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1. Introduction. Let K be an algebraically closed field of characteristic
0 or > d, where d is a positive integer. Let f be a binary form in K[x, y] of
degree d. By a presentation of f we mean a decomposition

f = ld1 + · · ·+ ldu

of f into a sum of powers of linear forms l1, . . . , lu ∈ K[x, y]. Let r = r(f)
be the minimal length of a presentation of f . Then f is said to be extreme
if for every linear form l ∈ K[x, y], the sum f + ld admits a presentation of
length r(f). In other words, a form is extreme if and only if it is maximal
with respect to the partial order denoted by ≺ and defined by: a form f is
greater than every form obtained as a sum of some, but not all, summands
appearing in a presentation of f of minimal length.

A form is said to be exotic if the minimal length of presentation of f
is greater than the minimal length of presentation of a generic form of the
same degree. Hence exotic forms are defined as those that have the minimal
length of presentation greater than the length predicted by an answer to
the Waring Problem. In the case of binary forms, the minimal length r0 of
presentation of a general binary form of degree d is

(d+ 1)/2 in case d is odd and (d+ 2)/2 in case d is even.

Hence a binary form of degree d is exotic if its minimal length of pre-
sentation is greater than (d+ 2)/2. A form of degree d is said to be regular
if its minimal length of presentation is equal to the length of presentation
of a general form of degree d. A form of degree d is said to be plain if its
minimal length of presentation is less than the length of presentation of a
general form of degree d.

When we consider presentations of forms as sums of forms, then usu-
ally we are not able to identify projectively equal forms and simultaneously
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identify their projectively equal summands. Hence, in the following, we are
going to treat forms as elements of the vector space K[x, y], rather than of
its projectivization. The properties of forms which we are going to study are
invariant under invertible linear substitutions, i.e. under the natural action
of GL(2) on K[x, y]. Moreover, the studied notions have some interpretation,
easy to find but not helpful in our considerations, in the geometric theory of
secant varieties obtained as the images of the projective line under Veronese
embedding into a projective space.

Let K[X,Y ] be the dual ring of differential operators, where

X =
∂

∂x
, Y =

∂

∂y
.

Let K[X,Y ]t denote the space of homogeneous operators of degree t,
t = 0, 1, . . . . For f ∈ K[x, y], let A(f) ⊂ K[X,Y ] be the annihilating ideal
of f and At(f) its homogeneous part of degree t, i.e.

At(f) = K[X,Y ]t ∩A(f).

We shall say that a form D ∈ K[X,Y ] is squareful if, for a linear form L,
whenever L |D, then L2 |D.

One of the main aims of the paper is to characterize properties of forms by
means of properties of annihilating differential operators. Let j=b(d+ 2)/2c.
We shall see that a form f ∈ K[x, y]d is

• regular if and only if there exist projectively distinct linear differential
operators D1, . . . , Dj such that D1 . . . Dj(f) = 0 (Theorem 1),
• plain if and only if there exist projectively distinct linear differential

operators D1, . . . , Du, u < j, such that D1 . . . Du(f) = 0 (Theorem 1),
• exotic if and only if no squarefree differential operator of degree ≤ j

annihilates f (Theorem 1),
• extreme and exotic if and only if it is annihilated by a squareful linear

differential operator D of degree u < j (Theorem 1′),
• exotic and regular if and only if (this is the most difficult case) the

conditions given in Theorem 5 are satisfied (then d has to be even).

Since there are no extreme plain forms (Lemma 3.4), all cases are covered
above.

It follows from these results that, for example, all forms f = lmg ∈
K[x, y]d, where l is a linear form, g ∈ K[x, y]d−m is relatively prime to l and
2m > d+ 1, are extreme. Moreover, all extreme forms with minimal length
of presentation equal to d are equal to ld−1

1 l2, where l1, l2 are projectively
different linear forms (Corollary 3). This means that they constitute one
GL(2)-orbit. The set of extreme forms with minimal length of presentation
equal to d − 1, d ≥ 6, is composed of two orbits. For exotic forms these are
the only cases where the exotic extreme forms with given minimal length of
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presentation comprise a finite number of GL(2)-orbits. However, the extreme
regular forms (they exist only if d = 2m) comprise a finite number of orbits
(Corollary 7). The proof of this fact is the most difficult part of the paper.

In the remaining part of the paper we study, for a binary form f , all
presentations of f as a sum of powers ld1 + · · ·+ ldu of linear forms of minimal
length u. In particular, we would like to know all partial summands g =
ld1 + · · ·+ ldt , t < u, that appear in such presentations. This leads to studying
the ≺ relation. We start with the following simple observation. Plain forms
and regular forms in case d+ 1 is even and only those forms have a unique
presentation of minimal length. It follows that if, for a form f = ld1 + · · ·+ ldu,
we have already fixed some part g = ld1 + · · ·+ ldt , t < u, u− t < (d+ 1)/2, of
its minimal decomposition, then the remaining part of the decomposition is
already uniquely determined. If f, g are as above and g is regular or exotic,
then the conditions are satisfied, hence, then, f − g has a unique minimal
presentation. Next we prove that, for f a regular form of even degree or an
exotic form, and only for such forms, there exist only finitely many extreme
forms h such that f ≺ h, hence there are only finitely many forms greater
than f (Proposition 3).

Remark. The map r which assigns to a form f of degree d its minimal
length of presentation r(f) satisfies the triangle inequality r(f +g) ≤ r(f)+
r(g) and defines a metric ρ (by ρ(f, g) = r(f − g)) on K[x, y]d. Then f ≺ g
if and only if r(f) + r(g − f) = r(g). A form h is extreme if and only if r
admits at h its local maximum, more exactly, r(h) is maximal among the
values of r taken in the closed ball of radius 1. In other words, the distance
from an extreme form to 0 is locally maximal.

For every form f we can consider the set of all linear forms l ∈ K[x, y]1
such that ld ≺ f , i.e. ld appears in some minimal presentation of f . This
set is finite for any plain form and any regular form in case d + 1 is even,
and infinite with non-empty complement in K[x, y]1 composed of a finite
number of lines in the remaining cases (Proposition 1). Studying these cases
leads finally to the result (Corollary 5) that all forms can be divided into
two disjoint classes: those that dominate only finitely many other forms and
those that are dominated only by finitely many forms.

There are still some open problems connected with the results of the
paper.

Problem. What is the number n(m) of linear equivalence classes of
regular extreme forms of degree 2m?

2. Statements of the results

Theorem 1. Let f be a binary form of degree d > 1 with minimal length
of presentation r(f) = r. Then f is extreme if and only if f is regular or
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exotic and

• whenever f is exotic, then every element of Ad+2−r(f) is squareful,
• whenever f is regular, then d is even and every element of Ad+2−r(f) =
A(d+2)/2(f) is either squarefree or squareful.

We shall see that in the case where f is exotic, dimAd+2−r(f) = 1. Thus
every element of Ad+2−r(f) is squareful if and only if Ad+2−r(f) contains a
non-zero squareful form.

In order to formulate further assertions we need to quote some auxiliary
results.

Lemma 2.1. Let l1, . . . , lu be projectively distinct non-zero linear forms
and let L1, . . . , Lu be non-zero linear operators such that Lili = 0 for i =
1, . . . , u. Let e1 + · · · + eu + u ≤ d. A binary form f of degree d admits a
decomposition

f = g1l
d−e1
1 + · · ·+ gul

d−eu
u ,

where, for i = 1, . . . , u, gi ∈ K[x, y] is a form of degree ei or 0, if and only if

Le1+1
1 . . . Leu+1

u f = 0.

In particular, f admits a presentation

f = a1l
d
1 + · · ·+ aul

d
u,

where a1, . . . , au ∈ K, if and only if

L1 . . . Luf = 0.

Proof. See [2, Lemma 1.31].

Lemma 2.2. Let f be a binary form of degree d.

(i) The sequence (dimK[X,Y ]u/Au(f))d
u=0 has the following shape:

(1, 2, . . . , s− 1, s, . . . , s, s− 1, . . . , 2, 1),

where s = s(f) := max0≤u≤d dim(K[X,Y ]u/Au(f)) ≤ (d+ 2)/2.
(ii) The ideal A(f) is generated by two relatively prime homogeneous

forms Df , Ef of degree s and d−s+2, respectively. For s ≤ (d+ 1)/2
the form Df is uniquely determined up to projective equality and for
u = s, . . . , d− s+ 1 we have

Au(f) = DfK[X,Y ]u−s.

