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Regular positive ternary quadratic forms
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1. Introduction. A positive definite integral quadratic form f is called
regular if f represents all integers that are represented by the genus of f .
Regular quadratic forms were first studied systematically by Dickson in
[4] where the term “regular” was coined. Jones and Pall in [9] classified
all primitive positive definite diagonal regular ternary quadratic forms. In
the last chapter of his doctoral thesis [15], Watson showed by arithmetic
arguments that there are only finitely many equivalence classes of primitive
positive definite regular ternary forms. More generally, a positive definite
integral quadratic form f is called n-regular if f represents all quadratic
forms of rank n that are represented by the genus of f . It was proved in [2]
that there are only finitely many positive definite primitive n-regular forms
of rank n+ 3 for n ≥ 2. See also [13] for the structure theorem for n-regular
forms in higher rank cases.

The problem of enumerating the equivalence classes of the primitive pos-
itive definite regular ternary quadratic forms was recently resurrected by
Kaplansky and his collaborators [8]. They provided a list of 913 candidates
for primitive positive definite regular ternary forms and stated that there
are no others. All but 22 of 913 are already verified to be regular. In fact, the
algorithm of [8] relies on the complete list of those regular ternary quadratic
forms with square free discriminant [17] and a method of descent set forth
by Watson in [15]. This method of descent involves a collection of transfor-
mations which change a regular ternary form to another one with smaller
discriminant and simpler local structure, and it is this method which en-
ables Watson to obtain the explicit discriminant bounds for regular ternary
quadratic forms.

There are 794 primitive positive definite ternary quadratic forms having
class number 1, and those forms are regular. If a positive ternary form f has
class number greater than 1, then as far as the author knows, there is no
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general method of determining the set of all integers that are represented
by f . In 1990, Duke and Schulze-Pillot proved in [5] that for any positive
definite ternary form f , there is a constant C depending only on f such
that every integer a greater than C is represented by f if a is primitively
represented by the spinor genus of f . However, there is no known effective
method of computing the constant C explicitly.

There are some methods of proving regularity of a particular ternary
form f having class number greater than 1. One method uses some other
form having class number 1 related to f , and some specific modularity de-
pending on the form f (cf. [4], [7], [8], [9] and [17]). Another method is
to prove that the spinor class number of f is one and there are no spinor
exceptional integers (cf. [6], [10] and [11]). These two methods provide the
proof of the regularity of 913 − (794 + 22) = 97 ternary forms. Note that
the second method is not available for proving regularity of the remaining
22 candidates.

In this paper, we show that the ternary form L(i) (for the definition, see
Table 4.1) is regular for every i = 6, 11, 17, 18, 19, 20, 21 and 22. Our method
is quite similar to the former one explained above. However we use a ternary
lattice representing the candidate, whereas the traditional method uses a
genus mate, that is, a lattice in the genus of the candidate, or a sublattice of
the candidate. We also use the fact that the number of representations of a by
f is always finite, for any integer a and any positive definite quadratic form f .

The term lattice will always refer to an integral Z-lattice on an n-
dimensional positive definite quadratic space over Q. The scale and the
norm ideal of a lattice L are denoted by s(L) and n(L) respectively. Let
L = Zx1 + · · ·+ Zxn be a Z-lattice of rank n. We write

L ' (B(xi, xj)).

The right hand side matrix is called a matrix presentation of L.
Throughout this paper, we always assume that every Z-lattice L is pos-

itive definite and is primitive in the sense that s(L) = Z. In particular, the
Z-lattice L(i) denotes one of 22 candidates for regular ternary forms, which
are defined in Table 4.1. A Z-lattice L is called odd if n(L) = Z, and even
otherwise.

For any Z-lattice L, Q(gen(L)) (respectively Q(L)) denotes the set of all
integers that are represented by the genus of L (L itself, respectively). In
particular, following Kaplansky we call an integer a eligible if a ∈ Q(gen(L)).

Any unexplained notation and terminology can be found in [12] or [14].

