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1. Introduction. The present work is a natural sequel to our earlier
articles on “normal” vector-valued modular forms [KM1], [KM2]. The com-
ponent functions of a normal vector-valued modular form F are q-series with
at worst real exponents. Equivalently, the finite-dimensional representation
ρ associated with F has the property that ρ(T ) is (similar to) a matrix that
is unitary and diagonal. Here, T =

(
1 1
0 1

)
.

In the case of a general representation, ρ(T ) is not necessarily diagonal
but may always be assumed to be in Jordan canonical form (1). This circum-
stance leads to logarithmic, or polynomial q-expansions for the component
functions of a vector-valued modular form associated to ρ (see Subsection
2.2), which take the form

f(τ) =
t∑

j=0

(log q)jhj(τ),(1)

where the hj(τ) are ordinary q-series. There follow naturally the definition
of logarithmic vector-valued modular form and the concomitant notions of
logarithmic meromorphic, holomorphic (i.e., entire in the sense of Hecke)
and cuspidal vector-valued modular forms (Subsection 2.3).

The Poincaré series is an indispensable device in every theory of modu-
lar (or automorphic) forms, regardless of the level of abstraction. Naturally,
then, we introduce appropriately constructed Poincaré series to establish the
existence of nontrivial logarithmic vector-valued modular forms. Of course,
in the logarithmic case we treat here, the construction is of necessity more
complicated, as compared with the classical (i.e., scalar-valued) theory or
the normal vector-valued case. The principal new complexity resides in the
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(1) We actually use a modified Jordan canonical form. See Subsection 2.2 for details.
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additional matrix factor Bρ that must be inserted in the definition (cf. Def-
inition 3.1) in order to achieve the desired formal transformation properties
with respect to the representation ρ (Subsection 3.1, following the proof of
Lemma 3.2).

It is useful to compare Definition 3.1 with the corresponding definition in
the normal case [KM2, display (18), pp. 1352–1353]. Definition 3.1 actually
defines a matrix-valued Poincaré series, each column of which is a logarith-
mic vector-valued modular form. In fact, the same is true of our definition in
the normal case, except that in the latter case we define the Poincaré series
as a single column of the matrix-valued Poincaré series. Matrix-valued mod-
ular forms are a very natural generalization of vector-valued modular forms.
In addition to our Poincaré series, for example, the modular Wronskian
[M1] is the determinant of a matrix-valued modular form. The passage from
vector-valued modular forms to matrix-valued modular forms is analogous
to passing from a modular linear differential equation of order p (loc. cit.)
to an associated system of p linear differential equations of order 1.

Subsections 3.2 and 3.3 are devoted, respectively, to the proof of con-
vergence of our matrix-valued Poincaré series and the determination of the
general form of their logarithmic q-series expansions. Our proof of conver-
gence requires the assumption that the eigenvalues of ρ(T ) have absolute
value 1, so that the q-series hj(τ) in (1) again have at worst real exponents.
This condition will be implicitly assumed in the remainder of the Introduc-
tion. We also use a simple new estimate (Proposition 3.7) in the proof of
convergence.

The remainder of the paper is devoted to applications. In Subsection
3.4 we give some consequences of an algebraic nature. We show (Theorem
3.13) that if ρ has dimension p, the graded space H(ρ) of all holomorphic
vector-valued modular forms associated to ρ is a free module of rank p over
the algebra M of (scalar) holomorphic modular forms on Γ . This gener-
alizes the corresponding Theorem proved in [MM] in the normal case. In
fact, the proof in [MM] was organized with just such a generalization in
mind. The only additional input that is required is the existence of some
nonzero holomorphic vector-valued modular form associated with ρ, and this
is an easy consequence of the existence of a nonzero meromorphic Poincaré
series. A consequence of the free module theorem is Theorem 3.14, which
implies that if F is a logarithmic vector-valued modular form F then there
is a canonical modular linear differential equation whose solution space is
spanned by the component functions of F .

The occurrence of q-expansions of the form (1) is well known in rational
and logarithmic conformal field theory. Indeed, much of the motivation for
the present work originates from a need to develop a systematic theory of
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vector-valued modular forms wide enough in scope to cover possible appli-
cations in such field theories. By results in [DLM] and [M], the eigenvalues
of ρ(T ) for the representations that arise in rational and logarithmic con-
formal field theory are indeed of absolute value 1 (in fact, they are roots of
unity). Thus this assumption is natural from the perspective of conformal
field theory. Our earlier results [KM1] on polynomial estimates for Fourier
coefficients of entire vector-valued modular forms in the normal case have
found a number of applications to the theory of rational vertex operator
algebras, and we expect that the extension to the logarithmic case that we
prove here will be useful in the study of C2-cofinite vertex operator algebras,
which constitute the algebraic underpinning of logarithmic field theory.

Other properties of logarithmic vector-valued modular forms are also
of interest, from both a foundational and applied perspective. These in-
clude polynomial estimates for the Fourier coefficients, a Petersson pairing,
generation of the space of cusp-forms by Poincaré series, existence of a nat-
ural boundary for the component functions, and explicit formulas (in terms
of Bessel functions and Kloosterman sums) for the Fourier coefficients of
Poincaré series. This program was carried through in the normal case in
[KM2]. We expect that the more general logarithmic case will yield a sim-
ilarly rich harvest, but one must expect more complications. For example,
there are logarithmic vector-valued modular forms with nonconstant com-
ponent functions that may be extended to the whole of the complex plane,
so that the usual natural boundary result is false per se. Furthermore, our
preliminary calculations indicate that the explicit formulas exhibit genuinely
new features. We hope to return to these questions in the future.

2. Logarithmic vector-valued modular forms

2.1. Unrestricted vector-valued modular forms. We start with
some notation that will be used throughout. The modular group is

Γ =
{(

a b

c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1
}
.

It is generated by the matrices

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
.(2)

The complex upper half-plane is

H = {τ ∈ C | =(τ) > 0}.
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There is a standard left action Γ ×H→ H given by Möbius transformations:((
a b

c d

)
, τ

)
7→ aτ + b

cτ + d
.

Let F be the space of holomorphic functions in H. There is a standard
1-cocycle j : Γ → F defined by

j(γ, τ) = j(γ)(τ) = cτ + d, γ =
(
a b

c d

)
.