Proof. For the proof of (i), see [2, Theorems 1.43 and 1.44(i)]. For the
proof of (ii), see [2, Theorem 1.44(ii) and (iii) and Claim on p. 31].

Lemma 2.3. Let F1, . . . , Fu be binary forms of the same degree such that
the set of all forms f = a1F1 + · · · + auFu, a1, . . . , au ∈ K, which are not
squarefree is Zariski dense in the linear span of F1, . . . , Fu. Then there exists
a linear form L ∈ K[X,Y ] such that L2 divides all F1, . . . , Fu.
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Proof. See the proof of Lemma 1.1 in [3].

With the notation established in Lemma 2.2, we can formulate Theorem 1
in a slightly weaker, but more transparent form:

Theorem 1′. A binary exotic form f is extreme if and only if Df is
squareful.

Corollary 1. If a binary form f of degree d has a linear factor of
multiplicity m, where (d+ 1)/2 ≤ m < d, then f is extreme.

Corollary 2. If a binary form f of degree d ≥ 5 is extreme and r(f) ≥
d − 1, then f has a linear factor of multiplicity r(f) − 1. For d ≥ 6 there
exists a squarefree extreme form with r(f) = d− 2.

The special case of Corollary 2 for r(f) = d is due to J. Kleppe [3, p. 11].
In view of Corollary 2 it is doubtful that extreme forms have a simple

characterization in terms of factorization of f instead of that of Df .
Then we show the following characterization of exotic extreme forms:

Theorem 2. An exotic form f is extreme if and only if it is of the shape

f = g1m
d−e1
1 + · · ·+ gum

d−eu
u ,

where m1, . . . ,mu are pairwise projectively distinct linear forms, g1, . . . , gu

are forms of positive degree e1, . . . , eu, respectively, mi - gi and

e1 + · · ·+ eu + u <
d+ 2

2
.

Moreover, for f as above, if M1, . . . ,Mu are non-zero linear operators such
that Mimi = 0 for i = 1, . . . , u, then

Df = M e1+1
1 . . .M eu+1

u .

The following corollary follows immediately from the above Theorem 2.

Corollary 3. Up to a linear transformation we have only the following
extreme forms f0 with the given lengths of minimal presentations:

1. r(f0) = d, d ≥ 2, only f0 = xyd−1.
2. r(f0) = d − 1, d ≥ 4, only f0 = x(x + y)yd−2 and f0 = x2yd−2. For
d ≤ 7 these are all exotic extreme forms and for d < 6 these are all
extreme forms.

3. For r(f0) = d−2, d ≥ 7, we have two infinite families of extreme exotic
forms which contain all extreme forms: f0 = x(x + y)(x + ay)yd−3,
f0 = xyd−1 + axd−1y, where a ∈ K \ {0}.

4. For r(f0) = d − 3, d ≥ 9, we have two infinite families of extreme
exotic forms which contain all extreme forms: f0 = x(x + y)(x + ay)
· (x+ by)yd−4 and f0 = (x+ ay)yd−1 + e(bx+ y)(cx+ y)xd−2, where
a, b, c ∈ K, e ∈ K \ {0}.
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Moreover, for d = 2m we have a regular extreme form f0 = xmym, and for
d=2m with m odd, we still have extreme regular forms

f0 =x(3m+1)/2y(m−1)/2 + x(m−1)/2y(3m+1)/2.

For d ≤ 10 these are all regular extreme forms.

Summarizing the results for small values of d, there are only finitely
many, up to a linear transformation, extreme exotic forms of degree d < 7.
For d = 6 these are xy5, x2y4, x(x + y)y4. For d = 7, x(x + y)(x + ay)y4,
a ∈ K, is an infinite family of exotic extreme linearly distinct forms.

Theorem 3. For a binary exotic form f of degree d let

Df = Le1+1
1 . . . Lek+1

k Lk+1 . . . Lk+t,

where k ≥ 1, e1, . . . , ek ≥ 1, and Li are projectively distinct. Let li, for
i = k+ 1, . . . , k+ t, be a non-zero linear form annihilated by Li. Then there
exist a1, . . . , at ∈ K \ {0} such that

f + a1l
d
k+1 + · · ·+ atl

d
k+t = f0,

where f0 is an extreme form with

Df0 = Le1+1
1 . . . Lek+1

k .

Moreover, f0 is the only extreme form such that f � f0 and the summands
in the above decomposition of f0 are uniquely determined by f .

It follows from the above theorem that if for a form f we denote by
f− (by f+) the partially ordered (by �) set composed of all forms g � f
(f � g, resp.), then f+ for all exotic forms f , and f− for all plain forms,
are isomorphic to a partially ordered (by inclusion) family of all subsets of
a finite set.

Theorem 4. Let f be a regular form of degree d = 2m. Let

D1 = Le1+1
1 . . . Lek+1

k Lk+1 . . . Lk+t, e1 + · · ·+ ek + k + t = m+ 1,

where k ≥ 1, e1, . . . , ek ≥ 1, and Li are projectively distinct. Let li, for
i = k + 1, . . . , k + t, be a non-zero linear form annihilated by Li.

If D1f = 0, then there exist a1, . . . , at ∈ K \ {0} such that

f + a1l
d
k+1 + · · ·+ atl

d
k+t = f0,

where f0 is an extreme form with

Df0 = Le1+1
1 . . . Lek+1

k .

The summands in the above decomposition of f0 are uniquely determined
by f . Moreover, there are only finitely many extreme forms f0 such that
f � f0, and every such form is defined in the way described above by some
differential operator D1.
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Proposition 1. For a binary exotic form f of degree d, a linear operator
L divides Df if and only if ald, where Ll = 0 and a ∈ K \ {0}, does not
appear as a summand in any presentation of f of length r(f).

The above proposition describes some obstacles for a sum f = ld1 +· · ·+ldr
to appear in a minimal presentation of an extreme form f0 given as

f0 = g1m
d−e1
1 + · · ·+ gum

d−eu
u ,

where m1, . . . ,mu are pairwise projectively distinct linear forms, g1, . . . , gu

are forms of positive degree e1, . . . , eu, respectively, and mi - gi. The next
proposition shows that if r ≤ r(f0)− d(d+ 2)/2e, this is the only obstacle.

Proposition 2. Let f be a plain binary form and let f = ld1 + · · · + ldr
be its presentation of minimal length. Let f0 be an extreme form

f0 = g1m
d−e1
1 + · · ·+ gum

d−eu
u , e1 + · · ·+ eu + u < (d+ 2)/2,

where m1, . . . ,mu are pairwise projectively distinct linear forms, g1, . . . , gu

are forms of positive degree e1, . . . , eu, respectively, and mi - gi. Assume that
every linear form li is projectively distinct from any form mj, for i = 1, . . . , r,
j = 1, . . . , u.

If r ≤ r(f0)−d(d+ 2)/2e, then f ≺ f0. Moreover, for every degree d > 1
the inequality is best possible.

Corollary 4. For every form f of degree d with r(f) < bd/2c there
exist infinitely many extreme forms f0 such that f ≺ f0.

However, Corollary 4 is not best possible, as shown by

Proposition 3. For a given form f of degree d, there exist infinitely
many extreme forms f0 � f if and only if r(f) ≤ (d+ 1)/2.

Corollary 5. For every binary form f exactly one of the inequalities
f ≺ g, f � g admits infinitely many solutions g.

In fact, it follows from the above results that for all plain forms and
regular forms of odd degree there exist only finitely many forms less than
the given form, and infinitely many greater forms. For all exotic forms and
for regular forms of even degree there exist infinitely many forms that are
less than the given form, and only finitely many greater forms.

The next proposition describes a method for finding some extreme form
greater than a given plain form.

Proposition 4. Let f be a form with r = r(f) ≤ (d+ 1)/2. Let G be the
maximal squareful factor of Ef ∈ Ad−r+2(f). If 0 < degG < (d+ 2)/2, then
there exists an extreme form f0 such that Df0 = G and f ≺ f0. Conversely,
if f ≺ f0, where f0 is extreme, then Df0 is a maximal squareful factor of
some Ef ∈ Ad−r+2(f).
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Regular extreme forms f are mysterious. We already know from Theo-
rem 1 that they are of even degree d and in case d = 2m, we have r(f) = m+1
and every element in Am+1(f) is either squarefree or squareful. The next the-
orem implies that up to a linear transformation, unexpectedly, there are only
finitely many extreme regular forms of any even degree d, but their number,
in general, is not explicitly given.