2. General tools. Let L be a Z-lattice. For any positive integer m,
define

Λm(L) = {x ∈ L : Q(x+ z) ≡ Q(z) (mod m) for all z ∈ L}.
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The Z-lattice λm(L) denotes the primitive lattice obtained from Λm(L)
by scaling L ⊗ Q by a suitable rational number. For the properties of this
transformation, see [3] or [16].

Lemma 2.1. Let p be a prime and L be a Z-lattice. If p is odd and
a unimodular component of Lp is anisotropic, or p = 2 and L is odd, or
L2 ' ( 2 1

1 2 ) ⊥ 〈4α〉 for some α ∈ Z2, then

Q(L) ∩ δpZ = Q(Λδp(L)) and Q(gen(L)) ∩ δpZ = Q(gen(Λδp(L))),

where δ = 2 if p = 2 and L is even, and δ = 1 otherwise.

Proof. The proof is quite straightforward. See, for example, [3].

Under the same assumption as above, the lemma implies the following:
If L is regular then λδp(L) is also regular, and conversely if λδp(L) is regular,
then (Q(gen(L))−Q(L)) ∩ δpZ = ∅. For each i = 1, . . . , 22, one may easily
show that λδp(L(i)) is regular or λδp(L(i)) = L(j) for some j, where p is
any prime satisfying the condition given in the lemma. For example,

λ3(L(17)) '

3 1 1
1 7 3
1 3 7

 ,

which is a regular form, and

λ3(L(8)) ' L(4), λ3(L(1)) ' L(4) and λ3(L(4)) ' L(1).

Hence if L(8) is regular, then both L(1) and L(4) are also regular.
From now on we will use the matrix presentation of each Z-lattice. Let

M and N be any quadratic forms of rank m and n respectively and ` be
any positive integer. We denote by R(N,M) the set of all representations
from N to M , that is,

R(N,M) = {T ∈Mm,n(Z) | T tMT = N}.

Let r be any nonnegative integer less than `. We define

R`(r,N) = {x ∈Mn,1(Z/`Z) | xtNx ≡ r (mod `)}.

For any subset S ⊂Mn,1(Z), we define

S` = {x` = (φ(x1), . . . , φ(xn))t | x = (x1, . . . , xn)t ∈ S},

where φ : Z→ Z/`Z is the natural projection map.
The following simple observation is the starting point of our method.

Lemma 2.2. Let a be a positive integer such that a = xtNx for some
x ∈ Mn,1(Z). If there is a T ∈ R(`2N,M) such that Tx ∈ `Mm,1(Z), then
a is represented by M .
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Proof. Note that(
1
`
Tx

)t
M

(
1
`
Tx

)
=

1
`2
xt(T tMT )x = xtNx = a.

The lemma follows directly from this.

We define

EM` (r,N) = {x ∈ R`(r,N) | ∀T ∈ R(`2N,M), Tx 6∈ `Mm,1(Z/`Z)}.

All computations below, like that of EM` (r,N) for some M,N, r and `, were
done by the computer program MAPLE.

The following theorem is very useful in showing that every eligible inte-
ger of M in a certain arithmetic progression is represented by a particular
quadratic form M .

Theorem 2.3. For any integer a ∈ Q(N) such that a ≡ r (mod `), if

(∗) R(a,N)` − E
M
` (r,N) 6= ∅

then a is represented by M . In particular, if EM` (r,N) = ∅ then

Q(N) ∩ {a ∈ Z | a ≡ r (mod `)} ⊂ Q(M).

Proof. Assume that there is an x ∈ R(a,N) such that x` 6∈ EM` (r,N).
Then there is a T ∈ R(`2N,M) such that Tx ∈ `Mm,1(Z). Hence the theo-
rem follows from Lemma 2.2.

3. Regular ternary forms. In this section we show that all eight forms
marked with bold face in Table 4.1 are regular. Note that

λ3(L(18)) = L(20), λ3(L(20)) = L(18),
λ5(L(19)) = L(22), λ5(L(22)) = L(19).

