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1. Introduction. Among various kinds of Diophantine equations, a fa-
mous one is

(1.1)
(
n

k

)
= ml, 2 ≤ k ≤ n− 2, l ≥ 2.

The complete solution of (1.1) was given by Erdős [3] for 4 ≤ k ≤ n − 4,
and by Győry [5] for k ≤ 3 and k ≥ n − 3. In 1975, Erdős and Selfridge [4]
proved that the product of consecutive positive integers is never a perfect
power. Actually the Diophantine equation

(1.2) n(n− 1) · · · (n− k + 1) = bml, 2 ≤ k ≤ n, l ≥ 2,

under the assumption P (b) < k was solved in [4], where P (b) denotes the
greatest prime divisor of b, with P (1) = 1. As a common generalization of
the above two results, (1.2) was resolved under the assumption P (b) ≤ k
by Saradha [11] and Győry [6] for k ≥ 4 and k ≤ 3 respectively. When
gcd(n, d) = 1, the Diophantine equation

n(n− d) · · · (n− (k − 1)d) = bml, k ≥ 2, (k − 1)d < n, l ≥ 2,

under the assumption P (b) ≤ k has also been considered. For related results,
we refer to [1], [2], [7], [9], [12].

For t ≥ 1, let (2t − 1)!! = 1 · 3 · . . . · (2t − 1), and define an analogue of
the binomial coefficient(

n

k

)
!!

=
(2n− 1)(2n− 3) · · · (2n− 2k + 1)

(2k − 1)(2k − 3) · · · 1
=

(2n− 1)!!
(2k − 1)!!(2(n− k)− 1)!!

for 1 ≤ k ≤ n − 1. In this paper, we consider in which case
(
n
k

)
!!
is a power

of a rational number. We completely solve the equation
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(1.3)
(
n

k

)
!!

=
(
m

M

)l

in integers n ≥ 4, 2 ≤ k ≤ n− 2, m ≥ 1, M ≥ 1, gcd(m,M) = 1, l ≥ 2.

Theorem 1.1. All the solutions of (1.3) are

l = k = 2, M = 1, 2n+m
√

3 = (2 +
√

3)2t+1 + 2 (t ∈ N∗)
and

l = 2, k = n− 2, M = 1, 2n+m
√

3 = (2 +
√

3)2t+1 + 2 (t ∈ N∗).

2. Preliminaries. Due to the observation
(
n
k

)
!!

=
(

n
n−k

)
!!
, we assume

n ≥ 2k in the following. Define

∆ = ∆(n, k) = (2n− 1)(2n− 3) · · · (2n− 2k + 1).

We have

Lemma 2.1. Let k ≥ 9. Then ∆ is divisible by a prime exceeding 2k.

Proof. Write W (∆) for the number of terms in ∆ divisible by a prime
exceeding k and π(x) for the number of primes not exceeding x. It is shown
in [8, Theorem 1] that

(2.1) W (∆) ≥ π(2k)− π(k) + 1, k ≥ 9.

On the other hand, we note that every prime exceeding k divides at most
one term of ∆, and every odd prime less than k divides ∆. Hence

(2.2) ω(∆)− π(k) + 1 ≥W (∆),

where ω(∆) denotes the number of distinct prime divisors of ∆. Combining
(2.1) and (2.2), we haveW (∆) ≥ π(2k), which implies Lemma 2.1 as 2 - ∆.

The next lemma is a consequence of [10, Theorem 1].

Lemma 2.2. Both of the equations

9z4
1 − 5z2

2 = 4 and 25z4
1 − 21z2

2 = 4

have the unique positive integer solution (z1, z2) = (1, 1).

Lemma 2.3. Let l ≥ 3 be an integer, t ∈ {1, 2, 3}. If the equation

(2.3) |zl
1 − 3zl

2| = 2t,

where | | denotes the absolute value, has a positive integer solution (z1, z2),
then z1 = z2 = t = 1.

Proof. Let x = min(zl
1, 3z

l
2), y = z1z2. Then

(2.4) x(x+ 2t) = 3yl.

If t = 1, 2, as x is odd, we have x = 1 according to [1, Theorem 1.1],
which happens only when z1 = 1 and consequently z2 = t = 1.
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If t = 3, we have x = 3X for some positive odd integer X by virtue of
(2.4). Then we deduce from

3X(X + 2) = yl

that y = 3Y for some positive integer Y . Thus (2.4) changes to

X(X + 2) = 3l−1Y l.

According to [1, Theorem 1.1], X = 1, but this gives no solution of (2.3) for
odd z1 as 3 = x ≤ zl

1 ≤ x+ 6 = 9.