Theorem 5. A regular form f of degree 2m is extreme if and only if
either it is equivalent via a linear transformation to xmym, or in Am+1(f)
there are three coprime squareful forms that together have exactly m + 3
projectively distinct linear factors.

Corollary 6. For m ≤ 5 a regular form f of degree 2m is extreme if
and only if either f is equivalent via a linear transformation to xmym, or
m=3 or 5 and f is equivalent via a linear transformation to x(3m+1)/2y(m−1)/2

− x(m−1)/2y(3m+1)/2.

Corollary 7. For every m there exist up to a linear transformation
only finitely many extreme regular forms of degree 2m.

Corollary 6 does not extend to m > 5. Indeed, if m = 2kl − 1 (l > 1),
there is an extreme regular form f of degree 2m with three squareful forms
in Am+1(f):

((Xk + Y k)l + Y kl)2, ((Xk + Y k)l − Y kl)2, Y kl(Xk + Y k)l.

For k = 1 we obtain forms f mentioned in Corollary 6, but for k > 1 the
explicit descriptions of the relevant forms f are much more complicated,
though, in any case, such a form is uniquely, up to projective equality, deter-
mined by two explicitly given differential equations. For m = 6, J. Browkin
has found an interesting explicit example given at the end of the paper.

In [1], the current authors considers presentations of a given form f of
degree d in n variables as a sum of powers ld1+· · ·+ldu, where l1, . . . , lu are lin-
ear forms and l1, . . . , lu do not belong to a given finite family of hyperplanes
in the space of linear forms. This has led to the following definition:

Definition. One says that f has a lot of presentations of length r if
for any finite set of points {p1, . . . , pm} in K2 \ {0} there is a presentation
f = ld1 + · · ·+ ldr such that li(pj) 6= 0 for all i ≤ r, j ≤ m.

For f essentially depending on n variables, let r(f) be the minimum r
such that f has a lot of presentations of length r. In the case of binary
forms f essentially depending on two variables, it has been noticed in [1]
that r(f) ≤ d and r(xyd−1) = d. The next proposition determines r(f) for
various forms f .
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Proposition 5.

1. For every exotic form f , r(f) = r(f).
2. For every plain form f , r(f) = d− r(f) + 2.
3. For every regular form f ,

r(f) =
{
d/2 + 1 for d even,
(d+ 3)/2 for d odd.

3. Proofs of Theorems 1 and 1′

Lemma 3.1. For

f =
d∑

i=0

(
d

i

)
aix

d−iyi, d = 2n+ 1,

let

C(f) =

∣∣∣∣∣∣∣∣∣∣∣∣

xn+1 −xny . . . ±yn+1

an+1 an . . . a0

an+2 an+1 . . . a1

. . . . . . . . . . . . . . . . . . . . . . . . . .
a2n+1 a2n . . . an

∣∣∣∣∣∣∣∣∣∣∣∣
.

If r(f) ≤ n, then C(f) = 0. If r(f) = n+ 1 and

(1) f =
n+1∑
i=1

ldi ,

where li are projectively distinct non-zero linear forms, i.e. (1) is a presen-
tation of f , then

(2) C(f) = k
n+1∏
i=1

li,

where k ∈ K and the presentation is unique up to the order of summands.

Proof. See [5].

Lemma 3.2. If r(f) > n and discrC(f) = 0, then r(f) > n+ 1.

Proof. If we had r(f) = n+ 1, then it would follow from (1) that

discrC(f) 6= 0.

Lemma 3.3. If f =
∑n+1

i=1 l
d
i is a presentation of length n + 1 = r(f),

then

(3) r(f + (ax+ by)d) ≤ n
if and only if (ax+ by)d = −ldj for some j ≤ n+ 1.
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Proof. Assume that (3) holds and

f + (ax+ by)d =
s∑

j=1

md
j

is a presentation of length s ≤ n. Then

f = −(ax+ by)d +
s∑

j=1

md
j

and s+1 ≥ n+1, hence s = n, ax+ by is projectively distinct from mj , and
by uniqueness of presentation (Lemma 3.1)

−(ax+ by)d = ldj

for some j ≤ n+ 1. Conversely, if the above equality holds, then

f + (ax+ by)d =
n+1∑

i=1, i 6=j

ldi

and (3) holds.

Lemma 3.4. If a form f of degree d > 1 is extreme, then r(f)>(d+ 1)/2,
i.e. f is exotic or regular of even degree.

Proof. Assume that f is extreme, r = r(f) and let

f = ld1 + · · ·+ ldr

be an r-presentation. For every linear form l ∈ K[x, y], we have

f + ld = md
1 + · · ·+md

s

for some linear forms m1, . . . ,ms and s ≤ r. Then
ld1 + · · ·+ ldr + ld = md

1 + · · ·+md
s

and this gives a presentation of zero of length at most r + 1 + s. Hence, by
[1, Corollary 3],

r + 1 + s ≥ d+ 2 and 2r + 1 ≥ d+ 2, i.e. r ≥ (d+ 1)/2.

It remains to exclude the case d = 2n+1, r(f) = n+1. Let F = f+(ax+by)d.
For d > 1, we have

discrC(F ) = P ∈ K[a, b].

If f =
∑n+1

i=1 (aix+ biy)d then by Lemmas 3.1 and 3.3,

P (−ai,−bi) = 0, P (0, 0) 6= 0,

hence P (a, b) = 0 defines a curve. This curve contains a point (a0, b0) differ-
ent from

(−ζj
dai,−ζj

dbi) (1 ≤ i ≤ n+ 1, 0 < j < d)
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and the form F0 = f + (a0x+ b0y)d satisfies the assumptions of Lemma 3.2,
hence r(F0) = n+ 1 and f is not extreme.

Lemma 3.5. Let s(f) be defined as in Lemma 2.2. If s(f) ≤ (d+ 1)/2
and Df is not squarefree, then r(f) = d+ 2− s(f) and Ef can be chosen to
be squarefree. If s(f) = (d+ 2)/2, then r(f) = s(f).

Proof. Let r = r(f) and s = s(f). By Lemma 2.1, Ar(f) contains a
squarefree form G. If s ≤ (d+ 1)/2, then by Lemma 2.2(ii), G = ADf +BEf ,
where A,B ∈ K[X,Y ]. Since Df is not squarefree, we have B 6= 0, hence

r = degG ≥ deg Ef = d+ 2− s(f).

However, again by Lemma 2.2, we have (Df , Ef ) = 1. Let D3 be any form of
degree d+2−2s(f) prime to Ef . By Lemma 2.3 there are a, b ∈ K such that
Ga,b = aDfD3 + bEf is squarefree. Hence r = d + 2 − s(f) by Lemma 2.1
and since b 6= 0 we can replace Df as one of the generators of A(f) by Ga,b.

If s = (d+ 2)/2, then by Lemma 2.2(ii), A(f) is generated by two coprime
forms D1, D2 both of degree s. By Lemma 2.3 there is a squarefree linear
combination aD1 + bD2 and this is a squarefree form of the least degree in
A(f). By Lemma 2.1, r(f) = s.

Lemma 3.6. If f is exotic then s(f) ≤ (d+ 1)/2, Df is not squarefree
and

Ar−1 = DfK[X,Y ]r−s−1.

Proof. If we had s(f) = (d+ 2)/2, then by Lemma 2.2, Df and Ef would
be both of degree s(f) and since (Df , Ef ) = 1, A(f) would contain, by
Lemma 2.3, a squarefree operator of degree (d+ 2)/2, hence by Lemma 2.1
we should have r(f) ≤ (d+ 2)/2, contrary to the assumption. If Df were
squarefree, we should have r ≤ s ≤ (d+ 1)/2, a contradiction again. Finally,
Ar−1(f) does not contain any element ADf +BEf with B 6= 0.

Proofs of Theorems 1 and 1′. We shall first prove that the condition is
necessary. So assume that f is extreme. Then by Lemma 3.4 we have

r = r(f) ≥ (d+ 2)/2, s = s(f) = d+ 2− r.
Suppose that As(f) contains an element D which is neither squarefree nor
squareful. Hence D = D0L, where L is a linear and L does not divide D0.
Choose a linear form l 6= 0 such that Ll = 0.