Hence if L(18) and L(19) are regular, then so are L(20) and L(22). Therefore
it is enough to show that L(i) is regular for i = 6, 11, 17, 18, 19, 21.

Theorem 3.1. The ternary form L(17) is regular.

Proof. Let

M = L(17) =

7 2 2
2 8 0
2 0 20

 , N =

3 1 1
1 7 3
1 3 7

 .

Note that dM = 24 · 32 · 7 and dN = 24 · 7. Furthermore

M3 ' 〈1, 1, 32〉 and N3 ' 〈1, 1, 1〉.
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One can easily show that λ3(M) = N and M is represented by N . By a
direct computation, we have

R(9N,M) =
{(−1 −3 −1

1 0 −2
1 0 1

)
,
(−1 −1 −3

1 −2 0
1 1 0

)
,
(

1 1 3
−1 2 0
−1 −1 0

)
,
(

1 3 1
−1 0 2
−1 0 −1

)}
,

and

R3(1, N) =

{[
0

0

1

]
,

[
0

0

2

]
,

[
0

1

0

]
,

[
0

2

0

]
,

[
1

2

2

]
,

[
2

1

1

]}
,

R3(2, N) =

{[
0

1

1

]
,

[
0

1

2

]
,

[
0

2

1

]
,

[
0

2

2

]
,

[
1

0

2

]
,

[
1

1

2

]
,

[
1

2

0

]
,

[
1

2

1

]
,

[
2

0

1

]
,

[
2

1

0

]
,

[
2

1

2

]
,

[
2

2

1

]}
.

Furthermore R(9N,N) contains the following four isometries: 1 −4 −2
−2 −1 −2
0 0 3

,
 1 −2 −4

0 3 0
−2 −2 −1

,
3 2 2

0 0 −3
0 −3 0

,
1 4 4

1 1 −2
1 −2 1

.
In fact, |R(9N,N)| = 20 (see Table 4.2), but we only need these four repre-
sentations. We denote by Si the ith matrix given above for i = 1, . . . , 4.

Let a be any eligible integer of M . Since M is represented by N and
h(N) = 1 (cf. [8]), a is represented by N . Let x = (x1, x2, x3)t be a vector
such that xtNx = a.

Assume that a ≡ 0 (mod 3). Since the unimodular component of M3 is
anisotropic, one can easily show that M represents a by Lemma 2.1.

Assume that a ≡ 1 (mod 3). In this case, one can easily show that
EM3 (1, N) = ∅. Hence M represents a by Theorem 2.3.

Finally, assume that a ≡ 2 (mod 3). If (∗) holds, then Theorem 2.3 gives
the desired conclusion that a is represented by M . So it is only necessary to
consider the case that (∗) does not hold; that is,

(3.1) R(a,N)3 ⊂ E
M
3 (2, N).

Note that
EM3 (2, N) = {(0,±1,±1)t, (0,±1,∓1)t}.

Hence we may further assume that

(x1, x2, x3) ≡ (0,±1,±1) or (0,±1,∓1) (mod 3).

Assume that x=(x1, x2, x3)t≡(0,±1,±1)t (mod 3). Since S1, S2∈R(9N,N)
and S1x, S2x ∈ 3M3,1(Z), it follows that

1
3
S1x,

1
3
S2x ∈ R(a,N).

Hence, from the assumption (3.1), we have
x1 − 4x2 − 2x3

3
≡ x1 − 2x2 − 4x3

3
≡ 0 (mod 3).
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If we let x1 = 3s and x2 − x3 = 3t for s, t ∈ Z, then

s− 2x3 − 4t ≡ s− 2x3 − 2t ≡ 0 (mod 3).

Therefore t ≡ s+ x3 ≡ 0 (mod 3). From this it follows that
−2x1 − x2 − 2x3

3
≡ x3 (mod 3),

x2 ≡
−2x1 − 2x2 − x3

3
(mod 3).

