A new kind of Diophantine equations

by
Binzhou XiA (Beijing) and TiAnXin Cai (Hangzhou)

1. Introduction. Among various kinds of Diophantine equations, a famous one is

$$
\begin{equation*}
\binom{n}{k}=m^{l}, \quad 2 \leq k \leq n-2, l \geq 2 \tag{1.1}
\end{equation*}
$$

The complete solution of (1.1) was given by Erdôs [3] for $4 \leq k \leq n-4$, and by Győry [5] for $k \leq 3$ and $k \geq n-3$. In 1975, Erdős and Selfridge [4] proved that the product of consecutive positive integers is never a perfect power. Actually the Diophantine equation

$$
\begin{equation*}
n(n-1) \cdots(n-k+1)=b m^{l}, \quad 2 \leq k \leq n, l \geq 2 \tag{1.2}
\end{equation*}
$$

under the assumption $P(b)<k$ was solved in [4], where $P(b)$ denotes the greatest prime divisor of b, with $P(1)=1$. As a common generalization of the above two results, (1.2) was resolved under the assumption $P(b) \leq k$ by Saradha [11] and Gyôry [6] for $k \geq 4$ and $k \leq 3$ respectively. When $\operatorname{gcd}(n, d)=1$, the Diophantine equation

$$
n(n-d) \cdots(n-(k-1) d)=b m^{l}, \quad k \geq 2,(k-1) d<n, l \geq 2
$$

under the assumption $P(b) \leq k$ has also been considered. For related results, we refer to [1], [2], [7], (9], [12].

For $t \geq 1$, let $(2 t-1)!!=1 \cdot 3 \cdot \ldots \cdot(2 t-1)$, and define an analogue of the binomial coefficient

$$
\binom{n}{k}_{!!}=\frac{(2 n-1)(2 n-3) \cdots(2 n-2 k+1)}{(2 k-1)(2 k-3) \cdots 1}=\frac{(2 n-1)!!}{(2 k-1)!!(2(n-k)-1)!!}
$$

for $1 \leq k \leq n-1$. In this paper, we consider in which case $\binom{n}{k}$!! is a power of a rational number. We completely solve the equation

[^0]\[

$$
\begin{equation*}
\binom{n}{k}_{!!}=\left(\frac{m}{M}\right)^{l} \tag{1.3}
\end{equation*}
$$

\]

in integers $n \geq 4,2 \leq k \leq n-2, m \geq 1, M \geq 1, \operatorname{gcd}(m, M)=1, l \geq 2$.
Theorem 1.1. All the solutions of (1.3) are

$$
l=k=2, \quad M=1, \quad 2 n+m \sqrt{3}=(2+\sqrt{3})^{2 t+1}+2 \quad\left(t \in \mathbb{N}^{*}\right)
$$

and
$l=2, \quad k=n-2, \quad M=1, \quad 2 n+m \sqrt{3}=(2+\sqrt{3})^{2 t+1}+2 \quad\left(t \in \mathbb{N}^{*}\right)$.
2. Preliminaries. Due to the observation $\binom{n}{k}_{!!}=\binom{n}{n-k}_{!!}$, we assume $n \geq 2 k$ in the following. Define

$$
\Delta=\Delta(n, k)=(2 n-1)(2 n-3) \cdots(2 n-2 k+1) .
$$

We have
Lemma 2.1. Let $k \geq 9$. Then Δ is divisible by a prime exceeding $2 k$.
Proof. Write $W(\Delta)$ for the number of terms in Δ divisible by a prime exceeding k and $\pi(x)$ for the number of primes not exceeding x. It is shown in [8, Theorem 1] that

$$
\begin{equation*}
W(\Delta) \geq \pi(2 k)-\pi(k)+1, \quad k \geq 9 . \tag{2.1}
\end{equation*}
$$

On the other hand, we note that every prime exceeding k divides at most one term of Δ, and every odd prime less than k divides Δ. Hence

$$
\begin{equation*}
\omega(\Delta)-\pi(k)+1 \geq W(\Delta) \tag{2.2}
\end{equation*}
$$

where $\omega(\Delta)$ denotes the number of distinct prime divisors of Δ. Combining (2.1) and (2.2), we have $W(\Delta) \geq \pi(2 k)$, which implies Lemma 2.1 as $2 \nmid \Delta$.