Since LD0f = 0 we have
D0f = c1l

d−s+1 for some c1 ∈ K.
Since L does not divide D0,

D0l
d = c2l

d−s+1 for some c2 ∈ K \ {0}.
It follows that

D0(f − ald) = 0 for a = c1/c2,
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and since D0 of degree s− 1 ≤ d/2 is not squarefree,

Df−ald = D0, r(f − ald) = d+ 2− degD0 = d+ 3− s = r(f) + 1.

The contradiction obtained shows that all elements of As(f) are either
squarefree or squareful. If f is exotic, then, by Lemma 2.1, As(f) contains
no squarefree elements, hence all elements there are squareful.

In order to prove that the condition is sufficient, assume that

r = r(f) ≥ (d+ 2)/2, s = s(f) = d+ 2− r
and that all elements of As(f) are either squarefree or squareful. Let l ∈
K[x, y] be a linear form and choose a linear operator L 6= 0 such that Ll = 0.
Suppose that

r(f + ld) = r + 1.

Then by Lemma 3.5,

s(f + ld) = d+ 2− r − 1 = d+ 1− r ≤ d/2
and for D1 = Df+ld we have

D1f +D1l
d = 0.

It follows that

LD1f = −LD1l
d = −D1Ll

d = 0, LD1 ∈ As(f).

By the assumption, LD1 is either squarefree or squareful. If LD1 is squarefree
then D1 is squarefree, contrary to Lemma 3.6. Therefore LD1 is squareful,
L divides D1,

D1f = −D1l
d = 0,

and by Lemma 3.5,

r(f) = d+ 2− degD1 = r + 1,

a contradiction. This completes the proof of Theorem 1. Theorem 1′ follows
now from the last statement of Lemma 3.6.

Proof of Corollary 1. We can assume without loss of generality that the
linear factor in question is y. Then Df |Xd−m+1 and, since Df does not
divide X for m < d, Df is squareful.

Proof of Corollary 2. If d ≥ 5, r(f) ≥ d − 1 and f is extreme, then by
Lemma 3.5, s = s(f) ≤ 3, and by Theorem 1, Df = Ls, where L is a linear
operator. Assuming without loss of generality that L = Y we obtain

f =
s−1∑
i=0

aix
d−iyi, as−1 6= 0,

and f has a factor x with multiplicity d− s+ 1 = r + 1.



Extreme binary forms 231

To prove the second assertion of the corollary put f = xd−1y + xyd−1. If
d ≥ 7, we have Df = X2Y 2 and Theorem 1 applies. If d = 6 every element
of A4(f) is of the form a(X4 − Y 4) + bX2Y 2 and is either squarefree, if
a(b2 + 4a2) 6= 0, or squareful otherwise, and Theorem 1 applies.

4. Proof of Theorem 2. Assume that f is extreme and exotic. Then
it follows from Theorem 1′ that Df is squareful and

Df = M e1+1
1 . . .M eu+1

u ,

where ei ≥ 1 for i = 1, . . . , u and e1+· · ·+eu+u < (d+ 2)/2. For i = 1, . . . , u,
let mi be a non-zero linear form such that Mimi = 0. Then it follows from
Lemma 2.1 that

f = g1m
d−e1
1 + · · ·+ gum

d−eu
u ,

where gi, ei satisfy the above conditions. Thus the conditions given in the
propositions for a form to be extreme and exotic are necessary.

In order to prove that they are also sufficient, assume that f can be
decomposed as

f = g1m
d−e1
1 + · · ·+ gum

d−eu
u

with gi, ei and mi as above. Let Mimi = 0 for some non-zero linear opera-
tors Mi, where i = 1, . . . , u. Then

M ei+1
i gim

d−ei
i = md−ei

i (M ei+1
i gi) = 0,

since
deg(M ei+1

i gi) = ei + 1 > ei = deg gi.

Hence f is annihilated by M e1+1
1 . . .M eu+1

u . On the other hand,

M ei
i gim

d−ei
i = md−ei

i (M ei
i gi) = aim

d−ei
i 6= 0,

where ai ∈ K \ {0} (gi is not divisible by mi, hence M ei
i gi 6= 0) and

M ei
i

( u∏
j=1, j 6=i

M
ej+1
j

)
f =

( u∏
j=1, j 6=i

M
ej+1
j M ei

i

)
gim

d−ei
i

=
u∏

j=1, j 6=i

M
ej+1
j aim

d−ei
i = bim

d−(e1+···+eu+u−1)
i 6= 0.

The last inequality follows from d − (e1 + · · · + eu + u − 1) > 0, Mjmi 6= 0
for j = 1, . . . , u, j 6= i. Thus f is annihilated by

D =
u∏

i=1

M ei+1
i

but, for i = 1, . . . , u, f is not annihilated by D/Mi. Thus D = Df . Now,
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it follows from Theorem 1′ that f is extreme and exotic with r(f) = d −
degDf + 2 = d− (e1 + · · ·+ eu + u) + 2 > (d+ 2)/2.

5. Proofs of Theorems 3 and 4

Lemma 5.1. Let r = r(f) ≥ (d+ 2)/2, and let Li for 1 ≤ i ≤ k + t
denote projectively distinct linear operators. If t ≥ 1 and

Df = Le1+1
1 . . . Lek+1

k Lk+1 . . . Lk+t,

then for some at 6= 0, f1 = f +atl
d
k+t has the minimal length of presentation

equal to r + 1 and

Df1 = Le1+1
1 . . . Lek+1

k Lk+1 . . . Lk+t−1.

Proof. Let Lili = 0 for 1 ≤ i ≤ k + t and

H = Le1+1
1 . . . Lek+1

k Lk+1 . . . Lk+t−1.

Then Hf 6= 0, but Lk+tHf = 0. Hence Hf = ald−s+1
k+t for some a ∈ K \ {0}

and s = d+ 2− r. Thus
(4) H(f + atl

d
k+t) = 0,

where at is chosen in such a way that H(atl
d
k+t) = −ald−s+1

k+t . Since degH =
s− 1 it follows from Lemma 3.5 that

r(f + atl
d
t ) ≥ d− (s− 1) + 2 = r + 1.

Since obviously r(f+atl
d
t ) ≤ r+1 we have r(f+atl

d
t ) = r+1 and s(f+atl

d
t ) =

s− 1 = degH. In view of (4) we have

H = Df+atldk+t
= Df1 .

Proof of Theorem 3. It follows from Lemma 5.1, by induction on t, that
there exist a1, . . . , at in K \ {0} such that

f + a1l
d
k+1 + · · ·+ atl

d
k+t = f0,

where f0 is an extreme form with Df0 = Le1
1 . . . Lek

k . The minimal length of
presentation of f0 is equal to d− (s− t) + 2 = r + t. Thus

f0 − f = a1l
d
k+1 + · · ·+ atl

d
k+t

is a presentation of minimal length and hence it is unique for fixed f0, since
its length is t < s− 1 < d/2.

It suffices to show that f0 is unique. Notice that anyway

Le1+1
1 . . . Lek+1

k (f0) = 0

and

Lk+1 . . . Lk+t(f0) = Lk+1 . . . Lk+t(f + (a1l
d
k+1 + · · ·+ atl

d
k+t))

= Lk+1 . . . Lk+tf 6= 0.
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If f0, f
′
0 both satisfy these conditions, then

Lk+1 . . . Lk+t(f0 − f ′0) = 0,

hence f0− f ′0, annihilated by Df0 = Df ′0
, can be represented, by Lemma 2.1,

as a sum of powers of linear forms projectively equal to lk+1, . . . , lk+t. This is
not possible unless f0− f ′0 = 0, because both operators annihilating f0− f ′0,
namely Df0 and Lk+1 . . . Lk+t, have degrees smaller than (d+ 2)/2, but are
relatively prime.

Proof of Theorem 4. For the proof of the first part of the theorem it
suffices to use the same argument as in the proof of Theorem 3. Finiteness
of the set of extreme forms f0 such that f � f0 follows from Lemma 2.3.