In what follows, ρ : Γ → GL(p,C) will always denote a p-dimensional
matrix representation of Γ. An unrestricted vector-valued modular form of
weight k with respect to ρ is a holomorphic function F : H→ Cp satisfying

ρ(γ)F (τ) = F |kγ(τ), γ ∈ Γ,
where the right-hand side is the usual stroke operator

F |kγ(τ) = j(γ, τ)−kF (γτ).(3)

We could take F (τ) to be meromorphic in H, but we will not consider that
more general situation here. Choosing coordinates, we can rewrite (3) as

ρ(γ)


f1(τ)

...
fp(τ)

 =


f1|kγ(τ)

...
fp|kγ(τ)

(4)

with each fj(τ) ∈ F. We also refer to (F, ρ) as an unrestricted vector-valued
modular form.

2.2. Logarithmic q-expansions. In this subsection we consider the
q-expansions associated to unrestricted vector-valued modular forms. We
make use of the polynomials defined for k ≥ 1 by(

x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
,

and with
(
x
0

)
= 1 and

(
x
k

)
= 0 for k ≤ −1.

We consider a finite-dimensional subspace W ⊆ Fk that is invariant
under T , i.e. f(τ + 1) ∈ W whenever f(τ) ∈ W . We introduce the m ×m
matrix

Jm,λ =


λ

λ
. . .
. . . . . .

λ λ

 ,(5)

i.e. Ji,j = λ for i = j or j + 1 and Ji,j = 0 otherwise.
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Lemma 2.1. There is a basis of W with respect to which the matrix ρ(T )
representing T is in block diagonal form:

ρ(T ) =


Jm1,λ1

. . .

Jmt,λt

 .(6)

Proof. The existence of such a representation is basically the theory of
the Jordan canonical form. The usual Jordan canonical form is similar to
the above, except that the subdiagonal of each block then consists of 1’s
rather than λ’s. The λ’s that appear in (6) are the eigenvalues of ρ(T ), and
in particular they are nonzero on account of the invertibility of ρ(T ). Then
it is easily checked that (6) is indeed similar to the usual Jordan canonical
form, and the lemma follows.

We refer to (6) as the modified Jordan canonical form of ρ(T ), and Jmi,λi
as a modified Jordan block. To a certain extent at least, Lemma 2.1 reduces
the study of the functions in W to those associated to one of the Jordan
blocks. In this case we have the following basic result.

Theorem 2.2. Let W ⊆ Fk be a T -invariant subspace of dimension m.
Suppose that W has an ordered basis (g0(τ), . . . , gm−1(τ)) with respect to
which the matrix ρ(T ) is a single modified Jordan block Jm,λ. Set λ = e2πiµ.
Then there are m convergent q-expansions ht(τ) =

∑
n∈Z at(n)qn+µ, 0 ≤ t ≤

m− 1, such that

gj(τ) =
j∑
t=0

(
τ

t

)
hj−t(τ), 0 ≤ j ≤ m− 1.(7)

The case m = 1 of the theorem is well known. We will need it for the
proof of the general case, so we state it as

Lemma 2.3. Let λ = e2πiµ, and suppose that f(τ) ∈ F satisfies f(τ+1) =
λf(τ). Then f(τ) is represented by a convergent q-expansion

f(τ) =
∑
n∈Z

a(n)qn+µ.(8)

Proof of Theorem 2.2. We have

gj(τ + 1) = λ(gj(τ) + gj−1(τ)), 0 ≤ j ≤ m− 1,(9)

where g−1(τ) = 0. Set

hj(τ) =
j∑
t=0

(−1)t
(
τ + t− 1

t

)
gj−t(τ), 0 ≤ j ≤ m− 1.
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These equalities can be displayed as a system of equations. Indeed,

Bm(τ)


g0(τ)

...
gm−1(τ)

 =


h0(τ)

...
hm−1(τ)

 ,(10)

where Bm(x) is the m×m lower triangular matrix with

Bm(x)ij = (−1)i−j
(
x+ i− j − 1

i− j

)
.(11)

Then Bm(x) is invertible and

Bm(x)−1
ij =

(
x

i− j

)
.(12)

We will show that each hj(τ) has a convergent q-expansion. This being
the case, (7) holds and the theorem will be proved. Using (9), we have

hj(τ + 1) = λ

j∑
t=0

(−1)t
(
τ + t

t

)
(gj−t(τ) + gj−t−1(τ))

= λ

{ j∑
t=0

(−1)t
(

1 +
t

τ

)(
τ + t− 1

t

)
gj−t(τ) +

j∑
t=0

(−1)t
(
τ + t

t

)
gj−t−1(τ)

}

= λ

{
hj(τ) +

j∑
t=0

(−1)t
(
τ + t− 1

t

)
t

τ
gj−t(τ) +

j∑
t=0

(−1)t
(
τ + t

t

)
gj−t−1(τ)

}
.

But the sum of the second and third terms in the braces vanishes, being
equal to

j∑
t=1

(−1)t
(
τ + t− 1

t

)
t

τ
gj−t(τ) +

j∑
t=1

(−1)t−1

(
τ + t− 1
t− 1

)
gj−t(τ)

=
j∑
t=1

(−1)t−1gj−t(τ)
{(

τ + t− 1
t− 1

)
−
(
τ + t− 1

t

)
t

τ

}
= 0.

Thus we have established the identity hj(τ + 1) = λhj(τ). By Lemma
2.3, hj(τ) is indeed represented by a q-expansion of the desired shape, and
the proof of Theorem 2.2 is complete.

We call (7) a polynomial q-expansion. The space of polynomials spanned
by
(
x
t

)
, 0 ≤ t ≤ m − 1, is also spanned by the powers xt, 0 ≤ t ≤ m − 1.

Bearing in mind that (2πiτ)t = (log q)t, it follows that in Theorem 2.2 we
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can find a basis {g′j(τ)} of W such that

g′j(τ) =
j∑
t=0

(log q)th′j−t(τ)(13)

with h′t(τ) =
∑

n∈Z a
′
t(n)qn+µ. We refer to (13) as a logarithmic q-expansion.

2.3. Logarithmic vector-valued modular forms. We say that a
function f(τ) with a q-expansion (8) is meromorphic at infinity if

f(τ) =
∑

n+<(µ)≥n0

a(n)qn+µ.