The next lemma is a consequence of [10, Theorem 1].
Lemma 2.2. Both of the equations

$$
9 z_{1}^{4}-5 z_{2}^{2}=4 \quad \text { and } \quad 25 z_{1}^{4}-21 z_{2}^{2}=4
$$

have the unique positive integer solution $\left(z_{1}, z_{2}\right)=(1,1)$.
Lemma 2.3. Let $l \geq 3$ be an integer, $t \in\{1,2,3\}$. If the equation

$$
\begin{equation*}
\left|z_{1}^{l}-3 z_{2}^{l}\right|=2 t, \tag{2.3}
\end{equation*}
$$

where $\left|\mid\right.$ denotes the absolute value, has a positive integer solution $\left(z_{1}, z_{2}\right)$, then $z_{1}=z_{2}=t=1$.

Proof. Let $x=\min \left(z_{1}^{l}, 3 z_{2}^{l}\right), y=z_{1} z_{2}$. Then

$$
\begin{equation*}
x(x+2 t)=3 y^{l} . \tag{2.4}
\end{equation*}
$$

If $t=1,2$, as x is odd, we have $x=1$ according to [1, Theorem 1.1], which happens only when $z_{1}=1$ and consequently $z_{2}=t=1$.

If $t=3$, we have $x=3 X$ for some positive odd integer X by virtue of (2.4). Then we deduce from

$$
3 X(X+2)=y^{l}
$$

that $y=3 Y$ for some positive integer Y. Thus (2.4) changes to

$$
X(X+2)=3^{l-1} Y^{l}
$$

According to [1, Theorem 1.1], $X=1$, but this gives no solution of 2.3 for odd z_{1} as $3=x \leq z_{1}^{l} \leq x+6=9$.
3. Proof of Theorem 1.1. Suppose 1.3 has solutions. If $k \geq 9$, then according to Lemma 2.1, there exists a prime $p>2 k$ such that $p \mid \Delta$. Noting that $p^{l} \mid \Delta$ from 1.3 and the fact that p divides only one term of Δ, we deduce that $2 n>p^{l}>(2 k)^{l} \geq(2 k)^{2}$. If $2 \leq k \leq 8$ and $2 k \leq n<k^{2}$, one can easily check that 1.3 has no solution. Thus in the following we assume

$$
\begin{equation*}
n \geq k^{2} \tag{3.1}
\end{equation*}
$$

Write $2 n-2 i-1=a_{i} m_{i}^{l}$ for $i=0,1, \ldots, k-1$, where a_{i} is l th power free. We claim that $a_{0}, a_{1}, \ldots, a_{k-1}$ are distinct. Otherwise there exist integers $0 \leq i<j \leq k-1$ such that $a_{i}=a_{j}$, from which we deduce $m_{i}>m_{j}$. Then it follows that

$$
\begin{aligned}
2 k & >2(j-i)=a_{j}\left(m_{i}^{l}-m_{j}^{l}\right) \geq a_{j}\left(\left(m_{j}+1\right)^{l}-m_{j}^{l}\right) \geq l a_{j} m_{j}^{l-1} \\
& =l a_{j}^{1 / l}\left(a_{j} m_{j}^{l}\right)^{(l-1) / l} \geq 2\left(a_{j} m_{j}^{l}\right)^{1 / 2} \geq 2(2 n-2 k+1)^{1 / 2}>2 n^{1 / 2}
\end{aligned}
$$

contradicting (3.1).
Now rewrite (1.3) as

$$
\begin{equation*}
a_{0} a_{1} \cdots a_{k-1}\left(m_{0} m_{1} \cdots m_{k-1} M\right)^{l}=(2 k-1)!!m^{l} \tag{3.2}
\end{equation*}
$$

Let

$$
\begin{aligned}
u & =\frac{m_{0} m_{1} \cdots m_{k-1} M}{\operatorname{gcd}\left(m_{0} m_{1} \cdots m_{k-1} M, m\right)} \\
v & =\frac{m}{\operatorname{gcd}\left(m_{0} m_{1} \cdots m_{k-1} M, m\right)}
\end{aligned}
$$

Then (3.2) can be written as

$$
\begin{equation*}
a_{0} a_{1} \cdots a_{k-1} u^{l}=(2 k-1)!!v^{l} \tag{3.3}
\end{equation*}
$$