This implies that
1
3
Six ≡ (0, 1, 1)t (mod 3) or (0,−1,−1)t (mod 3),

for i = 1, 2. Define a matrix T such that

9 · T = S1S2 =

 5 −10 −2
2 5 10
−6 −6 −3

 .

From the above observation, we have Tnx ∈ R(a,N) for every nonnegative
integer n. Since R(a,N) is finite, there exist positive integers n > m for
which Tnx = Tmx, that is, Tm(Tn−m − I)x = 0. Note that there is a
transition matrix P such that

T = P−1

1 0 0
0 λ1 0
0 0 λ2

P,

where λ1, λ2 are the complex roots of 9t2 + 2t + 9 = 0. It follows that
dim(ker(Tn−m − I)) = 1. Furthermore since 〈(−3, 1, 1)t〉 = ker(T − I) ⊂
ker(Tn−m − I), we have

x ∈ ker(Tn−m − I) = 〈(−3, 1, 1)t〉.

If x = (−3k, k, k)t, one can easily verify that

a = xtNx = 35k2 = (k, k,−k)M(k, k,−k)t.

Now assume that x = (x1, x2, x3)t ≡ (0,±1,∓1)t (mod 3). In this case, we
may apply a similar argument by just replacing S1 and S2 by S3 and S4,
respectively. This completes the proof.

For the quadratic form L(18), we take ` = 8 and

N = λ4(L(18)) =

4 2 0
2 7 3
0 3 7

 ,
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which is a regular form. Note that

L(18)2 ' 〈7〉 ⊥

(
0 8
8 0

)
.

Therefore we may only consider an eligible integer a of L(18) that is con-
gruent to 7 modulo 8. Since there are too many isometries, for example
|R(64N,N)| = 88, we do not write them down here. In this case, one can
easily show that

E
L(18)
8 (7, N) = {(±2,±4,±1)t, (±2,±4,±5)t}.

If we choose

S1 =

 7 4 −6
−5 4 2
5 4 6

 , S2 =

 4 0 8
4 0 −8
−4 −8 0

 ∈ R(64N,N),

then Six ∈ 8M3,1(Z/8Z) for any i = 1, 2 and x ∈ E
L(18)
8 (7, N). Hence if

we apply the same method described above in this situation, we can easily
show that a is represented by L(18). For the quadratic form L(21), we take
` = 8 and

N = λ4(L(21)) =

4 2 0
2 11 5
0 5 15

 .

Note L(21)2 ' 〈3〉⊥( 0 8
8 0 ) and EL(21)

8 (3, N)={(±1,±6,±7)t, (±3,±2,±5)t}.
In this case, we may use 8 8 0

−2 −4 −10
2 −4 2

 ,

 7 9 −3
−3 −5 −9
3 −3 1

 ∈ R(64N,N).

Since all computations are quite similar to the case L(17), we only pro-
vide a table containing all parameters needed for the computations, for the
remaining three quadratic forms (cf. Table 4.2).

Remark 3.2. The method described in this article could also be effective
even ifM is not regular. For example, one can show that every eligible integer
of the form 6n+ 5 is represented by the Ramanujan form

M =

1 0 0
0 1 0
0 0 10
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by taking ` = 3 and N =
(

2 0 0
0 2 1
0 1 3

)
. In the case when

M =

4 0 1
0 6 0
1 0 10

 ,

one also show that every eligible integer of the form 6n+4 is represented by
M by taking ` = 3 and N =

(
4 1 1
1 4 1
1 1 16

)
(cf. Lemma 8.3 of [1]). In both cases,

h(M) = 2 and N is contained in the genus of M .

4. Tables. The regularity of eight ternary forms marked with bold face
in the following table was proved in this article.