That is, the Fourier coefficients a(n) vanish for exponents n + µ whose
real parts are small enough. A polynomial (or logarithmic) q-expansion (7)
is holomorphic at infinity if each of the associated ordinary q-expansions
hj−t(τ) is holomorphic at infinity. Similarly, f(τ) vanishes at ∞ if the
Fourier coefficients a(n) vanish for n+<(µ) ≤ 0; a polynomial q-expansion
vanishes at ∞ if the associated ordinary q-expansions vanish at ∞. These
conditions are independent of the chosen representations.

Now assume that F (τ) = (f1(τ), . . . , fp(τ))t is an unrestricted vector-
valued modular form of weight k with respect to ρ. It follows from (4) that
the span W of the functions fj(τ) is a right Γ -submodule of F satisfying
fj(τ+1) ∈W . Choose a basis of W so that ρ(T ) is in modified Jordan canon-
ical form. By Theorem 2.2 the basis of W consists of functions gj(τ) which
have polynomial q-expansions. We call F (τ), or (F, ρ), a logarithmic mero-
morphic, holomorphic, or cuspidal vector-valued modular form respectively
if each of the functions gj(τ) is meromorphic, is holomorphic, or vanishes
at ∞, respectively.

From now on we generally drop the adjective “logarithmic” from this
terminology, and say that F (τ) is semisimple if the component functions
have ordinary q-expansions, i.e. they are free of logarithmic terms. This
holds if, and only if, ρ(T ) is a semisimple operator.

Let H(k, ρ) be the space of holomorphic vector-valued modular forms of
weight k with respect to ρ, with H(ρ) =

⊕
k∈ZH(k, ρ) the Z-graded space

of all holomorphic vector-valued modular forms.

2.4. Matrix-valued modular forms. Matrix-valued modular forms
are a natural generalization of vector-valued modular forms. They arise
naturally in several contexts, including (as we shall see) Poincaré series.
Let ρ : Γ → GLp(C) be a representation, and let Matp×n(C) be the space
of p × n matrices. Let k = (k1, . . . , kn) ∈ Zn. Consider a holomorphic map
A : H→ Matp×n(C) satisfying

ρ(γ)A(τ) = A|kγ(τ), γ ∈ Γ,
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where the right-hand side is defined as

A|kγ(τ) = A(γτ)Jk(γ, τ)−1

and J is the matrix automorphy factor

Jk(γ, τ) =


j(γ, τ)k1 . . . 0

...
. . . 0

0 0 j(γ, τ)kn

 .(14)

This defines an unrestricted matrix-valued modular form of weight k with
respect to ρ.

Let pj : Matp×n(C) → Matp×1(C) be projection onto the jth column.
Then pj ◦ A is an unrestricted vector-valued modular form of weight kj
with respect to ρ, and we say that A(τ) is a meromorphic, holomorphic, or
cuspidal vector-valued modular form of weight k if each pj ◦A is meromor-
phic, holomorphic or cuspidal, respectively. Thus, a matrix-valued modular
form associated to ρ consists of n vector-valued modular forms of weight
k1, . . . , kn, each associated to ρ with the component functions organized
into the columns of a matrix.

2.5. The nontriviality condition. Let ρ : Γ → GLp(C) be a matrix
representation. Because S2 = −I2 has order 2, we can choose a basis of the
underlying representation space such that

ρ(S2) =
(
Ip1 0
0 −Ip2

)
.

Since S2 is in the center of Γ , we see that ρ(Γ ) acts on the two eigenspaces
of ρ(S2), and therefore the matrices

ρ(γ) =
(
ρ11(γ) 0

0 ρ22(γ)

)
, γ ∈ Γ,(15)

are correspondingly in block diagonal form. It follows that if (F, ρ) is a
vector-valued modular form of weight k, and if we write F (τ)=(F1(τ),F2(τ))
with Fi(τ) having pi components, i = 1, 2, then Fi(τ) is a vector-valued
modular form of weight k with respect to the representation ρii. More is
true. The equality ρ(S2)F t(τ) = F t|kS2(τ) says that

(F1(τ),−F2(τ)) = (−1)k(F1(τ), F2(τ)).

Assuming that F 6= 0, it follows that either F2 = 0 and k is even, or else
F1 = 0 and k is odd. It follows that there are natural identifications

H(k, ρ) =
{H(k, ρ11), k even,
H(k, ρ22), k odd,

H(ρ) = H(ρ11)⊕H(ρ22).(16)
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The upshot of this discussion is that for most considerations, we may
assume that ρ(S2) is a scalar, i.e.

ρ(S2) = εIp, ε = ±1.(17)

In this case, if F (τ) ∈ H(k, ρ) is nonzero then

ε = (−1)k.(18)

This is the nontriviality condition in weight k.
In the case of semisimple vector-valued modular forms, it is proved in

[KM1] and [M1] that there is an integer k0 such that H(k, ρ) = 0 for k < k0.
The proof in [M1] applies to the general (logarithmic) case. Thus if ρ satisfies
(17) then

H(ρ) =
⊕
k≥k0

H(k0 + 2k).(19)

3. Matrix-valued Poincaré series. We develop a theory of Poincaré
series in order to prove existence of nontrivial logarithmic vector-valued
modular forms.

3.1. Definition and formal properties. Fix a representation ρ : Γ →
GL(p,C). We may, and shall, assume that ρ(T ) is in modified Jordan canon-
ical form with t blocks, the rth block being the mr ×mr matrix Jmr,λr (see
(5), (6)) and with λr = e2πiµr the associated eigenvalue of ρ(T ).

We will need several more block diagonal matrices. The matrices in ques-
tion will all have t blocks, the rth block having the same size as the rth block
of ρ(T ). Set

Bρ(x) = diag(Bm1(x), . . . , Bmt(x))(20)

where Bm(x) is given in (11). For (z1, . . . , zt) ∈ Ct let

Λρ(z1, . . . , zt) = diag(z1Im1 , . . . , ztImt).(21)

Definition 3.1. Let ν = (ν1, . . . , νt) ∈ Zt, k = (k1, . . . , kp) ∈ Zp. The
Poincaré series is defined to be

(22) Pk(ν, τ)

=
1
2

∑
M

ρ(M)−1Λρ(. . . , e2πi(νr+µr)Mτ , . . .)Bρ(Mτ)−1Jk(M, τ)−1,

where M ranges over a set of representatives of the coset space 〈T 〉\Γ and
Jk(M, τ) is the matrix automorphy factor (14).

