we mention that our strategy can be used similarly to
deal with the case of polynomials in A[X1, . . . , Xn] and reduction modulo a
prime ideal of A.

2.2. Spectrum of a rational function with coefficients in K[Z]

Theorem 8. Let f, g ∈ K[Z1, . . . , Zs][X1, . . . , Xn] with degZ(f) ≤ k,
degZ(g) ≤ k, degX(f) ≤ d and degX(g) ≤ d. Given z := (z1, . . . , zs) ∈ Ks,
denote by evz the ring morphism K[Z1, . . . , Zs]→ K that sends Zi to zi for
all i = 1, . . . , s. There exists a finite collection of non-zero polynomials in
K[Z], say (qi)i∈I , of degree smaller than 2(d2 − 1)2k with the property that
if evz(qi) ∈ K are not all zero then

evz(Spectf,g) = κ · Spectevz(f),evz(g)
for some κ ∈ K \ {0}.

Proof. We consider again Noether’s forms (Φt(V f ] − Ug]))t∈T . By con-
struction, degZ(Φt(V f ] − Ug])) ≤ (d2 − 1)k and degU,V (Φt(V f ] − Ug])) ≤
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d2 − 1. Therefore, Proposition 5 yields a finite collection of polynomials
(qj)j∈J in K[Z] of degree smaller than 2(d2 − 1)2k with

evz(Spectf,g) = κ · Spectevz(f),evz(g)
for some κ ∈ K \ {0}

if evz(qj) 6= 0 for some j ∈ J .

This result has the following probabilistic corollary that follows from the
well known Zippel–Schwartz Lemma that we recall.

Lemma 9 (Zippel–Schwartz). Let P ∈ A[X1, . . . , Xn] be a polynomial of
total degree d, where A is an integral domain. Let S be a finite subset of A.
For a uniform random choice of xi in S we have

P({P (x) = 0 | xi ∈ S}) ≤ d/|S|,
where |S| denotes the cardinality of S, and P the probability.

Corollary 10. With the notation of Theorem 8, let S be a finite subset
of K. If σ(f, g) = ∅ then for a uniform random choice of the zi’s in S we
have

σ(evz(f), evz(g)) = ∅

with probability at least 1− 2(d2 − 1)3k2/|S|.

Proof. As σ(f, g) = ∅, Spectf,g =: c(Z) is a non-zero polynomial
in K[Z] of degree less than k(d2 − 1). Therefore, if qic(z) 6= 0 for some
i ∈ I, where (qi)i∈I is the collection of polynomials in Theorem 8, then
Spectevz(f),evz(g)

∈ K.

3. Indecomposability of rational functions. In the previous sec-
tion we have studied the spectrum of a rational function. It turns out that
the spectrum of r(X1, . . . , Xn) ∈ K(X1, . . . , Xn) is closely related to the
indecomposability of r over K. After recalling this link, we will study the
indecomposability of rational functions.

Theorem 11. Let K be a field of characteristic p ≥ 0. Let r = f/g ∈
K(X1, . . . , Xn) be a non-constant reduced rational function. The following
are equivalent:

(i) r is composite over K,
(ii) f − λg is reducible in K[X1, . . . , Xn] for all λ ∈ K such that

deg(f − λg) = deg(r),
(iii) f(X1, . . . , Xn)− Tg(X1, . . . , Xn) is reducible in K(T )[X1, . . . , Xn].

Remark 12. We recall that this kind of result is already known for the
polynomial case (see for instance [6, Lemma 7]).

Proof of Theorem 11. (i)⇔(ii): See [3, Theorem 2.2].
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(ii)⇒(iii): Statement (ii) means that for all λ∈K such that deg(f−λg)
= deg(r), we have Φt(f − λg) = 0 for all t. Then Φt(f − Tg) has an infinite
number of roots in K and thus Φt(f − Tg) = 0 for all t. This implies that
f − Tg is reducible in K(T )[X1, . . . , Xn].