Table 4.1. 22 candidates for regular ternary forms

L(1) =

0B@2 1 1

1 10 2

1 2 26

1CA L(2) =

0B@2 0 1

0 12 3

1 3 26

1CA L(3) =

0B@4 1 2

1 10 2

2 2 22

1CA

L(4) =

0B@6 3 3

3 10 3

3 3 30

1CA L(5) =

0B@2 0 1

0 20 5

1 5 58

1CA L(6) =

0B@4 1 1

1 14 −6

1 −6 44

1CA

L(7) =

0B@10 2 1

2 16 −4

1 −4 22

1CA L(8) =

0B@10 3 3

3 18 9

3 9 30

1CA L(9) =

0B@10 3 5

3 18 6

5 6 34

1CA

L(10) =

0B@4 0 1

0 30 15

1 15 64

1CA L(11) =

0B@14 2 7

2 16 6

7 6 46

1CA L(12) =

0B@10 3 3

3 18 0

3 0 54

1CA

L(13) =

0B@10 1 3

1 26 −6

3 −6 66

1CA L(14) =

0B@18 6 3

6 22 −4

3 −4 58

1CA L(15) =

0B@22 3 6

3 30 −3

6 −3 78

1CA

L(16) =

0B@3 1 1

1 6 2

1 2 14

1CA L(17) =

0B@7 2 2

2 8 0

2 0 20

1CA L(18) =

0B@7 3 1

3 15 −3

1 −3 23

1CA

L(19) =

0B@11 4 1

4 16 4

1 4 19

1CA L(20) =

0B@5 2 2

2 20 −4

2 −4 68

1CA L(21) =

0B@11 4 1

4 16 4

1 4 51

1CA

L(22) =

0B@7 1 2

1 23 6

2 6 92

1CA
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Table 4.2. Some data for regular ternary forms

d(L(i)) N L(i)3

±R(9N,L(i)) ±R(9N,N)

L(i) ±R3(1, N) ±R3(2, N)

E
L(i)
3 (1, N) E

L(i)
3 (2, N)

S1, S2 ∈ R(9N,N) S3, S4 ∈ R(9N,N)

2 · 32 · 53 λ3(L(6)) =

„
4 2 1
2 6 3
1 3 14

«
〈1, 1, 32〉

„
3 1 0
0 1 3
0 1 0

«
,

„
3 1 1
0 1 −2
0 1 1

« „
1 2 −4
1 2 5
1 −1 −1

«
,

„
1 2 6
1 2 −3
1 −1 0

«
,

„
1 2 −4
2 1 4
−1 1 1

«
,

„
1 2 6
2 1 −3
−1 1 0

«
,

„
1 4 2
2 −1 −2
0 0 3

«
,„

1 4 2
2 −1 1
0 0 −3

«
,

„
3 0 0
−2 −3 −3
0 0 3

«
,

„
3 0 0
−2 −3 0
0 0 −3

«
,

„
3 0 0
0 3 0
0 0 3

«
,

„
3 0 0
0 3 3
0 0 −3

«

L(6)

»
1
0
0

–
,

»
1
0
2

–
,

»
1
2
1

– »
0
0
1

–
,

»
0
1
1

–
,

»
0
1
2

–
,

»
1
0
1

–
,

»
1
1
0

–
,

»
1
1
2

–

∅ (0,±1,±1), (±1,±1, 0)

„
3 0 0
−2 −3 −3
0 0 3

«
,

„
1 4 2
2 −1 1
0 0 −3

« „
1 2 −4
2 1 4
−1 1 1

«
,

„
1 2 6
1 2 −3
1 −1 0

«

23 · 32 · 53 λ3(L(11)) =

„
6 3 2
3 14 1
2 1 14

«
〈1, 1, 32〉

„ 1 −2 1
1 1 −2
−1 −1 −1

«
,

„
1 3 1
1 0 −2
−1 0 −1

« „
1 −1 −4
0 3 0
−2 −1 −1

«
,

„ 1 2 −4
0 −3 0
−2 −1 −1

«
,

„
2 0 −3
1 0 3
−1 −3 0

«
,

„
2 2 −3
1 1 3
−1 2 0

«
,

„
3 0 0
−1 0 −3
−1 −3 0

«
,„

3 3 0
−1 −1 −3
−1 2 0

«
,

„
3 0 0
0 3 0
0 0 3

«
,

„
3 0 2
0 3 0
0 0 −3

«
,

„
3 3 0
0 −3 0
0 0 3

«
,

„
3 3 2
0 −3 0
0 0 −3

«

L(11)

