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1. Introduction. Among various kinds of Diophantine equations, a fa-
mous one is

(1.1) (Z):ml, 2<k<n—21>2.
The complete solution of (1.1)) was given by Erdés [3] for 4 < k < n — 4,
and by Gyéry [5] for £ < 3 and k£ > n — 3. In 1975, Erdés and Selfridge [4]

proved that the product of consecutive positive integers is never a perfect
power. Actually the Diophantine equation

(1.2) nn—1)---(n—k+1)=bm!, 2<k<n,1>2,

under the assumption P(b) < k was solved in [4], where P(b) denotes the
greatest prime divisor of b, with P(1) = 1. As a common generalization of
the above two results, was resolved under the assumption P(b) < k
by Saradha [II] and Gydry [6] for & > 4 and k < 3 respectively. When
ged(n, d) = 1, the Diophantine equation

nn—d)---(n—(k=1d) =bm!, k>2, (k—1)d<n,1>2,

under the assumption P(b) < k has also been considered. For related results,
we refer to [1, [2], [7], [9], [12].

Fort >1,1et (2t—1)!!'=1-3-...-(2t — 1), and define an analogue of
the binomial coefficient

ny  (2n-1)2n—-3)---(2n—2k+1) (2n — 1)!!

k), (2k —1)(2k —3)---1  (2k—DN2n—k)— 1)

for 1 <k <n — 1. In this paper, we consider in which case (2)” is a power
of a rational number. We completely solve the equation
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(0),- ()

inintegersn >4,2<k<n—-2 m>1, M >1, gedim,M)=1,1> 2.
THEOREM 1.1. All the solutions of (1.3 are
l=k=2 M=1 2n+mV3=02+V3)*+2 (teN")
and

1=2, k=n-2 M=1, 2n+mV3=2+V3)*"1+2 (teN.

2. Preliminaries. Due to the observation (Z)” = (nfk)”, we assume
n > 2k in the following. Define )

A=An,k)=02n—-1)2n—3)---(2n — 2k + 1).
We have
LEMMA 2.1. Let k > 9. Then A is divisible by a prime exceeding 2k.

Proof. Write W(A) for the number of terms in A divisible by a prime
exceeding k and 7(x) for the number of primes not exceeding x. It is shown
in [8 Theorem 1] that

(2.1) W(A) > n(2k) —w(k) +1, k>0

On the other hand, we note that every prime exceeding k divides at most
one term of A, and every odd prime less than k divides A. Hence

(2.2) w(A) —7(k)+1>W(AQ),

where w(A) denotes the number of distinct prime divisors of A. Combining
(2.1]) and (2.2)), we have W (A) > 7(2k), which implies Lemma 2.1 as 2{ A. =

The next lemma is a consequence of [10, Theorem 1].
LEMMA 2.2. Both of the equations
921 — 525 =4 and 252f — 2123 =4
have the unique positive integer solution (z1,z2) = (1,1).
LEMMA 2.3. Let [ > 3 be an integer, t € {1,2,3}. If the equation
(2.3) |2} — 32| = 2t,

where | | denotes the absolute value, has a positive integer solution (z1, z2),
then z1 = 29 =t = 1.

Proof. Let z = min(2},32}), y = 2120. Then
(2.4) z(z + 2t) = 3y,

If t = 1,2, as = is odd, we have z = 1 according to [I, Theorem 1.1],
which happens only when z; = 1 and consequently zo = = 1.
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If t = 3, we have x = 3X for some positive odd integer X by virtue of
(2.4). Then we deduce from

3X(X +2) =
that y = 3Y for some positive integer Y. Thus changes to
X(X +2)=3"1yl.
According to [I, Theorem 1.1], X = 1, but this gives no solution of for

oddzlas3:x§zl1§x+6:9.-

3. Proof of Theorem 1.1. Suppose has solutions. If k£ > 9, then
according to Lemma 2.1, there exists a prime p > 2k such that p| A. Noting
that p'| A from and the fact that p divides only one term of A, we
deduce that 2n > p' > (2k)! > (2k)%2. If 2 < k < 8 and 2k < n < k?, one can
easily check that has no solution. Thus in the following we assume

(3.1) n > k2.
Write 2n—2i—1 = aimﬁ fori=0,1,...,k—1, where a; is [th power free.
We claim that ag,a1,...,ar_1 are distinct. Otherwise there exist integers

0 <i < j <k—1suchthat a; = aj, from which we deduce m; > m;. Then
it follows that

2k > 2(j — i) = a;j(m! — mé) > a;((mj +1)" - mé) > lajmé-fl

= lajl-/l(ajmg-)(l_l)/l > 2(ajm§)1/2 >2(2n — 2k +1)Y/2 > 2p1/2

contradicting (3.1]).
Now rewrite ((1.3)) as

(3.2) apay - - - ap—1 (momy - - - my_ M)" = (2k — 1)!lm!.