Notice that Bρ(τ)−1 should be considered as an additional matrix auto-
morphy factor. At least formally, Pk(ν, τ) is a p× p matrix-valued function.

We interpolate a lemma.
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Lemma 3.2. The matrices ρ(T ), Λρ(z1, . . . , zt) and Bρ(τ) (τ ∈ H) com-
mute with each other, and satisfy

ρ(T )Bρ(τ)−1 = Bρ(τ + 1)−1Λρ(λ1, . . . , λt).

Proof. All of the matrices in question are block diagonal with corre-
sponding blocks of the same size. So it suffices to show that for a given m
and λ, the m×m matrices Jm,λ, zIm and Bm(τ) commute and satisfy

Jm,λBm(τ)−1 = λBm(τ + 1)−1.(23)

The m×m matrices all have the following properties: they are lower trian-
gular and the (i, j)-entry depends only on i− j. It is easy to check that any
two such matrices commute.

As for (23), let G(τ) and H(τ) denote the column vectors of functions
that occur in (10), so that we can write the equation as

Bm(τ)G(τ) = H(τ).

By definition of G(τ) and H(τ) (cf. Theorem 2.2) we have

Jm,λG(τ) = G(τ + 1), H(τ + 1) = λH(τ).

Therefore,

Jm,λBm(τ)−1H(τ) = Jm,λG(τ) = G(τ + 1)
= Bm(τ + 1)−1H(τ + 1) = λBm(τ + 1)−1H(τ).

Since the components of H(τ) are linearly independent, (23) follows.

Now make the replacement M 7→ TM in a summand of (22). Using
Lemma 3.2 we calculate that the summand maps to

ρ(TM)−1Λρ(. . . , e2πi(νr+µr)TMτ , . . .)Bρ(TMτ)−1Jk(TM, τ)−1

= ρ(M)−1ρ(T )−1Λρ(. . . , e2πi(νr+µr)Mτ , . . .)Λρ(λ1, . . . , λt)

×Bρ(Mτ + 1)−1Jk(M, τ)−1

= ρ(M)−1Λρ(. . . , e2πi(νr+µr)Mτ , . . .)Bρ(Mτ)−1Jk(M, τ)−1.

This calculation confirms that the sum defining Pk(ν, τ) is independent of
the choice of coset representatives. We also note that

Pk|kγ(τ) =
1
2

∑
M

ρ(M)−1Λρ(. . . , e2πi(νr+µr)Mγτ , . . .)

×Bρ(Mγτ)−1Jk(M,γτ)−1Jk(γ, τ)−1

=
1
2
ρ(γ)

∑
M

ρ(Mγ)−1Λρ(. . . , e2πi(νr+µr)Mγτ , . . .)

×Bρ(Mγτ)−1Jk(Mγ, τ)−1

= ρ(γ)Pk(ν, τ)
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where we used independence of coset representatives for the last equality.
This confirms that each Pk(ν, τ) is, at least formally, a matrix-valued mod-
ular form of weight k with respect to ρ.

3.2. Convergence of Pk(ν, τ). From now on we assume that the con-
stants µr are real, i.e. the eigenvalues λ of ρ(T ) satisfy |λ| = 1. With this
assumption, we show in this subsection that the Poincaré series Pk(ν, τ) is an
unrestricted matrix-valued modular form for k � 0. After the results of the
previous subsection, this amounts to the fact that Pk(ν, τ) is holomorphic
in H as long as the component weights kj of k are large enough.

Define the vertical strip

S = {τ ∈ H | |<(τ)| ≤ 1/2, =(τ) ≥
√

3/2}.

Notice that S contains the closure of the standard fundamental region for Γ .
We will prove

Theorem 3.3. Pk(ν, τ) converges absolutely-uniformly in S for k � 0.

It is a consequence of Theorem 3.3 and the formal transformation law
for Pk(ν, τ) (cf. Subsection 3.1) that Pk(ν, τ) is holomorphic throughout H.

We split off the two terms of the Poincaré series corresponding to ±I,
so that

Pk(ν, τ) = Λρ(. . . , e2πi(νr+µr)τ , . . .)Bρ(τ)−1(24)

+
1
2

∑
M∈M∗

ρ(M)−1Λρ(. . . , e2πi(νr+µr)Mτ , . . .)

×Bρ(Mτ)−1Jk(M, τ)−1.

Here,M∗ is a set of representatives of the cosets 〈T 〉\Γ distinct from ±〈T 〉,
and ±I are the representative of ±〈T 〉. The matrices M ∈M∗ have bottom
row (c, d) with c 6= 0. The entries of Bρ(τ)−1 are polynomials in τ (cf. (12),
(20)), so the first term in (24) is holomorphic.

Lemma 3.4. We can choose coset representatives M ∈M∗ so that |Mτ |
is uniformly bounded in S. That is, there is a constant K such that |Mτ |
≤ K for all τ ∈ S and all M ∈M∗.

Proof. Suppose that γ =
(
a b
c d

)
∈ Γ with c 6= 0, and consider the γ-image

γ(S) of the strip. Apart from two exceptional cases (when c = ±1, d = ∓1),
the γ-image of the circle |τ | = 1 is a circle with center b/d and radius at
most 1. Moreover γ(∞) = a/c lies on or inside the boundary of this circle.
From this it is easy to see that

γ(S) ⊆ {τ ∈ H | |<(τ)− a/c| ≤ 1}.

Replacing γ by T lγ for suitable l, the corresponding value of |a/c| can be
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made less than 1, so that

γ(S) ⊆ {τ ∈ H | |<(τ)| ≤ 2}.
This also holds in the exceptional cases. Therefore we may, and shall, choose
a set of coset representatives M∗ so that |<(Mτ)| is uniformly bounded in
S for M ∈M∗.