»
1
0
2

–
,

»
1
1
1

–
,

»
1
1
2

– »
0
0
1

–
,

»
0
1
0

–
,

»
0
1
2

–
,

»
1
1
0

–
,

»
1
2
0

–
,

»
1
2
2

–

∅ (0, 0,±1), (±1,±1, 0)

„
3 3 0
0 −3 0
0 0 3

«
,

„
3 0 0
−1 0 −3
−1 −3 0

« „
3 3 2
0 −3 0
0 0 −3

«
,

„ 1 2 −4
0 −3 0
−2 −1 −1

«

24 · 32 · 7 λ3(L(17)) =

„
3 1 1
1 7 3
1 3 7

«
〈1, 1, 32〉

„
1 1 3
−1 2 0
−1 −1 0

«
,

„
1 3 1
−1 0 2
−1 0 −1

« „
1 −4 −2
−2 −1 −2
0 0 3

«
,

„
1 −2 −4
−2 −2 −1
0 3 0

«
,

„
1 −4 −2
0 0 3
−2 −1 −2

«
,

„
1 −2 −4
0 3 0
−2 −2 −1

«
,

„
1 4 4
1 −2 1
1 1 −2

«
,„

1 4 4
1 1 −2
1 −2 1

«
,

„
3 0 0
0 0 3
0 3 0

«
,

„
3 0 0
0 3 0
0 0 3

«
,

„
3 2 2
0 −3 0
0 0 −3

«
,

„
3 2 2
0 0 −3
0 −3 0

«

L(17)

»
0
0
1

–
,

»
0
1
0

–
,

»
1
2
2

– »
0
1
1

–
,

»
0
1
2

–
,

»
1
0
2

–
,

»
1
1
2

–
,

»
1
2
0

–
,

»
1
2
1

–

∅ (0,±1,±1), (0,±1,∓1)

„
1 −4 −2
−2 −1 −2
0 0 3

«
,

„
1 −2 −4
0 3 0
−2 −2 −1

« „
3 2 2
0 0 −3
0 −3 0

«
,

„
1 4 4
1 1 −2
1 −2 1

«
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26 · 32 · 5 λ3(L(19)) =

„
3 1 1
1 11 3
1 3 11

«
〈1, 1, 32〉

„
0 0 3
1 2 0
−1 1 0

«
,

„
0 3 0
1 0 2
−1 0 1

« „ 1 −4 −4
−1 −2 1
−1 1 −2

«
,

„ 1 −4 −4
−1 1 −2
−1 −2 1

«
,

„
2 1 5
0 3 0
1 −1 −2

«
,

„
2 5 1
0 0 3
1 −2 −1

«
,

„
2 1 5
1 −1 −2
0 3 0

«
,„

2 5 1
1 −2 −1
0 0 3

«
,

„
3 0 0
0 0 3
0 3 0

«
,

„
3 0 0
0 3 0
0 0 3

«
,

„
3 2 2
0 −3 0
0 0 −3

«
,

„
3 2 2
0 0 −3
0 −3 0

«

L(19)

»
0
1
1

–
,

»
0
1
2

–
,

»
1
0
1

–
,

»
1
1
0

–
,

»
1
1
2

–
,

»
1
2
1

– »
0
0
1

–
,

»
0
1
0

–
,

»
1
1
1

–

(0,±1,±1), (0,±1,∓1) ∅

„
3 0 0
0 0 3
0 3 0

«
,

„
2 5 1
1 −2 −1
0 0 3

«
for (0,±1,±1)

„
3 2 2
0 −3 0
0 0 −3

«
,

„ 1 −4 −4
−1 1 −2
1 −2 1

«
for (0,±1,∓1)
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