6. Proof of Proposition 1. In order to prove that the condition for
L | Df is necessary, let l be a non-zero linear form such that Ll = 0. If ald
appears in a presentation of f of length r = r(f), then Ar(f) contains a
squarefree operator D of degree r divisible by L. By Lemma 2.2 we have
D = DfA+EfB, where A,B are forms from K[X,Y ]. Since degD = deg Ef ,
we have B ∈ K, and (Df , Ef ) = 1 gives B = 0. Thus D divisible by Df is
not squarefree, a contradiction.

In the opposite direction assume that L does not divide Df and that
Ll = 0. Now, if degH < r and

HLf = H(Lf) = 0,

then Df |HL, but since L does not divide Df , we have Df |H. On the other
hand, DfLf = 0. Thus if s(Lf) ≤ d/2, then DLf = Df and by Lemma 3.5,

r(Lf) = degLf + 2− degDLf = d+ 1− (d+ 2− r(f)) = r − 1.

If s(Lf) = (d+ 1)/2, then again

r(Lf) = d+ 1− s(Lf) = (d+ 2− r(f)) = (d+ 1)/2 = r − 1.

Let

(5) Lf = ld−1
1 + · · ·+ ld−1

r−1 .

If l is not projectively equal to any of li, then integrating this presentation
with respect to L we obtain a form

f0 = a1l
d
1 + · · ·+ ar−1l

d
r−1, a1, . . . , ar−1 ∈ K,

of degree d such that f − f0 6= 0 is annihilated by L, hence equal to ald,
a 6= 0. Thus we have a presentation of length r

f = a1l
d
1 + · · ·+ ar−1l

d
r−1 + ald

containing ald.
If l is projectively equal to li, then Ar−1(f) has a squarefree element G0

divisible by L. Let A0 be an element of K[X,Y ]2r−d−3 not divisible by L.
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Since G0 is squarefree, the discriminant of aA0Df + bG0 is not identically 0
in a, b. Hence there exist a0 ∈ K \ {0} and b0 ∈ K such that

G1 = a0Df + b0G0

is squarefree. We have G1 ∈ Ar−1(Lf) and L does not divide G1, hence by
Lemma 2.1, Lf has a presentation (5) such that no li is projectively equal
to l and this case has been considered earlier.

7. Proofs of Proposition 2 and of Corollary 4. First we prove the
following

Lemma 7.1. The formula

(6)
d∑

i=1

(x+ ziy)d∏d
j=1, j 6=i(zi − zj)

= dxyd−1

for distinct zi satisfying

(7) z1 + · · ·+ zd = 0

gives all presentations of dxyd−1 of the minimal length d.

Proof. Since X2 annihilates dxyd−1, by Lemma 3.5 the minimal length
of a presentation of dxyd−1 is d. By Proposition 1 every form in such a
presentation depends essentially on x. An identity

(8)
d∑

j=1

aj(x+ zjy)d = dxyd−1

implies that

(9)
d∑

j=1

ajz
i
j = 0 (i = 0, . . . , d− 2, d),

d∑
j=1

ajz
d−1
j = 1,

hence

(10)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 0
z1 . . . zd 0
. . . . . . . . . . . . . . . . . . .
zd−2
1 . . . zd−2

d 0
zd−1
1 . . . zd−1

d 1
zd
1 . . . zd

d 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
z1 . . . zd

. . . . . . . . . . . . . . . .
zd−2
1 . . . zd−2

d

zd
1 . . . zd

d

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

and since zj are distinct, we have (7) by a well known formula (see [4, p. 333])
for the last determinant. The coefficients aj are determined by a system of
equations obtained from (9) for i = 0, . . . , d − 1. Using Cramer’s formulae
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and the formula for the Vandermonde determinant we obtain

(11) aj =
d∏

j=1
j 6=i

(zi − zj)−1,

which gives (6). Conversely, if (7) and (11) are satisfied for distinct zi, we
obtain (10) and (9), hence (8).

Proof of Proposition 2. Let Li be non-zero linear operators such that
Lili = 0 for i = 1, . . . , r + 1, . . . , r + u.

We shall prove below that
(∗) f1 = −f + (g1ld−e1

r+1 + · · ·+ gul
d−eu
r+u ) is either exotic and

Df1 = L1 . . . LrL
e1+1
r+1 . . . Leu+1

r+u ,

or regular of even degree and
L1 . . . LrL

er+1
r+1 . . . Leu+1

r+u ∈ A(d+2)/2(f).

Denote e1 + · · ·+ eu by e. Notice that
D = L1 . . . LrL

e1+1
r+1 . . . Leu+1

r+u

annihilates f1 and has
degD = r + e+ u = r + d− r(f0) + 2

≤ r(f0)− b(d+ 2)/2c+ d− r(f0) + 2
= d+ 2− b(d+ 2)/2c = d(d+ 2)/2e.

By Lemma 3.5 and Theorem 2, in order to prove (∗), it remains to show
that no proper factor of D annihilates f1. Hence it remains to show that
L−1

i Df1 6= 0 for i = 1, . . . , r + u. For i = 1, . . . , r, this is clear:

L−1
i Df1 = cil

d−e−u−r+1
i , ci 6= 0,

since Ljli 6= 0 whenever j 6= i. For i = r + 1, . . . , r + u, we have

L−1
i Df1 = L−1

i Dgi−rl
d−ei−r

i

= (L−ei−r−1
i D)Lei−r

i gi−rl
d−ei−r

i = ai(L
−ei−r−1
i D)ld−ei−r

i ,

where ai ∈ K \ {0}, since gi−r is of degree ei−r and is not divisible by li.
Then

(L−ei−r−1
i D)ld−ei−r

i = bil
d−e−u
i 6= 0, bi ∈ K \ {0},

since no Lj with j 6= i annihilates li.
Then we consider the decomposition of f1 given by

f1 = −ld1 − · · · − ldr + (g1ld−e1
r+1 + · · ·+ gul

d−eu
r+u ).

We have r(f1) = d− (r + (e+ u)) + 2. Denote r(f1) by r1. Let
f1 = md

1 + · · ·+md
r1
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be a presentation of minimal length. Then

g1l
d−e1
r+1 + · · ·+ gul

d−eu
r+u = ld1 + · · ·+ ldr +md

1 + · · ·+md
r1

is also of minimal length equal to d− (e+ u) + 2. Hence

f = ld1 + · · ·+ ldr � g1l
d−e1
r+1 + · · ·+ gul

d−eu
r+u ,

where g1ld−e1
r+1 + · · ·+ gul

d−eu
r+u is extreme.

This completes the proof of the first part of Proposition 2. In order to
prove the second part we proceed in the following way. Let ζn be a primitive
root of unity of order n and consider first d = 2r. If r = 1 we have x2 6≺ xy,
hence the inequality r(f) ≤ r(f0)− 2 cannot be weakened. If r > 1 we shall
show that f 6≺ f0, where

f = x2r +
r∑

i=2

(x+ ζi
r−1y)

2r, f0 = 2(1− 2b2/rc)rxy2r−1.

Assuming the contrary we infer from Lemma 7.1 the existence of z1, . . . , z2r

in K such that

z1 + · · ·+ z2r = 0,(12)

z1 = 0, zi = ζi
r−1 (2 ≤ i ≤ r),(13)

2r∏
j=1
j 6=i

(zi − zj) = (1− 2b2/rc)−1 = 1− 2b2/rc.(14)

Now, (12) and (13) give

(15) zr+1 + · · ·+ z2r = −b2/rc,

while (13) and (14) give
2r∏

j=r+1

(−zj) = (1− 2b2/rc)
r∏

j=2

(−ζj
r−1)

−1 = 2b2/rc − 1,

2r∏
j=r+1

(ζi
r−1 − zj) = (1− 2b2/rc)

r∏
j=1
j 6=i

(ζi
r−1 − ζ

j
r−1)

−1

= (1− 2b2/rc)
r−2∏
k=1

(1− ζk
r−1)

−1

= (1− 2b2/rc)(r − 1)−1 (2 ≤ i ≤ r).

Denoting by yk the (r−k)th elementary symmetric polynomial of −zr+1, . . . ,
−z2r and using (11) we can write the above system of equations in the
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form

y0 = 2b2/rc − 1,
r−2∑
k=0

ζik
r−1yk = (1− 2b2/rc)(r − 1)−1 − ζir

r−1 − ζ
i(r−1)
r−1 b2/rc.