(iii)⇒(ii): Statement (iii) means that Φt(f − Tg) = 0 ∈ K[T ] for all t.
Hence, if λ ∈ K is such that deg(f − λg) = deg(r), we can conclude thanks
to Theorem 1 that f − λg is reducible in K[X1, . . . , Xn].

The following theorem shows that under some hypothesis, r is composite
over K if and only if it is composite over K. Therefore, we will sometimes
say hereafter that r is composite instead of r is composite over its coefficient
field.

Theorem 13. Let K be a perfect field of characteristic p = 0 or p ≥ d2

and let r = f/g ∈ K(X1, . . . , Xn), n ≥ 2, be a non-constant reduced rational
function of degree d. Then r is composite over K if and only if it is composite
over K.

Proof. Obviously, if r is composite over K then it is composite over any
extension of K and thus over K. So, suppose that r = u(h) with deg(u) ≥ 2,
u ∈ K(T ) and h ∈ K(X1, . . . , Xn). We have u = u1/u2 where u1, u2 ∈ K[T ],
and h = h1/h2 is reduced and non-composite with h1, h2 ∈ K[X1, . . . , Xn].
We are going to show that there exist U ∈ K(T ) and H ∈ K(X1, . . . , Xn)
such that r = U(H).

The notation mdeg(f) denotes the multi-degree of f associated to a given
monomial order ≺ and lc(f) denotes the leading coefficient of f associated
to ≺.

Step 1: One can suppose that lc(f) = 1, lc(g) = 1 and mdeg(f) �
mdeg(g). Indeed, to satisfy the first condition, we just have to take f/lc(f)
and g/lc(g). Then, for the second condition, if mdeg(f) ≺ mdeg(g) we take
g/f , and if mdeg(f) = mdeg(g) we set F = f , G = f − g and take F/G.
Indeed, f/g is composite over K if and only if F/G is composite over K.

Step 2: One can suppose that lc(h1) = 1, lc(h2) = 1 and mdeg(h1) �
mdeg(h2). This actually follows by the same trick as in the first step. We just
have to remark that if r = u(h1/h2) then r = v(h2/h1) with v(T ) = u(1/T ).

Step 3: One can suppose that h1(0, . . . , 0) = 0 and h2(0, . . . , 0) 6= 0.
Indeed, if h2(0, . . . , 0) 6= 0 then we can consider

H1 = h1 −
(
h1(0, . . . , 0)
h2(0, . . . , 0)

)
h2

and H2 = h2. Then we can write r = v(H1/H2) with H1 and H2 satisfying
the above conditions and the ones of the second step.
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Now, if h2(0, . . . , 0) = 0 then a linear change of coordinates r(X1 − a1,
. . . , Xn−an), with (a1, . . . , an) ∈ Kn such that h2(a1, . . . , an) 6= 0, gives the
desired result. So we just have to show that there exists such an element
(a1, . . . , an) ∈ Kn if p ≥ d2 (this is clear if p = 0). To do this, we observe
that deg(h2) ≤ d < p and assume towards a contradiction that

h2(X1, . . . , Xn)
= c0(X1, . . . , Xn−1) + c1(X1, . . . , Xn−1)Xn + · · ·+ cd(X1, . . . , Xn−1)Xd

n

with ci(X1, . . . , Xn−1) ∈ K[X1, . . . , Xn−1] and h2(x1, . . . , xn) = 0 for all
(x1, . . . , xn)∈Kn. Then, for any (x1, . . . , xn−1)∈Kn−1, h2(x1, . . . , xn−1, Xn)
∈ K[Xn] has degree ≤ d and at least p distinct roots in K. It follows that
h2(x1, . . . , xn−1, Xn) is the null polynomial and hence

∀i = 0, . . . , d, ∀(x1, . . . , xn−1) ∈ Kn−1, ci(x1, . . . , xn−1) = 0.

Now, since ci(X1, . . . , Xn−1) also has degree ≤ d, we can continue this pro-
cess to end up with the conclusion that h2 = 0 in K[X1, . . . , Xn].