Suppose v has a prime divisor p. Obviously, p is odd and $p \nmid u$. Therefore from (3.3) we infer that

$$
\begin{align*}
\operatorname{ord}_{p}\left(a_{0} a_{1} \cdots\right. & \left.a_{k-1}\right) \tag{3.4}\\
& \geq \operatorname{ord}_{p}((2 k-1)!!)+l \\
& =\operatorname{ord}_{p}((2 k-1)!)-\operatorname{ord}_{p}((2 k-2)(2 k-4) \cdots 2)+l \\
& =\operatorname{ord}_{p}((2 k-1)!)-\operatorname{ord}_{p}((k-1)!)+l \\
& =\sum_{i=1}^{\infty}\left(\left\lfloor\frac{2 k-1}{p^{i}}\right\rfloor-\left\lfloor\frac{k-1}{p^{i}}\right\rfloor\right)+l \\
& \geq \sum_{i=1}^{l-1}\left(\left\lfloor\frac{2 k-1}{p^{i}}\right\rfloor-\left\lfloor\frac{k-1}{p^{i}}\right\rfloor\right)+l .
\end{align*}
$$

On the other hand, $\operatorname{ord}_{p}\left(a_{0} a_{1} \cdots a_{k-1}\right)$ can be evaluated in the following way:

$$
\begin{aligned}
& \operatorname{ord}_{p}\left(a_{0} a_{1} \cdots a_{k-1}\right) \\
&= \sum_{i=1}^{l-1} \sharp\left\{j: p^{i} \mid a_{j}, 0 \leq j \leq k-1\right\} \\
& \leq \sum_{i=1}^{l-1} \sharp\left\{j: p^{i} \mid(2 n-2 j-1), 0 \leq j \leq k-1\right\} \\
&= \sum_{i=1}^{l-1}\left(\sharp\left\{j: p^{i} \mid j, 1 \leq j \leq 2 n-1\right\}-\sharp\left\{j: p^{i} \mid 2 j, 1 \leq j \leq n-1\right\}\right. \\
&\left.-\sharp\left\{j: p^{i} \mid j, 1 \leq j \leq 2 n-2 k-1\right\}+\sharp\left\{j: p^{i} \mid 2 j, 1 \leq j \leq n-k-1\right\}\right) \\
&= \sum_{i=1}^{l-1}\left(\left\lfloor\frac{2 n-1}{p^{i}}\right\rfloor-\left\lfloor\frac{n-1}{p^{i}}\right\rfloor-\left\lfloor\frac{2 n-2 k-1}{p^{i}}\right\rfloor+\left\lfloor\frac{n-k-1}{p^{i}}\right\rfloor\right) .
\end{aligned}
$$

Noting that

$$
\left\lfloor\frac{2 n-1}{p^{i}}\right\rfloor-\left\lfloor\frac{2 n-2 k-1}{p^{i}}\right\rfloor \leq\left\lfloor\frac{2 k}{p^{i}}\right\rfloor+1, \quad\left\lfloor\frac{n-1}{p^{i}}\right\rfloor-\left\lfloor\frac{n-k-1}{p^{i}}\right\rfloor \geq\left\lfloor\frac{k}{p^{i}}\right\rfloor,
$$

we have

$$
\begin{align*}
\operatorname{ord}_{p}\left(a_{0} a_{1} \cdots a_{k-1}\right) & \leq \sum_{i=1}^{l-1}\left(\left\lfloor\frac{2 k}{p^{i}}\right\rfloor+1-\left\lfloor\frac{k}{p^{i}}\right\rfloor\right) \tag{3.5}\\
& =\sum_{i=1}^{l-1}\left(\left\lfloor\frac{2 k}{p^{i}}\right\rfloor-\left\lfloor\frac{k}{p^{i}}\right\rfloor\right)+l-1 .
\end{align*}
$$

However, in view of

$$
\left\lfloor\frac{2 k}{p^{i}}\right\rfloor-\left\lfloor\frac{2 k-1}{p^{i}}\right\rfloor=\left\lfloor\frac{k}{p^{i}}\right\rfloor-\left\lfloor\frac{k-1}{p^{i}}\right\rfloor,
$$

we see that (3.5) contradicts (3.4). Therefore $v=1$, whence $a_{0} a_{1} \cdots a_{k-1}$ $(2 k-1)!!$. This together with the assertion that $a_{0}, a_{1}, \ldots, a_{k-1}$ are distinct odd integers tells us that

$$
\begin{equation*}
\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}=\{1,3, \ldots, 2 k-1\} . \tag{3.6}
\end{equation*}
$$

I. The case $l \geq 3, k \geq 5$. Let $k \equiv \sigma(\bmod 3)$, where $\sigma \in\{-1,0,1\}$. According to (3.6),

$$
2 k-2 \sigma-3=a_{i}, \quad \frac{2 k-2 \sigma-3}{3}=a_{j}
$$

for some $0 \leq i, j \leq k-1$. Then

$$
0<\left|m_{j}^{l}-3 m_{i}^{l}\right|=\frac{3\left|a_{j} m_{j}^{l}-a_{i} m_{i}^{l}\right|}{2 k-2 \sigma-3} \leq \frac{3(2 k-2)}{2 k-5}<5
$$