For r = 2 we obtain an insoluble system of equations y0 = 1, y0 = −3. For
r > 2 solvability of the system implies

(16) F =

∣∣∣∣∣∣∣∣∣∣
1 0 . . . 0 −1
1 1 . . . 1 (r − 1)−1 − 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 ζr−2

r−1 . . . (ζr−2
r−1 )r−2 (r − 1)−1 − ζr−2

r−1

∣∣∣∣∣∣∣∣∣∣
= 0.

Adding the second column to the last one and then developing the determi-
nant according to the first row we obtain

F = (r − 1)−1
r−2∏
i=0

ζi
r−1

∏
j>i

(ζj
r−1 − ζ

i
r−1) + (−1)r

∏
j>i

(ζj
r−1 − ζ

i
r−1)

= (−1)r r − 2
r

∏
j>i

(ζj
r−1 − ζ

i
r−1) 6= 0,

contrary to (16). This contradiction shows that f 6≺ f0.
Consider now d = 2r + 1. If r = 1, we have (x + 2y)3 6≺ 27xy2, since

(x+2y)3−27xy2 has the factor x−y with multiplicity 2. Thus the inequality
r(f) ≤ r(f0)− 3 cannot be weakened.

If r > 1, we shall show that f 6≺ f0, where

f=
r∑

i=1

(x+ ζi
rr
−1/2ry)2r+1 =rx2r+1+r1/2

(
2r + 1
r

)
xr+1yr+

(
2r + 1

2r

)
xy2r,

f0 =(2r + 1)xy2r.

Assuming the contrary we infer from Lemma 7.1 the existence of distinct
z1, . . . , z2r+1 ∈ K such that

z1 + · · ·+ z2r+1 = 0,(17)

zi = ζi
rr
−1/2r,

2r+1∏
j=1

j 6=i

(zi − zj) = 1 (1 ≤ i ≤ r).(18)

Now, (17) and (18) give
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zr+1 + · · ·+ z2r+1 = 0,(19)
2r+1∏

j=r+1

(ζi
rr
−1/2r − zj) =

r∏
j=1
j 6=i

(ζi
rr
−1/2r − ζj

rr
−1/2r)−1

= r(r−1)/2r(ζi
r)

1−r
r−1∏

k=r−1

(1− ζk
r )−1 = r−(r+1)/2rζi(r+1)

r ,

hence denoting by yk the (r+ 1− k)th elementary symmetric polynomial of
−zr+1, . . . ,−z2r+1 and using (19) we obtain

(20) ζi(r+1)
r r−(r+1)/2r +

r−1∑
k=0

(ζri
r r
−1/2r)kyk = ζi(r+1)

r r−(r+1)/2r.

It follows from (19) and (20) that yk = 0 (0 ≤ k ≤ r), hence zr+1 =
· · · = z2r+1 = 0, contrary to the condition that the zi are distinct. This
contradiction shows that f 6≺ f0 and completes the proof.

Proof of Corollary 4. For r ≤ d− d(d+ 2)/2e = bd/2c − 1 we infer from
Proposition 2 that the form f = ld1 + · · · + ldr , where li are projectively
distinct and not divisible by y, satisfies f ≺ xyd−1. Thus for any two linearly
independent linear forms l and m such that m - li (1 ≤ i ≤ r) we have
f ≺ lmd−1.

8. Proofs of Propositions 3 and 4

Lemma 8.1. Let d be odd, u = (d+ 1)/2, and f =
∑u

i=1 l
d
i . Let l

d be
projectively different from all ldi , i = 1, . . . , u. For some a ∈ K∗, f + ald

admits a minimal presentation of length u+1 if and only if Au+1(f) contains
an operator D = D1LD2, where Ll = 0, D1, D2 ∈ K[X,Y ], D1 is squareful,
degD1 > 0 and D1D2 is not divisible by L.

Proof. Assume that f + ald has a minimal presentation of length u+ 1.
It is sufficient to consider the case a = 1. Then Df+ld is of degree u and
Df+ld = D1D2, where D1 is squareful, degD1 > 0 and

Df+ldf = Df+ld(f + ld)−Df+ld l
d = 0− cld−u = −cld−u.

Thus
D1LD2f = 0

and D1LD2 ∈ Au+1(f). Moreover, since, by Proposition 1, no linear factor
of Df+ld can annihilate a summand in the minimal presentation of f + ld, it
follows that D1D2 is not divisible by L.

Now, assume that D1LD2 ∈ Au+1(f), where D1, D2, L satisfy the as-
sumptions of the lemma. Then D1D2(f) 6= 0 is annihilated by L and hence
D1D2f = bld−u for some b ∈ K∗. Since D1D2 is not divisible by L, we have
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D1D2(ld) 6= 0. Thus, for some a ∈ K∗, we have D1D2(f + ald) = 0. Notice
now that f + ald admits a presentation of length u+ 1,

f + ald = ld1 + · · ·+ ldu + ald

and this presentation is of minimal length. In fact, f + ald cannot have
presentations of length less than u, since otherwise f would admit two dif-
ferent presentations of length u (only one of them containing ald). Hence
the minimal length of presentation of f + ald is at least u. If it were u, then
A(f + ald)u would contain both D1D2 and a squarefree operator Df+ald .
This is not possible, since u = (d+ 1)/2.

Thus the minimal length of presentation of f+ald is u+1. This completes
the proof of the lemma.

Proof of Proposition 3. Necessity of the condition follows from Theorems
3 and 4. In order to prove sufficiency, consider first the case where f is plain.
Let f = ld1 + · · ·+ ldu be its presentation of minimal length. Since f is plain,
2u < d + 1. Let l be a non-zero linear form projectively different from all
l1, . . . , lu and let g = f + ld. Then g = ld1 + · · ·+ ldu + ld is a presentation of
minimal length. In fact, otherwise g = ld1 + · · · + ldu + ld = rd

1 + · · · + rd
u for

some linear forms r1, . . . , ru and we would have

ld1 + · · ·+ ldu + ld − rd
1 − · · · − rd

u = 0.

Since l1, . . . , lu, l are projectively different and 2u + 1 ≤ d + 1, this is not
possible by Lemma 5.3 of [1]. It follows that for any form l as above, there
exists an extreme form h � f such that ld appears in a presentation of h− f
of minimal length. In fact, every extreme form h � g � f has this property.

Now, if there exists a plain form which is dominated by only finitely many
extreme forms, then there also exists such a plain form with minimal length
of presentation equal to u = bd/2c. Let us consider this case. If an extreme
form h dominates f , then h−f is plain, since h−f admits a presentation of
length at most r(h)−r(f) ≤ d−u ≤ d/2 < (d+ 1)/2. Thus the presentation
of h−f is unique and if the number of extreme forms dominating f is finite,
only a finite number of powers of linear forms can appear in all presentations
of differences h−f , where h � f and h is extreme. This contradicts the result
proved above saying that every form l projectively different from l1, . . . , lu
appears in a minimal presentation of some difference h − f , where h is a
properly chosen extreme form dominating f.

Consider the case where f is regular of odd degree d. Then f can be
presented as ld1 + · · · + ldu, where u = (d+ 1)/2, and the presentation is
unique. Consider the space Au+1(f), of differential operators of degree u+1
annihilating f . Then

Au+1(f) = {aDfX + bDfY + cEf : a, b, c ∈ K},



240 A. Białynicki-Birula and A. Schinzel

hence is of dimension 3. Moreover Df = L1 . . . Lu, where L1, . . . , Lu are non-
zero differential operators such that Lili = 0 for i = 1, . . . , u. Let W be the
subset of Au+1(f) corresponding to a, b, c such that discr(aDfX + bDfY +
cEf ) = 0. Then dimW = 2. Take the component W1 of W which contains
L2

1L2 . . . Lu. Then W1 contains an open non-empty, hence two-dimensional,
subset consisting of the operators M2

1M2 . . .Mu, where M1, . . . ,Mu are pro-
jectively different linear operators. If among M2, . . . ,Mu there are infinitely
many projectively different linear operators, then it follows from Lemma 8.1
that for infinitely many linear forms lu+1, f+ ldu+1 is of minimal length u+1.
Hence f ≺ g for infinitely many extreme forms g.

Otherwise, every operator from W1 can be presented as M2L2 . . . Lu,
where M is linear and can be chosen to be projectively different from L1.
Then

M2L2 . . . Luf = M2L2 . . . Lul
d
1 = eld−u−1

1

for some e ∈ K∗. This contradicts the assumption that M2L2 . . . Lu ∈
Au+1(f).