Step 4: h2(X1, . . . , Xn) ∈ K[X1, . . . , Xn]. To show this, we are going to
prove that if r, h1 and h2 satisfy the hypothesis of the previous steps then
h2 ∈ K[X1, . . . , Xn].

Let λ ∈ K be such that deg(f + λg) = deg(r) = d. Since r is composite
over K, it follows that f + λg is reducible over K by Theorem 11, and we
have

f + λg = α

m∏
i=1

(h1 + λih2),

where λi are the roots of u1 +λu2 = α
∏m
i=1(T −λi) (see the proof of [3, Co-

rollary 2.4]). Thanks to Steps 1 and 2, lc(f + λg) = 1 and lc(h1 + λih2) = 1
so that α = 1. As h1/h2 is non-composite we can find λ ∈ K such that for
all i, h1+λih2 is irreducible over K, because |σ(h1, h2)| ≤ d2−1 and p = 0 or
p > d2 (the bound |σ(h1, h2)| ≤ d2−1 is proved for any field in the bivariate
case in [16], and its extension to the multivariate case is easily obtained by
using Bertini’s Theorem; see for instance [5, proof of Theorem 13] or [3]).

Now let τ ∈ Galois(L/K), where L is the field generated by all the
coefficients of u1, u2, h1, h2. We have

f + λg = τ(f + λg) =
m∏
i=1

(τ(h1) + τ(λi)τ(h2)).

As lc(τ(h1) + τ(λi)τ(h2)) = 1 and τ(h1) + τ(λi)τ(h2) is also irreducible
over K, we can write

h1 + λ1h2 = τ(h1) + τ(λi1)τ(h2),(?)
h1 + λ2h2 = τ(h1) + τ(λi2)τ(h2).

Thus, (λ1 − λ2)h2 = (τ(λi1) − τ(λi2))τ(h2). As lc(h2) = 1, we deduce that
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λ1 − λ2 = τ(λi1) − τ(λi2) and then h2 = τ(h2). This implies that h2 ∈
K[X1, . . . , Xn] because K is a perfect field.

Step 5: h1 ∈ K[X1, . . . , Xn]. Indeed, (?) and the hypothesis h1(0, . . . , 0)
= 0 (see Step 3) imply that λ1h2(0, . . . , 0) = τ(λi1)h2(0, . . . , 0). As
h2(0, . . . , 0) 6= 0 (by Step 3 again), we get λ1 = τ(λi1). Then (?) means
that h1 = τ(h1) and this concludes the proof because K is a perfect field.

Remark 14. First, notice that the above result obviously remains true
when we take any extension of K instead of K. Also, observe that the con-
clusion of this theorem is false for univariate (2) (n = 1) rational functions;
see [9, Example 5]. Finally, we mention that if p ≤ d2 and the field K is not
perfect then the conclusion is also false. Indeed, in [2, p. 27] one can find the
following counterexample: f(X,Y ) = Xp+bY p = (X+βY )p, with b ∈ K\Kp

and βp = b, is composite in K(β) (which is clear) but non-composite in K
(which is proved there).

Theorems 11 and 13 yield
Corollary 15.

r = f/g is non-composite ⇔ Spectf,g(U, V ) 6= 0 in K[U, V ]
⇔ σ(f, g) is finite.

Corollary 15 clearly implies several results about the indecomposabil-
ity of r. For instance, if r = f/g is a non-composite rational function
where f, g ∈ Z[X1, . . . , Xn], and p is a prime greater than H(Spectf,g) and
the bound B of Theorem 6, then rp is non-composite. Indeed, Spectpf,g =
Spectf p

,gp 6= 0 in Fp[U, V ] for all p > B.
With this strategy we could deduce several similar results, but the

bounds obtained in this way can be improved. Indeed, when we use the poly-
nomial Spect we have to study the GCD of the Φt(Uf−V g)’s. But if r is sup-
posed to be non-composite then there exists a t0 such that Φt0(Uf−V g) 6= 0.
In this case it is enough to study the behavior of one polynomial instead
of the GCD of several polynomials. Thus, in what follows we are going to
study the indecomposability of a rational function using Noether forms.