As m_{i}, m_{j} are odd, $\left|m_{j}^{l}-3 m_{i}^{l}\right|=2,4$, which implies $m_{i}=m_{j}=1$ by Lemma 2.3. Hence $2 n-2 k+1 \leq a_{i} m_{i}^{l}=2 k-2 \sigma-3 \leq 2 k-1$, contradicting $n \geq 2 k$.
II. The case $l \geq 3,2 \leq k \leq 4$. Let $a_{i}=3, a_{j}=1$. Then $0<\left|m_{j}^{l}-3 m_{i}^{l}\right| \leq$ $2 k-2 \leq 6$, which means $\left|m_{j}^{l}-3 m_{i}^{l}\right|=2,4,6$ and thus $m_{i}=m_{j}=1$ by Lemma 2.3. Hence $2 n-2 k+1 \leq a_{j} m_{j}^{l}=1$, which is impossible.
III. The case $l=2, k \geq 5$. This is impossible as, by (3.6), there exists some i with $a_{i}=9$, but a_{i} must be square free.
IV. The case $l=2,3 \leq k \leq 4$. As $2,-4$ are quadratic nonresidues modulo 3 , we know that $x^{2}-3 y^{2} \neq 2,-4$ for any integers x, y. Similar argument can be applied to $3 y^{2}-7 w^{2}, x^{2}-5 z^{2}, x^{2}-7 w^{2}$ modulo $3,5,7$, respectively. Then we have

$$
\left\{\begin{array}{l}
x^{2}-3 y^{2} \neq 2,-4 \tag{3.7}\\
x^{2}-5 z^{2} \neq 2,-2,-6 \\
x^{2}-7 w^{2} \neq-2,-4,6 \\
3 y^{2}-7 w^{2} \neq-2,4
\end{array}\right.
$$

When $k=3$, noting that $a_{i} m_{i}^{2}-a_{j} m_{j}^{2}= \pm 2, \pm 4$ for $0 \leq i<j \leq 2$, we deduce from (3.6) and (3.7) that $\left(a_{0}, a_{1}, a_{2}\right)=(5,3,1)$. In fact, $\left(a_{0}, a_{1}, a_{2}\right)=$ $(1,3,5)$ implies $m_{1}^{2}-3 m_{2}^{2}=2$, which has no integer solution according to (3.7), but since $x^{2}-5 z^{2} \neq \pm 2,\left(a_{0}, a_{1}, a_{2}\right)$ can only be $(1,3,5)$ or $(5,3,1)$, so $\left(a_{0}, a_{1}, a_{2}\right)=(5,3,1)$. Therefore,

$$
9 m_{1}^{4}-4=\left(3 m_{1}^{2}+2\right)\left(3 m_{1}^{2}-2\right)=5 m_{0}^{2} \cdot m_{2}^{2}=5\left(m_{0} m_{2}\right)^{2} .
$$

By Lemma 2.2, $m_{0}=m_{1}=m_{2}=1$, but this means $n=3$, contradicting $n \geq 2 k$.

When $k=4$, we can deduce similarly that $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(7,5,3,1)$ or $(1,7,5,3)$. Let $i=1$ resp. 2 . Then we have

$$
25 m_{i}^{4}-4=\left(5 m_{i}^{2}+2\right)\left(5 m_{i}^{2}-2\right)=21\left(m_{i-1} m_{i+1}\right)^{2}
$$

By Lemma 2.2, $m_{i-1}=m_{i}=m_{i+1}=1$, which implies $2 n-1 \leq 7$, contradicting $n \geq 2 k$.
V. The case $l=2, k=2$. As $M^{2} \mid(2 k-1)!$!, we have $M=1$, whence what we are going to solve is

$$
\begin{equation*}
(2 n-1)(2 n-3)=3 m^{2} \tag{3.8}
\end{equation*}
$$

Let $2 n-2=x$, with which 3.8 takes the form

$$
\begin{equation*}
x^{2}-3 m^{2}=1 \tag{3.9}
\end{equation*}
$$

All the positive integer solutions of the above Pell equation are given by

$$
x_{t}+m_{t} \sqrt{3}=(2+\sqrt{3})^{t} \quad\left(t \in \mathbb{N}^{*}\right)
$$