This proves that there are infinitely many extreme forms g such that
f ≺ g.

Remark. It follows from the proof that, in fact, each f as above is
dominated by infinitely many extreme forms g whose minimal length of
presentation is maximal (equal to d). The number of remaining extreme
forms dominating f is finite.

Proof of Corollary 5. For r(f) ≤ (d+ 1)/2 the inequality g ≺ f has
finitely many solutions by Lemma 5.2 of [1], and the reverse inequality has
infinitely many solutions by Proposition 3. For r(f) > (d+ 1)/2 the inequal-
ity g ≺ f has infinitely many solutions by Theorem 5 of [1] and the reverse
inequality has finitely many solutions by Theorems 3 and 4.

Proof of Proposition 4. Let f = ld1 + · · ·+ ldr be a form and let r = r(f) ≤
(d+ 1)/2. Then Df = L1 . . . Lr, where Li are non-zero linear operators such
that Lili = 0 for i = 1, . . . , r. We already know that always (Df , Ef ) = 1.
Let

Ef = M e1+1
1 . . .M eu+1

u Mu+1 . . .Mu+t,

where M1, . . . ,Mu+t are projectively distinct linear operators and

0 < e1 + · · ·+ eu + u < (d+ 2)/2.

Let m1, . . . ,mu+t be non-zero linear forms such that Mimi = 0, i = 1, . . . ,
u+ t. It follows from Lemma 2.1 that

f = g1m
d−e1
1 + · · ·+ gum

d−eu
u + a1m

d
u+1 + · · ·+ atm

d
u+t,

where gi are forms of degree ei and aj ∈ K, for i = 1, . . . , u, j = 1, . . . , t.
Notice that gi 6= 0, aj 6= 0, since otherwise f would be annihilated by a
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proper factor of Ef . Then Theorem 2 implies that

f0 = g1m
d−e1
1 + · · ·+ gum

d−eu
u

is extreme. Moreover, f � f0. Indeed,

f0 = f− (a1m
d
u+1 + · · ·+au+tm

d
u+t) = ld1 + · · ·+ ldr − (a1m

d
u+1 + · · ·+atm

d
u+t)

and this is a presentation of f0 of minimal length, since

r(f0) = d− (e1 + · · ·+ eu + u) + 2
= d− (e1 + · · ·+ eu + u+ t) + t+ 2 = d− deg Ef + t+ 2
= r(f) + t = r + t,

and this is exactly the length of the above presentation of f0. Thus f � f0.
Also r(f0) > (d+ 1)/2 ≥ r(f). Hence f ≺ f0.

Conversely, let f ≺ f0, where f0 is extreme. Then it follows from our
assumptions and Theorem 2 that

f0 = g1m
d−e1
1 + · · ·+ gum

d−eu
u = ld1 + · · ·+ ldt ,

f = ld1 + · · ·+ ldr , r < t,

for some linear forms mi, lj with e1 + · · · + eu + u < (d+ 2)/2 and t =
d− (e1 + · · ·+ eu + u) + 2. Thus

f = g1m
d−e1
1 + · · ·+ gum

d−eu
u − (ldr+1 + · · ·+ ldt )

and an operator
Lr+1 . . . LtM

e1+1
1 . . .M eu+1

u

of degree

t−r+e1+· · ·+eu+u = d−(e1+· · ·+eu+u)+2−r+e1+· · ·+eu+u = d−r+2

annihilates f . This completes the proof.

9. Proof of Theorem 5

Lemma 9.1. If A(f) = A(g), then f/g ∈ K \ {0}.

Proof. See [2, Lemma 2.12].

Lemma 9.2. A regular form of degree 2m is extreme if and only if either
it is equivalent via a linear transformation to xmym, or in Am+1(f) there
are exactly three projectively distinct non-zero forms with a square factor and
each of them is squareful.

Proof. By Lemma 2.2, Am+1(f) is generated by two coprime forms D1

and D2 of degree m+ 1. Let

B1(X) = D1(X, 1), B2(X) = D2(X, 1).
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Since D1, D2 are not both divisible by Y we shall assume without loss of
generality that degB1 = m+ 1 and that B1, B2 are monic. Let

C =
{
B2 if degB2 < degB1,
B2 −B1 if degB2 = degB1,

so that n = degC ≤ m, and let the leading coefficient of C be c. It follows
from

B′1B2 −B1B
′
2 = B′1C −B1C

′

(prime denotes differentiation) that the coefficient of Xm+n in B′1B2−B1B
′
2

is c(m + 1 − n) 6= 0, hence B′1B2 − B1B
′
2 is of degree m + n > 0, thus the

set Z of its zeros is not empty. Let

(21) B′1B2 −B1B
′
2 = c(m+ 1− n)

∏
z∈Z

(X − z)e(z).

It follows by induction on i that for every z ∈ Z and for every positive integer
i ≤ e(z),

(22) B
(i)
1 (z)B2(z)−B1(z)B

(i)
2 (z) = 0.

For every z0 ∈ Z the form

F = B2(z0)D1 −B1(z0)D2 ∈ Am+1(f)

has the square factor (X − z0Y )2. Moreover F 6= 0 since (D1,D2) = 1 and
Bj(z0) 6= 0 for some j = 1, 2. If F is, up to projective equality, the only
non-zero element of Am+1(f) with a square factor, then for every z ∈ Z we
have Bj(z) 6= 0 and

B3−j(z)
Bj(z)

=
B3−j(z0)
Bj(z0)

.

Now, by (22),

P = B3−j(X)− B3−j(z0)
Bj(z0)

Bj(X)

contains the factor X − z with multiplicity e(z) + 1, hence by (21),

m+ 1 ≥ degP ≥ deg(B′1B2 −B1B
′
2) + |Z| = m+ n+ |Z| > m+ n,

thus n = 0. It follows that B2 −B1 = b ∈ K \ {0}, hence
bY m+1 = D2 −D1 ∈ Am+1(f)

and Am+1(f) contains at least two non-zero, projectively distinct elements
with a square factor, namely F and Y m+1. This contradiction proves that
the number of projectively distinct non-zero elements of Am+1(f) with a
square factor is at least two.

We proceed to prove that there are at most three such elements. Let
F1, F2 be two of them and suppose that

(23) a1F1 + a2F2 = F3, b1F1 + b2F2 = F4,
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where ai, bi ∈ K \ {0}, F3, F4 have a square factor and are projectively
distinct. Since (D1,D2) = 1 the forms Fi (1 ≤ i ≤ 4) are coprime, i.e.
pairwise relatively prime, and since f is extreme, Fi are squareful. Let

(24) F i(X) = Fi(X, 1) =
∏
z∈Zi

(X − z)ei(z).

We see that Zi are disjoint (one Zi may be empty) and

(25) ei(z) ≥ 2 (1 ≤ i ≤ 4, z ∈ Zi).

From (20) we obtain

a1F 1 + a2F 2 = F 3,

b1F 1 + b2F 2 = F 4,

and by differentiation

a1(F
′
1F 2 − F 1F

′
2) = F

′
3F 2 − F 3F

′
2,

b1(F
′
1F 2 − F 1F

′
2) = F

′
4F 2 − F 4F

′
2,

thus

(26)
4∏

i=1

(F ′i, F i) | (F
′
1F 2 − F 1F

′
2).

By (24) and (25),

deg(F ′i, F i) ≥
1
2

degF i.

If degF 1 6= degF 2, then

degF 3 = degF 4 = max(degF 1, degF 2)

and (26) gives

(27)
3
2

max(degF 1, degF 2) +
1
2

min(degF 1, degF 2)

≤ max(degF 1, degF 2) + min(degF 1, degF 2)− 1,

a contradiction. If degF i are equal, then the same argument applies. If
degF 1 = degF 2 but degF j < degF 1 for j = 3 or 4, say j = 3, we have

F
′
1F 2 − F 1F

′
2 =

1
a2

(F ′1F 3 − F 1F
′
3)

and (27) holds with F 2 replaced by F 3. This contradiction shows that the
number of projectively distinct non-zero elements of Am+1(f) with a square
factor is at most three.