3. Proof of Theorem 1.1. Suppose (1.3) has solutions. If k ≥ 9, then
according to Lemma 2.1, there exists a prime p > 2k such that p |∆. Noting
that pl |∆ from (1.3) and the fact that p divides only one term of ∆, we
deduce that 2n > pl > (2k)l ≥ (2k)2. If 2 ≤ k ≤ 8 and 2k ≤ n < k2, one can
easily check that (1.3) has no solution. Thus in the following we assume

(3.1) n ≥ k2.

Write 2n−2i−1 = aim
l
i for i = 0, 1, . . . , k−1, where ai is lth power free.

We claim that a0, a1, . . . , ak−1 are distinct. Otherwise there exist integers
0 ≤ i < j ≤ k − 1 such that ai = aj , from which we deduce mi > mj . Then
it follows that

2k > 2(j − i) = aj(ml
i −ml

j) ≥ aj((mj + 1)l −ml
j) ≥ lajm

l−1
j

= la
1/l
j (ajm

l
j)

(l−1)/l ≥ 2(ajm
l
j)

1/2 ≥ 2(2n− 2k + 1)1/2 > 2n1/2,

contradicting (3.1).
Now rewrite (1.3) as

(3.2) a0a1 · · · ak−1(m0m1 · · ·mk−1M)l = (2k − 1)!!ml.

Let

u =
m0m1 · · ·mk−1M

gcd(m0m1 · · ·mk−1M,m)
,

v =
m

gcd(m0m1 · · ·mk−1M,m)
.

Then (3.2) can be written as

(3.3) a0a1 · · · ak−1u
l = (2k − 1)!!vl.

Suppose v has a prime divisor p. Obviously, p is odd and p - u. Therefore
from (3.3) we infer that
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(3.4) ordp(a0a1 · · · ak−1)

≥ ordp((2k − 1)!!) + l

= ordp((2k − 1)!)− ordp((2k − 2)(2k − 4) · · · 2) + l

= ordp((2k − 1)!)− ordp((k − 1)!) + l

=
∞∑
i=1

(⌊
2k − 1
pi

⌋
−
⌊
k − 1
pi

⌋)
+ l

≥
l−1∑
i=1

(⌊
2k − 1
pi

⌋
−
⌊
k − 1
pi

⌋)
+ l.

On the other hand, ordp(a0a1 · · · ak−1) can be evaluated in the following way:

ordp(a0a1 · · · ak−1)

=
l−1∑
i=1

]{j : pi | aj , 0 ≤ j ≤ k − 1}

≤
l−1∑
i=1

]{j : pi | (2n− 2j − 1), 0 ≤ j ≤ k − 1}

=
l−1∑
i=1

(]{j : pi | j, 1 ≤ j ≤ 2n− 1} − ]{j : pi | 2j, 1 ≤ j ≤ n− 1}

− ]{j : pi | j, 1 ≤ j ≤ 2n− 2k − 1}+ ]{j : pi | 2j, 1 ≤ j ≤ n− k − 1})

=
l−1∑
i=1

(⌊
2n− 1
pi

⌋
−
⌊
n− 1
pi

⌋
−
⌊

2n− 2k − 1
pi

⌋
+
⌊
n− k − 1

pi

⌋)
.

Noting that⌊
2n− 1
pi

⌋
−
⌊

2n− 2k − 1
pi

⌋
≤
⌊

2k
pi

⌋
+1,

⌊
n− 1
pi

⌋
−
⌊
n− k − 1

pi

⌋
≥
⌊
k

pi

⌋
,

we have

ordp(a0a1 · · · ak−1) ≤
l−1∑
i=1

(⌊
2k
pi

⌋
+ 1−

⌊
k

pi

⌋)
(3.5)

=
l−1∑
i=1

(⌊
2k
pi

⌋
−
⌊
k

pi

⌋)
+ l − 1.

However, in view of⌊
2k
pi

⌋
−
⌊

2k − 1
pi

⌋
=
⌊
k

pi

⌋
−
⌊
k − 1
pi

⌋
,
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we see that (3.5) contradicts (3.4). Therefore v = 1, whence a0a1 · · · ak−1 |
(2k− 1)!!. This together with the assertion that a0, a1, . . . , ak−1 are distinct
odd integers tells us that

(3.6) {a0, a1, . . . , ak−1} = {1, 3, . . . , 2k − 1}.

I. The case l ≥ 3, k ≥ 5. Let k ≡ σ (mod 3), where σ ∈ {−1, 0, 1}.
According to (3.6),

2k − 2σ − 3 = ai,
2k − 2σ − 3

3
= aj

for some 0 ≤ i, j ≤ k − 1. Then

0 < |ml
j − 3ml

i| =
3|ajm

l
j − aim

l
i|

2k − 2σ − 3
≤ 3(2k − 2)

2k − 5
< 5.

As mi,mj are odd, |ml
j − 3ml

i| = 2, 4, which implies mi = mj = 1 by
Lemma 2.3. Hence 2n−2k+1 ≤ aim

l
i = 2k−2σ−3 ≤ 2k−1, contradicting

n ≥ 2k.