On the other hand, it is easy to see that we always have |cτ + d|2 ≥
c2=(τ)2. Since |=(τ)| ≥

√
3/2 for τ ∈ S, it follows that

=(γτ) =
=(τ)
|cτ + d|2

≤ =(τ)
c2=(τ)2

=
1

c2=(τ)
≤ 1
=(τ)

≤ 2√
3
,

so that |=(γτ)| is uniformly bounded in S for c 6= 0. Therefore, with our
earlier choice of M∗, it follows that |Mτ | is also uniformly bounded in S.
This completes the proof of the lemma.

Until further notice, we assume that M∗ satisfies the conclusion of
Lemma 3.4.

Corollary 3.5. The entries of the matrices Λρ(. . . , e2πi(νr+µr)Mτ , . . .)
and Bρ(Mτ)−1 are uniformly bounded in S for M ∈M∗.

Proof. For Λρ(. . . , e2πi(νr+µr)Mτ , . . .) the assertion is an immediate con-
sequence of Lemma 3.4. As for Bρ(Mτ)−1, we have already pointed out that
it has polynomial entries, indeed the (i, j)-entry is

(
Mτ
i−j
)
. Uniform bounded-

ness in this case is then also a consequence of Lemma 3.4.

Next we state a modification of [E, p. 169, display (4)] which we call
Eichler’s canonical form for elements of Γ .

Lemma 3.6. Let γ =
(
a b
c d

)
∈ Γ . Then the following hold:

(i) γ has a unique representation

γ = ±(ST lν+1)(ST lν ) · · · (ST l1)(ST l0)(25)

such that (−1)j−1lj > 0 for 1 ≤ j ≤ ν and (−1)ν lν+1 ≥ 0. Thus l1 is
positive, the lj alternate in sign for j ≥ 1, lν+1 may be 0, and there is no
condition on l0.

(ii) If γ is normalized so that |a/c| < 1 (as in Lemma 3.4), then lν+1 6= 0.
With γ fixed for now, we further set

P0 = ST l0 ,

Pj+1 = (ST lj )Pj , 0 ≤ j ≤ ν,

Pj =
(
aj bj

cj dj

)
, 0 ≤ j ≤ ν + 1,(26)

γ =
(
a b

c d

)
.(27)
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Proposition 3.7.

(i) If lν+1 6= 0 in (25), then

|l0l1 · · · lν+1| ≤ |d| if l0 < 0,
|l1 · · · lν+1| ≤ |d− c| if l0 = 0,(28)
|l0l1 · · · lν+1| ≤ |c|+ |d| if l0 > 0.

(ii) If lν+1 = 0, then

|l0l1 · · · lν−1| ≤ |d| if l0 < 0,
|l1 · · · lν−1| ≤ |d− c| if l0 = 0,(29)
|l0l1 · · · lν−1| ≤ |c|+ |d| if l0 > 0.

Proof.

Case A: l0 < 0. We will prove by induction on j ≥ 0 that

(30)
(i) |l0l1 · · · lj | ≤ |dj |,
(ii) (−1)jbjdj ≥ 0.

Once this is established, the case j = ν + 1 of (30)(i) proves (28) in Case A.
Now

P0 =
(

0 −1
1 l0

)
,

and the case j = 0 is clear. For the inductive step, we have

Pj+1 =
(

0 −1
1 lj+1

)(
aj bj

cj dj

)
=
(

−cj −dj
aj + lj+1cj bj + lj+1dj

)
.(31)

Thus (−1)j+1bj+1dj+1 = (−1)jbjdj + (−1)jlj+1d
2
j ≥ 0 where the last in-

equality uses induction and the inequality stated in Lemma 3.6. So (30)(ii)
holds.

Back to (30)(i), note that because (−1)jbjdj and (−1)jlj+1d
2
j are both

nonnegative, bj and lj+1dj have the same sign. Therefore, using induction
again, we have |l0l1 · · · lj+1| ≤ |djlj+1| ≤ |bj | + |lj+1dj | = |bj + lj+1dj | =
|dj+1|. This completes the proof of Case A.

Case B: l0 = 0. Notice in this case that γT−1 = (ST lv) · · · (ST l1)(ST−1),
which falls into Case A with l0 = −1. Since

γT−1 =
(
a b

c d

)(
1 −1
0 1

)
=
(
a b− a
c d− c

)
it follows from Case A that |l1 · · · lv| ≤ |d− c|, as was to be proved.
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Case C: l0 > 0. We will prove by induction on j that

(32)
(i) |l0l1 · · · lj | ≤ |cj |+ |dj |, j ≥ 0,

(ii) (−1)jbjdj , (−1)jajcj ≥ 0, j ≥ 1.

Once again, the case j = v of (32)(i) proves (28) in Case C, and this will
complete the proof of the proposition. Now

P0 =
(

0 −1
1 l0

)
, P1 =

(
−1 −l0
l1 l0l1 − 1

)
.

So when j = 0, (32)(i) is clearly true, and because l0, l1 > 0 we also have

−a1c1 = l1 > 0, −b1d1 = l0(l0l1 − 1) ≥ 0.

So (32)(ii) holds for j = 1. As for the inductive step, Pj+1 is as in (31),
and the proof that (−1)jbjdj ≥ 0 is the same as in Case A. Similarly
(−1)j+1aj+1cj+1 = (−1)jcjaj + (−1)jlj+1c

2
j ≥ 0 is the sum of two nonnega-

tive terms and hence is itself nonnegative, so (32)(ii) holds. Finally, by an ar-
gument similar to that used in Case A, we have |l0 · · · lj+1| ≤ |cj+dj | |lj+1| <
|lj+1cj |+ |lj+1dj |+ |aj |+ |bj | = |aj + lj+1cj |+ |bj + lj+1dj | = |cj+1|+ |dj+1|.
Part (i) of the proposition is proved. The proof goes through for part (ii)
without modification.