This implies that all the positive integer solutions of (3.9) with $2 \mid x$ and $x \geq 6$ are given by

$$
x+m \sqrt{3}=(2+\sqrt{3})^{2 t+1} \quad\left(t \in \mathbb{N}^{*}\right)
$$

Hence all the solutions of 3.8 are given by

$$
2 n+m \sqrt{3}=(2+\sqrt{3})^{2 t+1}+2 \quad\left(t \in \mathbb{N}^{*}\right)
$$

This completes the proof of Theorem 1.1 as $\binom{n}{k}_{!!}=\binom{n}{n-k}_{!!}$.
4. A generalization of equation (1.3). As a generalization of $\binom{n}{k}$ and $\binom{n}{k}_{!!}$, we define

$$
\begin{array}{r}
\binom{n}{k}_{a, b}=\frac{(a n-a+b)(a n-2 a+b) \cdots(a n-a k+b)}{(a k-a+b)(a k-2 a+b) \cdots b} \\
1 \leq b \leq a, \operatorname{gcd}(a, b)=1 \\
1
\end{array}
$$

and ask whether $\binom{n}{k}_{a, b}$ is a power of a rational number when $2 \leq k \leq n-2$.
In view of $\binom{n}{k}_{a, b}=\binom{n}{n-k}_{a, b}$, we only need to consider the following Diophantine equation:

$$
\begin{equation*}
\binom{n}{k}_{a, b}=\left(\frac{m}{M}\right)^{l} \tag{4.1}
\end{equation*}
$$

in integers $n \geq 4,4 \leq 2 k \leq n, m \geq 1, M \geq 1, \operatorname{gcd}(m, M)=1, l \geq 2$.
When $(a, b)=(1,1), 4.1$ is (1.1), and when $(a, b)=(2,1)$, 4.1) is (1.3). However, we cannot solve 4.1) using the method of this paper when $a \geq 3$.

Furthermore, for $1 \leq b \leq a, \operatorname{gcd}(a, b)=1$, we can consider the quotient of two products of consecutive k terms in the arithmetic progression $b, a+b$,
$a+2 b, \ldots$, and ask for the solutions of the Diophantine equation

$$
\frac{(a n-a+b)(a n-2 a+b) \cdots(a n-a k+b)}{(a N-a+b)(a N-2 a+b) \cdots(a N-a k+b)}=\left(\frac{m}{M}\right)^{l}
$$

in integers $|N-n| \geq k, m \geq 1, M \geq 1, \operatorname{gcd}(m, M)=1, l \geq 2$.
Acknowledgements. This research was supported by the NNSFC Grant 10871169.

References

[1] M. A. Bennett, Products of consecutive integers, Bull. London Math. Soc. 36 (2004), 683-694.
[2] M. A. Bennett, N. Bruin, K. Győry and L. Hajdu, Powers from products of consecutive terms in arithmetic progression, Proc. London Math. Soc. 92 (2006), 273-306.
[3] P. Erdốs, On a diophantine equation, J. London Math. Soc. 26 (1951), 176-178.
[4] P. Erdôs and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
[5] K. Györy, On the diophantine equation $\binom{n}{k}=x^{l}$, Acta Arith. 80 (1997), 289-295.
[6] -, On the diophantine equation $n(n+1) \cdots(n-k+1)=b x^{l}$, ibid. 83 (1998), 87-92.
[7] K. Györy, L. Hajdu and Á. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compos. Math. 145 (2009), 845-864.
[8] S. Laishram and T. N. Shorey, Number of prime divisors in a product of terms of an arithmetic progression, Indag. Math. 15 (2004), 505-521.
[9] S. Laishram, T. N. Shorey and Sz. Tengely, Squares in products in arithmetic progression with at most one term omitted and common difference a prime power, Acta Arith. 135 (2008), 143-158.
[10] W. Ljunggren, On the diophantine equation $A x^{4}-B y^{2}=C(C=1,4)$, Math. Scand. 21 (1967), 149-158.
[11] N. Saradha, On perfect powers in products with terms from arithmetic progressions, Acta Arith. 82 (1997), 147-172.
[12] T. N. Shorey, Diophantine approximations, diophantine equations, transcendence and applications, Indian J. Pure Appl. Math. 37 (2006), 9-39.

Binzhou Xia
Department of Mathematics
Peking University
100871 Beijing, China
E-mail: binzhouxia@hotmail.com

Tianxin Cai
Department of Mathematics
Zhejiang University
310027 Hangzhou, China
E-mail: caitianxin@hotmail.com

Received on 16.10.2009 and in revised form on 19.5.2010

[^0]: 2010 Mathematics Subject Classification: Primary 11D99; Secondary 11A25, 11B65. Key words and phrases: binomial coefficient, Diophantine equation, perfect power.