Let

momy - - mk_lM

- ged(momy -+ -my_1 M, m)’
m

v ged(momy - - -mg_1 M, m)’

Then (3.2) can be written as
(3.3) agay - - - ap_ul = (2k — 1)t

Suppose v has a prime divisor p. Obviously, p is odd and p t u. Therefore
from (3.3) we infer that
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(3.4)  ordp(apar---ak—1)

> ordy( )
= ord,((2k — 1)!) — ord,((2k — 2)(2k — 4) ---2) + 1
( ") —ord,((k — 1)) +1

R
(255

can be evaluated in the following way:

On the other hand, ord,(agar - - - ap—1

ordy(agpar - - - ag—1)

-1
=Y #{ip e, 0< i <k—1}
=1

-1
<> #{iip | (2n-2j-1),0<j<k-1}

i=1

-1 ' ‘
=) @l 1< i<2m—1}—4{j:p |2, 1<j<n—1}

i=1

—t{i P 1 1<i<2m =2k =1} +8{j:p |2/, 1<j<n—k-1})
_’iqzn_ J_{n_lJ_Vn_%_lJ%n_k_lD

i—1 P P’ P’ P’ '
Noting that

-t 2 [ 2]

we have

(3.5) ord, (aoar - - - ap_1) < li ( E";J +1- UCJ)

1=

[—
2
> (-1 +
im1 \LP p
However, in view of

-5 =)

= =
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we see that (3.5) contradicts (3.4). Therefore v = 1, whence agpa; - - - ax_1 |
(2k — 1)!1. This together with the assertion that ag,ay, ..., a1 are distinct
odd integers tells us that

(3.6) {ao,al,...,ak_l}:{1,3,...,2k—1}.

I. The case | > 3, k > 5. Let k = ¢ (mod 3), where o € {—1,0,1}.
According to (3.6)),
2k — 20 —
% — 20 — 3 =a, +3zaj
for some 0 < ¢,j <k — 1. Then

3\ajm§~ - aimﬂ - 3(2k — 2)
2k —20—-3 — 2k-5
As m;, m; are odd, \mé — 3ml| = 2,4, which implies m; = m; = 1 by
Lemma 2.3. Hence 2n — 2k +1 < aimé =2k —20—3 <2k —1, contradicting

n > 2k.

0<\m§-—3mé\: < 5.

IT. The case | > 3,2 < k < 4. Let a; = 3,a; = 1. Then 0 < |m} —3ml| <
2k — 2 < 6, which means |m§ — 3ml| = 2,4,6 and thus m; = mj = 1 by
Lemma 2.3. Hence 2n — 2k +1 < ajmé- =1, which is impossible.

ITI. The case | = 2, k > 5. This is impossible as, by (3.6)), there exists
some ¢ with a; = 9, but a; must be square free.

IV. The case | = 2, 3 < k < 4. As 2,—4 are quadratic nonresidues
modulo 3, we know that z? — 3y?> # 2,—4 for any integers z,y. Similar
argument can be applied to 3y? — Tw?, 22 — 522, 2% — 7Tw? modulo 3,5,7,
respectively. Then we have
x? — 3y? £ 2,4,

22 — 522 #£2,-2, -6,
x? — Tw? # -2, —4,6,
3y? — Tw? # —2,4.

When k£ = 3, noting that aim? — ajm? =42, H4 for0<i<j <2 we

deduce from and that (ag, a1,a2) = (5,3,1). In fact, (ag,a1,a2) =

(1,3,5) implies m? — 3m35 = 2, which has no integer solution according to
(3.7), but since 22 — 522 # +2, (ag, a1, az) can only be (1,3,5) or (5,3,1),
so (ag,a1,az) = (5,3,1). Therefore,

Imi —4 = (3m? +2)(3m3 — 2) = 5mZ - m3 = 5(mgms)>.

(3.7)

By Lemma 2.2, mg = m; = mg = 1, but this means n = 3, contradicting
n > 2k.
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When k = 4, we can deduce similarly that (ag, a1, a2,a3) = (7,5,3,1) or
(1,7,5,3). Let i« = 1 resp. 2. Then we have

25myi — 4 = (5m? + 2)(5m? — 2) = 21(m;_1mis1)>.

By Lemma 2.2, m;_1 = m; = m;41 = 1, which implies 2n — 1 < 7, contra-
dicting n > 2k.

V. The case | = 2, k = 2. As M?|(2k — 1)!!, we have M = 1, whence
what we are going to solve is

(3.8) (2n —1)(2n — 3) = 3m>.
Let 2n — 2 = x, with which (3.8) takes the form
(3.9) 22 —3m? = 1.

All the positive integer solutions of the above Pell equation are given by
xt+mt\/§= (2+\/§)t (tGN*).

This implies that all the positive integer solutions of (3.9) with 2|z and
x > 6 are given by

z+mV3=(2+ V3 (teN).
Hence all the solutions of (3.8)) are given by
2n+mV3 = (2+V3)* 12 (teN").
This completes the proof of Theorem 1.1 as (Z)” = (nfk)” .

4. A generalization of equation 1) . As a generalization of (Z) and
(2)”, we define

n\  (an—a+b)(an —2a+b)---(an —ak +b)
k)., (ak —a+0b)(ak —2a+0b)---b ’
1<b<a, ged(a,b) =1,

)

and ask whether (Z)

In view of (Z)

wb is a power of a rational number when 2 < k <n — 2.

ab = (nﬁk)a y We only need to consider the following Dio-
phantine equation: 7

an (1) - ()

in integers n > 4,4 <2k <n,m>1, M > 1, gcd(m, M) =1,1> 2.

When (a,b) = 11,.15.,andwhen a,b) 21,.15.

However, we cannot solve using the method of thls paper when a > 3.
Furthermore, for 1 < b S a, ged(a,b) = 1, we can consider the quotient
of two products of consecutive k terms in the arithmetic progression b, a + b,
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a+ 2b, ..., and ask for the solutions of the Diophantine equation

(an —a+b)(an—2a+b)---(an—ak+b) _ <m>l

(aN —a+b)(aN —2a+0b)---(aN —ak+b) \ M

in integers [N —n| >k, m>1, M > 1, gcd(m, M) =1,1> 2.
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