The Eichler length of γ is given by

L(γ) =
{

2ν + 4, l0 6= 0,
2ν + 3, l0 = 0,

(33)

provided lν+1 6= 0, and by

L(γ) =
{

2ν + 1, l0 6= 0,
2ν, l0 = 0,

(34)

if lν+1 = 0. By Lamé’s theorem we have the estimate

L(γ) ≤ K(log |c|+ 1)(35)

with a positive constant K independent of γ.
The norm ‖ρ(γ)‖, defined to be maxi,j |ρ(γ)ij |, satisfies

‖ρ(γ)‖ ≤ ‖ρ(S)‖ν+2
ν+1∏
j=0

‖ρ(T lj )‖.(36)

Lemma 3.8. Let s be the maximum of the sizes mj of the Jordan blocks
Jmj ,λj of ρ(T ) as in (5), (6). There is a constant Cs depending only on s
such that for l 6= 0,

‖ρ(T l)‖ ≤ Cs|l|s−1.(37)
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Proof. We have

J lm,λ = λlJ lm,1 = λl(Im +N)l = λl
∑
i≥0

(
l

i

)
N i

where N is the nilpotent m×m matrix with each (i, i− 1)-entry equal to 1
(i ≥ 2), and all other entries zero. Note that Nm = 0 and the entries of
N i for 1 ≤ i < m are 1 on the ith subdiagonal and zero elsewhere. Bearing
in mind that |λ| = 1, it follows that ‖J lm,λ‖ is majorized by the maximum
of the binomial coefficients

(
l
i

)
over the range 0 ≤ i ≤ m − 1. Since

(
l
i

)
is

a polynomial in l of degree i, we certainly have ‖J lm,λ‖ ≤ Cm|l|m−1 for a
universal constant Cm, and since this applies to each Jordan block of ρ(T l),
the lemma follows immediately.

Corollary 3.9. There are universal constants K3,K4 such that

‖ρ(γ)‖ ≤
{
K3(c2 + d2)K4 , lν+1 6= 0,
K3(c2 + d2)K4 |lν |s−1, lν+1 = 0.

(38)

Moreover the same estimates hold for ‖ρ(γ−1)‖.

Proof. First assume that lν+1 6= 0. From Lemma 3.8 and (36) we obtain

‖ρ(γ)‖ ≤

{
Kν+1

1

∏ν+1
j=0 |lj |s−1, l0 6= 0,

Kν+1
1

∏ν+1
j=1 |lj |s−1, l0 = 0,

for a constant K1 depending only on ρ. Now use (33), (35) and Proposition
3.7 to see that

‖ρ(γ)‖ ≤ e(logK1)K2 log(|c|+1)(|c|+ |d|) ≤ K3(c2 + d2)K4 .

Concerning the second assertion of the corollary, since

γ−1 = (T−l0S)(T−l1S) · · · (T−lν+1S),

we have

‖ρ(γ−1)‖ ≤ ‖ρ(S)‖ν+2
ν+1∏
j=0

‖ρ(T )−lj‖,

and (37) then holds by Lemma 3.8. The rest of the proof is identical to the
previous case, so that we indeed obtain estimate (38) for γ−1 as well as γ.
The second case, in which lν+1 = 0, is entirely analogous.

Proof of Theorem 3.3. Let P ∗k (ν, τ) denote the infinite sum in (24). Since
M =

(
a b
c d

)
∈ M∗ is normalized by the condition |a/c| < 1 (see the proof

of Lemma 3.4), it follows from Lemma 3.6(ii) that lν+1 6= 0. Thus, we can
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apply Corollary 3.5 and the first case of Corollary 3.9 to find that

‖P ∗k (ν, τ)‖

≤
∑

M∈M∗
‖ρ(M)−1‖ ‖Λρ(. . . , e2πi(νr+µr)Mτ , . . .)‖ ‖Bρ(Mτ)−1‖ ‖Jk(M, τ)−1‖

≤ K5

∑
(c,d)=1

(c2 + d2)K4‖Jk(M, τ)−1‖,

with constants K4,K5 that depend only on ρ. We also know [KM1, display
(13)] that

c2 + d2 ≤ K6|cτ + d|2(39)

for a universal constant K6. Because of the nature of the matrix automorphy
factor Jk (see (14)), it follows from the previous two displays that if the
minimum of the weights ki in k = (k1, . . . , kp) is large enough, then

‖P ∗k (ν, τ)‖ ≤ K7

∑
(c,d)=1

(cτ + d)−k

with k > 2. It is well known that this series converges absolutely-uniformly
in S, so the same is true for P ∗k (ν, τ). This completes the proof.

3.3. q-Expansions of the component functions. We now assume
(cf. the discussion in Subsection 2.5) that (17) holds. Consider the substitu-
tion M 7→ −M in the expression for Pk(ν, τ). Because the sum is indepen-
dent of the order of the terms, (17) implies that

Pk(ν, τ) = Pk(ν, τ)Λρ(ε(−1)k1 , . . . , ε(−1)kt).

If the nontriviality condition (18) holds in weight kj then ε(−1)kj = 1 and
the jth column of Pk(ν, τ) is unchanged. If the nontriviality condition does
not hold then the jth column is zero and as such it too is unchanged. We
conclude that

(40) Pk(ν, τ)

=
∑
M

ρ(M)−1Λρ(. . . , e2πi(νr+µr)Mτ , . . .)Bρ(Mτ)−1Jk(M, τ)−1,

where the matrices M now range over an arbitrary set of coset representa-
tives of ±〈T 〉\Γ .

We will show that Pk(ν, τ) is a meromorphic vector-valued modular form
for k � 0. We have already proved that it is an unrestricted vector-valued
modular form, so that the component functions that occur in the matrix
representation

Pk(ν, τ) = (Pmn(τ))
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have polynomial q-expansions (7) by Theorem 2.2. It remains to show that
these q-expansions are meromorphic at infinity if the weights are large
enough. Note that because of our assumption that the constants µr are
real, the q-expansions in question have only real powers of q.

To describe Pmn(τ), let us assume that the nontriviality condition holds
in weight kn. Let r be such that the mth row of P (τ) falls into the rth
Jordan block. Setting Mr = m1 + · · ·+mr, this means that

Mr−1 < m ≤Mr.

Now take I as the coset representative of ±〈T 〉\Γ and set M =M∗ ∪ {I}.
From (40) we have

P (τ)mn

=
p∑
l=1

∑
M∈M

Λρ(. . . , e2πi(νs+µs)Mτ , . . .)mmρ(M−1)mlBρ(Mτ)−1
ln j(M, τ)−kn

= e2πi(νr+µr)τBρ(τ)−1
mn

+
p∑
l=1

{ ∑
M∈M∗

e2πi(νr+µr)Mτρ(M−1)mlBρ(Mτ)−1
ln j(M, τ)−kn

}
.