3.1. Reduction modulo p

Theorem 16. Let r = f/g ∈ Z(X) be a non-constant reduced and non-
composite rational function and set

H = d3d2−3

((
n+ d

n

)
2d
)d2−1( d2 − 1

b(d2 − 1)/2c

)
max(H(f), H(g))d

2−1.

If p > H then rp is non-composite and f p, gp are coprime.

(2) Recall that a non-constant univariate rational function r(X) ∈ K(X) is called
composite over a field K if r(X) = u(h(X)) for some u, h ∈ K(X) with deg(u), deg(h) ≥ 2.
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Proof. Thanks to Theorem 11, we know that f − Tg is irreducible in
Q(T )[X1, . . . , Xn]. Therefore, there exists t0 such that Φt0(f − Tg) 6= 0 in
Z[T ]. Now, if p > H then Φ

p
t0(f p − Tgp) 6= 0 (see the proof of Theorem 6).

This means that f p − Tgp is irreducible in Fp(T )[X1, . . . , Xn] and hence rp

is non-composite by Theorem 11. Of course, f p and gp are coprime because
otherwise f p − Tgp cannot be irreducible.

3.2. Indecomposability of rational functions with coefficients
in K[Z]

Theorem 17. Let d and k be positive integers, K be a perfect field of
characteristic 0 or p ≥ d2, r = f/g ∈ K[Z](X) be a non-constant reduced
rational function with 0 < degX(r) ≤ d, 0 < degZ(r) ≤ k, and S be a finite
subset of K. If r is non-composite over K(Z) then for a uniform random
choice of zi in S we have

P({r(z1, . . . , zs, X) is non-composite over K | zi ∈ S}) ≥ 1− k(d2 − 1)/|S|.

Proof. Assume that r is non-composite over K(Z). Then, by Theorem 11,
f−Tg is irreducible in K(Z, T )[X]. Thus there exists t0 such that Φt0(f−Tg)
6= 0 in K[Z][T ]. We can write Φt0(f − Tg) =

∑D
i=0 aiT

i with ai ∈ K[Z]
and aD 6= 0 ∈ K[Z]. Therefore, for all z ∈ Ks such that aD(z) 6= 0 the
rational function r(z,X) is non-composite. Furthermore Theorem 1 gives
degZ(ai) ≤ k(d2 − 1). Then Lemma 9 applied to aD(Z) gives the desired
result.

Remark 18. Theorem 17 is false with the hypothesis “r is non-composite
over K” instead of “r is non-composite over K(Z)”. Indeed, take n = 2 and
s = 1 and consider the polynomial f(X,Y, Z) = (XY )2 + Z. It is non-
composite over K (because degZ(f) = 1) but f(X,Y, z) = (XY )2 + z is
composite over K for all z ∈ K.

3.3. A reduction from n to two variables. We give the following
Bertini-like result.

Theorem 19. Let K be a perfect field of characteristic 0 or p ≥ d2,
S be a finite subset of K, and r = f/g ∈ K(X1, . . . , Xn) be a reduced non-
composite rational function. For uniform random choices of the ui’s, vi’s
and wi’s in S, the rational function

r̃(X,Y ) = r(u1X + v1Y + w1, . . . , unX + vnY + wn) ∈ K[X,Y ]

is non-composite with probability at least 1− (3d(d− 1) + 1)/|S| where d is
the degree of r.
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Proof. As before, we study f − Tg. This polynomial is irreducible over
K(T ) by Theorem 11. We apply to this polynomial Lemma 7 in [13] and
the effective Bertini Theorem given in [15, Corollary 8]. We find that
f̃(X,Y ) − T g̃(X,Y ) is irreducible in K(T )[X,Y ] with probability at least
1− (3d(d−1)+1)/|S|. Then Theorem 11 yields the desired result about r̃.
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