II. The case l ≥ 3, 2 ≤ k ≤ 4. Let ai = 3, aj = 1. Then 0 < |ml
j −3ml

i| ≤
2k − 2 ≤ 6, which means |ml

j − 3ml
i| = 2, 4, 6 and thus mi = mj = 1 by

Lemma 2.3. Hence 2n− 2k + 1 ≤ ajm
l
j = 1, which is impossible.

III. The case l = 2, k ≥ 5. This is impossible as, by (3.6), there exists
some i with ai = 9, but ai must be square free.

IV. The case l = 2, 3 ≤ k ≤ 4. As 2,−4 are quadratic nonresidues
modulo 3, we know that x2 − 3y2 6= 2,−4 for any integers x, y. Similar
argument can be applied to 3y2 − 7w2, x2 − 5z2, x2 − 7w2 modulo 3, 5, 7,
respectively. Then we have

(3.7)


x2 − 3y2 6= 2,−4,
x2 − 5z2 6= 2,−2,−6,
x2 − 7w2 6= −2,−4, 6,
3y2 − 7w2 6= −2, 4.

When k = 3, noting that aim
2
i − ajm

2
j = ±2,±4 for 0 ≤ i < j ≤ 2, we

deduce from (3.6) and (3.7) that (a0, a1, a2) = (5, 3, 1). In fact, (a0, a1, a2) =
(1, 3, 5) implies m2

1 − 3m2
2 = 2, which has no integer solution according to

(3.7), but since x2 − 5z2 6= ±2, (a0, a1, a2) can only be (1, 3, 5) or (5, 3, 1),
so (a0, a1, a2) = (5, 3, 1). Therefore,

9m4
1 − 4 = (3m2

1 + 2)(3m2
1 − 2) = 5m2

0 ·m2
2 = 5(m0m2)2.

By Lemma 2.2, m0 = m1 = m2 = 1, but this means n = 3, contradicting
n ≥ 2k.
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When k = 4, we can deduce similarly that (a0, a1, a2, a3) = (7, 5, 3, 1) or
(1, 7, 5, 3). Let i = 1 resp. 2. Then we have

25m4
i − 4 = (5m2

i + 2)(5m2
i − 2) = 21(mi−1mi+1)2.

By Lemma 2.2, mi−1 = mi = mi+1 = 1, which implies 2n − 1 ≤ 7, contra-
dicting n ≥ 2k.

V. The case l = 2, k = 2. As M2 | (2k − 1)!!, we have M = 1, whence
what we are going to solve is

(3.8) (2n− 1)(2n− 3) = 3m2.

Let 2n− 2 = x, with which (3.8) takes the form

(3.9) x2 − 3m2 = 1.

All the positive integer solutions of the above Pell equation are given by

xt +mt

√
3 = (2 +

√
3)t (t ∈ N∗).

This implies that all the positive integer solutions of (3.9) with 2 |x and
x ≥ 6 are given by

x+m
√

3 = (2 +
√

3)2t+1 (t ∈ N∗).
Hence all the solutions of (3.8) are given by

2n+m
√

3 = (2 +
√

3)2t+1 + 2 (t ∈ N∗).
This completes the proof of Theorem 1.1 as

(
n
k

)
!!

=
(

n
n−k

)
!!
.

4. A generalization of equation (1.3). As a generalization of
(
n
k

)
and(

n
k

)
!!
, we define(
n

k

)
a,b

=
(an− a+ b)(an− 2a+ b) · · · (an− ak + b)

(ak − a+ b)(ak − 2a+ b) · · · b
,

1 ≤ b ≤ a, gcd(a, b) = 1,

and ask whether
(
n
k

)
a,b

is a power of a rational number when 2 ≤ k ≤ n− 2.
In view of

(
n
k

)
a,b

=
(

n
n−k

)
a,b

, we only need to consider the following Dio-
phantine equation:

(4.1)
(
n

k

)
a,b

=
(
m

M

)l

in integers n ≥ 4, 4 ≤ 2k ≤ n, m ≥ 1, M ≥ 1, gcd(m,M) = 1, l ≥ 2.

When (a, b) = (1, 1), (4.1) is (1.1), and when (a, b) = (2, 1), (4.1) is (1.3).
However, we cannot solve (4.1) using the method of this paper when a ≥ 3.

Furthermore, for 1 ≤ b ≤ a, gcd(a, b) = 1, we can consider the quotient
of two products of consecutive k terms in the arithmetic progression b, a+ b,
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a+ 2b, . . . , and ask for the solutions of the Diophantine equation

(an− a+ b)(an− 2a+ b) · · · (an− ak + b)
(aN − a+ b)(aN − 2a+ b) · · · (aN − ak + b)

=
(
m

M

)l

in integers |N − n| ≥ k, m ≥ 1, M ≥ 1, gcd(m,M) = 1, l ≥ 2.
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