Because of absolute-uniform convergence in the strip S, limτ→i∞ may
be taken inside the summations. By Lemma 3.4 and Corollary 3.5 we find
that

lim
τ→i∞

{P (τ)mn − e2πi(νr+µr)τBρ(τ)−1
mn} = 0

(kn > 0). It follows that the polynomial q-expansion of

P (τ)mn − e2πi(νr+µr)Bρ(τ)−1

can have only positive powers of q, so that

(41)
P (τ)mn = dmn

(
τ

m− n

)
qνr+µr +

m−Mr−1−1∑
u=0

(
τ

u

) ∑
l+µr>0

âunr(l)ql+µr ,

dmn =
{

1 if Mr−1 < n ≤ m,
0 otherwise.

Notice that the diagonal terms have polynomial q-expansions

P (τ)mm = qνr+µr + regular terms.

In particular, if νr + µr < 0 then there is a pole at i∞, and if νr + µr = 0
then the constant term is 1. So in both cases Pmm(τ) is nonzero. We have
established the following.

Theorem 3.10. Suppose that ρ satisfies ρ(S2) = εIp. Then Pk(ν, τ) is
a meromorphic matrix-valued modular form of weight k for all k � 0. If
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the nontriviality condition holds in all weights kn then one of the following
holds:

(a) νr+µr > 0 for all r and Pk(ν, τ) is a cuspidal matrix-valued modular
form, possibly zero.

(b) νr + µr ≥ 0 for all r, νr + µr = 0 for some r, and Pk(ν, τ) is a
nonzero, holomorphic matrix-valued modular form of weight k.

(c) νr + µr < 0 for some r and Pk(ν, τ) is a nonzero meromorphic
matrix-valued modular form of weight k.

If the nontriviality condition is not satisfied in weight kn, then the nth col-
umn of Pk(ν, τ) vanishes identically.

3.4. Further consequences. We record a consequence of the nature
of the q-expansions (41).

Theorem 3.11. Suppose that ρ(S2) = εIp. For large enough weight k
there is F (τ) ∈ H(k, ρ) such that the component functions of F (τ) are lin-
early independent.

Proof. Let k = (k, . . . , k) have constant weight k, and choose k large
enough so that P (τ) = Pk(ν, τ) is holomorphic throughout H. This holds
for any choice of ν. We may, and shall, also assume that the nontriviality
condition in weight k is satisfied.

Now choose ν so that the exponents νr + µr are negative and pairwise
distinct for each r in the range 1 ≤ r ≤ t. Consider the resulting t vector-
valued modular forms pMr ◦ P (τ) = P (τ)Mr where pMr is projection onto
the Mrth column (cf. Subsection 2.4). By (41) we see that the component
functions of P (τ)Mr are holomorphic outside of the rth block, and in the
rth block they have q-expansions qνr+µr

(
τ
u

)
+ · · · , 0 ≤ u ≤ mr − 1. Clearly

then, these functions are linearly independent.
Consider the vector-valued modular form

F (τ) = ∆(τ)v
t∑

r=1

P (τ)Mr ,

with v an integer satisfying v+ νr +µr ≥ 0, 1 ≤ r ≤ t. Since the νr +µr are
pairwise distinct, it follows from the discussion of the preceding paragraph
that

∑
r P (τ)Mr has linearly independent component functions. The choice

of v ensures that F (τ) is holomorphic at i∞ and it also has linearly inde-
pendent component functions. Since F (τ) is a vector-valued modular form
associated with the same representation ρ, the theorem follows.

As discussed in Subsection 2.5, ρ is equivalent to the direct sum ρ1⊕ρ−1

of a pair of representations ρε of Γ with the property that ρε(S2) = εI,
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ε = ±1. From (16)–(19) it follows that there is a natural identification

H(ρ) = H(ρ1)⊕H(ρ−1)(42)

with

H(ρ1) =
⊕
k even

H(k, ρ1), H(ρ−1) =
⊕
k odd

H(k, ρ−1).

In other words, H(ρ1) and H(ρ−1) are the even and odd parts respectively
of H(ρ).

Corollary 3.12. For any representation ρ : Γ → GLp(C), there is a
nonzero holomorphic vector-valued modular form F (τ) ∈ H(k, ρ) for large
enough weight k.

Proof. If ρ(S2) = ±Ip then the corollary follows immediately from The-
orem 3.11. The general result is then a consequence of the preceding com-
ments.

Let M =
⊕

k≥0Mk = C[Q,R] be the weighted polynomial algebra of
holomorphic modular forms of level 1 on Γ , where Q = E4(τ), R = E6(τ).
As in [M1],

R =M[d]

is the ring of differential operators obtained by adjoining to M an element
d satisfying

df − fd = D(f), f ∈M,

where D is the modular derivative defined by

Df = Dkf = (θ + kP )f (f ∈Mk).(43)

Here, θ = qd/dq and P = −1/12 + 2
∑

n≥1 σ1(n)qn is the weight 2 quasi-
modular Eisenstein series, normalized as indicated.

The ring R is a 2Z-graded algebra (d has degree 2), and H(ρ) is a Z-
graded R-module in which f ∈ M acts as a multiplication operator and
d acts on F ∈ H(ρ) via its action on components of F given by (43). In
particular, it follows that R operates on the even and odd parts of H(ρ), so
that the identification (42) is one of R-modules.

Theorem 3.13 (Free module theorem). H(ρ) is a free M-module of
rank p.

This means that there are p weights k1, . . . , kp and p vector-valued mod-
ular forms Fj(τ) ∈ H(kj , ρ), 1 ≤ j ≤ p, such that every F (τ) ∈ H(k, ρ) has
a unique expression in the form

F (τ) =
p∑
j=1

fj(τ)Fj(τ), fj(τ) ∈Mk−kj .



280 M. Knopp and G. Mason

It is an immediate consequence of this result that the Hilbert–Poincaré series
for H(ρ) is a rational function:∑

k≥k0

dimH(k, ρ)tk =

∑p
j=1 t

kj

(1− t4)(1− t6)
.

With Corollary 3.12 available, the remaining details of the proof of The-
orem 3.13 are essentially identical to that of the semisimple case given in
[MM] and involve mainly arguments from commutative algebra. In the few
places where the nature of the component functions of vector-valued mod-
ular forms is relevant, the argument is the same whether the q-expansions
are ordinary or logarithmic. We forgo further discussion.

We give an application of the free module theorem. Let F (τ) ∈ H(k, ρ).
If the elements F,DF, . . . ,DpF are linearly independent over M then they
span a freeM-submodule of H(ρ) of rank p+ 1. Since H(ρ) has rank p, this
is not possible. Therefore, F (τ) satisfies an equality of the form

(g0(τ)Dp
k + g1(τ)Dp−1

k + · · ·+ gp(τ))F = 0(44)

where g0 ∈Ml for some weight l and gj(τ) ∈Ml+2j . We may think of (44)
as a modular linear differential equation (MLDE) [M1] of order at most p, in
which case the component functions of F (τ) are solutions. Now suppose that
the component functions are linearly independent. Since they are solutions
of any MLDE satisfied by F (τ), the solution space must have dimension
at least p, and therefore the order of the MLDE must itself be at least p.
We have therefore shown that if F (τ) ∈ H(k, ρ) has linearly independent
component functions, it satisfies an MLDE of order p and none of order less
than p.

Continuing with the assumption that the component functions of F (τ)
are linearly independent, let I ⊆ M be the set of all leading coefficients
g0(τ) that occur in order p MLDE’s (44) satisfied by F . Taking account of
the trivial case when all coefficients gj(τ) vanish, we see easily that I is a
graded ideal. Moreover, our previous comments show that I 6= 0. We will
show that I contains a unique nonzero modular form g(τ) of least weight,
normalized so that the leading coefficient of its q-expansion is 1, and that
I = g(τ)M.

For nonzero h0(τ) ∈ I of weight k, we let

Lh = h0(τ)Dp + h1(τ)Dp−1 + · · ·+ hp(τ)

be the unique order p differential operator in R with leading coefficient
h0(τ) and satisfying LhF = 0. Let g0(τ) be any nonzero element in I of
least weight, say m. Then we have LgF = LhF = 0, and therefore also

(g0Lh − h0Lg)F = 0.
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The differential operator in the last display has order at most p − 1, and
therefore (by our earlier remarks) must vanish identically. It follows that for
all indices j we have

g0hj = h0gj .(45)

Suppose that the order of vanishing of g0(τ) at ∞ is greater than that
of h0(τ). By (45) it follows that all gj(τ) vanish to order at least 1 at
∞, i.e. each gj(τ) is divisible by the discriminant ∆(τ) in M. But then
LgF = ∆(τ)Lg′F = 0, whence Lg′F = 0 for some nonzero g′(τ) ∈ Mm−12.
Then g′(τ) ∈ I, and this contradicts the minimality of the weight of g. Thus
we have shown that the order of vanishing of g0(τ) at ∞ is minimal among
nonzero elements in I, and that this assertion holds for any nonzero element
of least weight in I.

If there are two linearly independent elements a(τ), b(τ), say, of least
weight in I then some linear combination of them vanishes at∞ to an order
that exceeds that of at least one of a(τ) and b(τ). By the last paragraph
this cannot occur, and we conclude that up to scalars, g0(τ) is the unique
nonzero element in I of least weight.

We use similar arguments to show that g0(τ) generates I. If not, choose
an element h0 ∈ I of least weight n, say, subject to h0(τ) /∈ g0(τ)M. If
h0(τ) has greater order of vanishing at ∞ than g0(τ), then (45) and a pre-
vious argument show that every hj(τ) is divisible by ∆(τ). Then as before,
h0(τ) = ∆(τ)h′0(τ) with h′(τ) ∈ I. By minimality of the weight of h0(τ)
we get h′(τ) ∈ g0(τ)M, and therefore also h0(τ) ∈ g0(τ)M, contradiction.
Therefore, every element of weight n in I \ g0(τ)M has the same order of
vanishing at∞ as g0(τ). This again implies the unicity of h0(τ) up to scalars.

If n − m ≥ 4 then h0(τ) + En−m(τ)g0(τ) has weight n and lies in
I \ g0(τ)M. (Here, Ek(τ) is the usual weight k Eisenstein series.) Thus
h0(τ) is a scalar multiple of h0(τ) + En−m(τ)g0(τ) and therefore lies in
g0(τ)M, contradiction. Therefore, n − m = 2. In this case we consider
h′(τ) = E4(τ)h0(τ)−βE6(τ)g0(τ) and h′′(τ) = E6(τ)h0(τ)−γE2

4(τ)g0(τ) for
scalars β, γ chosen in each case so that the order of vanishing at∞ is greater
than that of g0(τ). A previous argument shows that Lh′F = ∆Lh′1F = 0
for some h′1(τ) of weight n + 4 − 12 = m − 6. Since h′1(τ) ∈ I has weight
less than m, we have h′1(τ) = 0, so that E4(τ)h0(τ) = βE6(τ)g0(τ). The
same reasoning applied to h′′(τ) also shows that E6(τ)h0(τ) = γE2

4(τ)g0(τ).
From these equalities we deduce that g0(τ)(γE3

4(τ)−βE2
6(τ)) = 0. This can

only happen if β = γ = 0, whence E4(τ)h0(τ) = 0. This is impossible since
h0(τ) is nonzero, and we have contradicted the assumed existence of h0(τ).
To summarize, we have established

Theorem 3.14. Suppose that F (τ) ∈ H(k, ρ) has linearly independent
component functions. Then the component functions are a basis of the solu-
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tion space of a modular linear differential equation

(g0(τ)Dp
k + g1(τ)Dp−1

k + · · ·+ gp(τ))f = 0(46)

where gj(τ) ∈ Ml+2j, 0 ≤ j ≤ p, for some l ≥ 0. The set of leading co-
efficients g0(τ) that can occur in (46) is a (nonzero) principal graded ideal
I ⊆M generated by the unique normalized modular form g(τ) of least weight
in I.

If the condition that the component functions of F (τ) are linearly inde-
pendent is not met, one can replace ρ by the representation ρ′ of Γ furnished
by the span of the component functions. Then the theorem applies to ρ′. In
this way, we see that to any logarithmic vector-valued modular form we can
associate an MLDE in a canonical way: it is the MLDE of least order and
with normalized leading coefficient of least weight whose solution space is
spanned by the component functions of F (τ).
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