It remains to prove that for a form f in question, Am+1(f) contains
exactly two projectively distinct non-zero forms with a square factor if and
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only if f is equivalent to xmym. Let the two relevant forms in Am+1(f) be
F1 and F2, and let F i(X) = Fi(X, 1) for i = 1, 2. We have

(28) (F 1, F 2) = 1

and we assert that

(29) F
′
1F 2 − F 1F

′
2 = c1(F 1, F

′
1)(F 2, F

′
2), c1 ∈ K \ {0}.

If it were not so, then

H =
F
′
1F 2 − F 1F

′
2

(F 1, F
′
1)(F 2, F

′
2)

would have a zero ζ. If ζ were a zero of F i with multiplicity m1 > 0, then
ζ would be a zero of F i/(F i, F

′
i) of multiplicity 1, hence H(ζ) = 0 would

imply
F
′
iF 3−i

(F 1, F
′
1)(F 2, F

′
2)

(ζ) = 0

and since F
′
i

(F i,F
′
i)

(ζ) 6= 0 we should obtain F 3−i(ζ) = 0, contrary to (28).

Therefore F 1(ζ)F 2(ζ) 6= 0 and the form F 2(ζ)F1 − F 1(ζ)F2 projectively
distinct from F1, F2 would have the square factor (X−ζY )2. This proves (29).

Now, suppose that F i has exactly qi projectively distinct factors and
q1 ≥ q2. Then
(30) deg (F 1, F

′
1)(F 2, F

′
2) = degF 1 + degF 2 − q1 − q2

and

deg(F ′1F 2 − F 1F
′
2) = degF 1 + degF 2 − 1 if degF 1 6= degF 2.

This gives, by (29), that q1 = 1, q2 = 0, thus F 1 is a power of a linear
polynomial, F 2 ∈ K\{0}. It follows that F1 = Lm+1, F2 = Y m+1, where L is
a linear form and by a linear transformation we can achieve that F1 = Xm+1,
F2 = Y m+1. Then f annihilated by F1 and F2 is projectively equal to xmym.

It remains to consider the case where degF 1 = degF 2. Then F 2 =
c3F 1 + R, where c3 6= 0, degR < degF 1. If degR ≤ degF 1 − 2, then
F2 − c3F1 is divisible by Y 2 and projectively distinct from F1, F2, contrary
to the assumption. Thus degR = degF 1 − 1 and

deg(F ′1F 2−F 1F
′
2) = deg(F ′1R−F 1R

′) = degF 1 +degR−1 = 2degF 1−2.

Hence from (29) and (30) we obtain

2 degF 1 − 2 = 2 degF 1 − q1 − q2,
thus q1 + q2 = 2, q1 = q2 = 1, F i = Li(X, 1)m+1, where Li is a linear form,
Fi = Lm+1

i and the previous argument shows that f annihilated via F1, F2

is equivalent via a linear transformation to xmym.
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Conversely, if f = xmym, then Am+1(f) contains Xm+1, Y m+1 and up
to a constant factor no other form with a square factor.

Lemma 9.3. For every positive integer s there exist up to a fractional
linear transformation only finitely many rational functions a, b ∈ K(x) \ {0}
with the set S of zeros and poles such that a + b = 1, |S| = s and
−
∑

p∈S min{ordp a, ordp b} = s− 2.

Proof. See [6, Theorem 3] in which one takes k 7→ K, K 7→ K(x).

Proof of Theorem 5. We begin by proving that the condition is necessary.
By Lemma 9.2 it suffices to show that if P,Q,R are three projectively distinct
forms in Am+1(f), then they are coprime and the total number of their
projectively distinct linear factors is m + 3. The former fact results from
Lemma 2.3. Also, replacing if necessary P,Q,R by their scalar multiples, we
may assume that R = P +Q.

By a linear transformation we can achieve that Y |Q. Now, let

P = P (X, 1), Q = Q(X, 1), R = R(X, 1)

and let ω(P ), ω(Q), ω(R) denote the number of zeros of P ,Q,R, respectively.
Since P and Q cannot be both divisible by Y we have

(31) degP = degR = m+ 1 > degQ,

and the abc-theorem (see [6]) gives

ω(P ) + ω(Q) + ω(R) ≥ m+ 2.

We shall show that equality holds here. Therefore assume

(32) ω(P ) + ω(Q) + ω(R) ≥ m+ 3.

Since

deg(P , P ′) = degP − ω(P ), deg(Q,Q′) = degQ− ω(Q),

deg(R,R′) = degR− ω(R),

inequalities (31) and (32) give

(33) deg(P ′Q−P Q′) = degQ+m > deg(P , P ′)+deg(Q,Q′)+deg(R,R′).

The polynomials (P , P ′), (Q,Q′), (R,R′) are coprime and each of them di-
vides P ′Q − P Q′. For the first two this is evident, for the third it follows
from the identity

(34) 2(P ′Q− P Q′) = (P +Q)(P ′ −Q′)− (P ′ +Q
′)(P −Q).

By virtue of (33),
P
′
Q− P Q′

(P , P ′)(Q,Q′)(R,R′)
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has a zero ζ. If we had P (ζ) = 0 it would follow that

P
′
Q

(P , P ′)
(ζ) = 0,

contrary to (
P ,

P
′
Q

(P , P ′)

)
= 1.

This contradiction shows that P (ζ) 6= 0 and similarly Q(ζ) 6= 0, while iden-
tity (34) implies R(ζ) 6= 0. Now consider the form

F = Q(ζ)P − P (ζ)Q.

F has the square factor (X−ζY )2, since Q(ζ)P −P (ζ)Q has ζ as a multiple
zero. However, since (PQR)(ζ) 6= 0, F is projectively different from P,Q,R
contrary to Lemma 9.2. This contradiction shows that

ω(P ) + ω(Q) + ω(R) = m+ 2.

Since Q is divisible by Y , the number of projectively distinct linear factors
of PQR is m+ 3.

We proceed to prove that the condition is sufficient. If P,Q,R are three
coprime squareful forms in Am+1(f) with the number of projectively distinct
linear factors of PQR equal to m+ 3 we may assume that P +Q = R and
Q is divisible by Y . Let again

P = P (X, 1), Q = Q(X, 1), R = R(X, 1).

The condition on PQR now gives

(35) ω(P ) + ω(Q) + ω(R) = m+ 2.

By Lemma 9.2, it suffices to show that every non-zero form F = aP + bQ
(a, b ∈ K) with a square factor is projectively equal (') to P,Q or R. If
Y 2 |F , then since Y |Q and Y -P , we have a = 0 and F ' Q. If F has a
square factor and Y 2 -F , then aP + bQ has a multiple zero ζ. Thus

(36) aP (ζ) + bQ(ζ) = 0, aP
′(ζ) + bQ

′(ζ) = 0,

hence

(37) (P ′Q− P Q′)(ζ) = 0.

However, as shown in the first part of the proof,

(P , P ′)(Q,Q′)(R,R′) | (P ′Q− P Q′).
Now, by (35),

deg (P , P ′)(Q,Q′)(R,R′) = degP + degQ+ degR− ω(P ) + ω(Q)− ω(R)

= m+ degQ = deg(P ′Q− P Q′),
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hence

P
′
Q− P Q′ = c(P , P ′)(Q,Q′)(R,R′), c ∈ K \ {0}.

Therefore (37) implies P (ζ) = 0 or Q(ζ) = 0 or R(ζ) = 0. If P (ζ) = 0,
then Q(ζ) 6= 0 and (36) gives b = 0, thus F ' P. If Q(ζ) = 0, then similarly
a = 0, thus F ' Q. Finally, if R(ζ) = 0, then P (ζ)+Q(ζ) = 0, thus by (36),
a = b and F ' R.

Proof of Corollary 6. We begin with a remark valid for every m. If any of
the three squareful forms is a power of a linear form, then, since each of the
others has at most (m+ 1)/2 projectively distinct linear factors, the total
number of such factors is too small, namely at most m + 2. Thus none of
the three forms is a power of a linear form, which settles the case m ≤ 2,
where every squareful form is of this type. For m = 3 the relevant squareful
forms are of the type X2Y 2, thus we have P = P 2

1 , Q = Q2
1, R = R2

1 where
P1, Q1, R1 have one linear factor each and P 2

1 +Q2
1 = R2

1. Therefore R1 +P1,
R1 − P1 have one linear factor each, and taking them equal to 2X2, 2Y 2 we
obtain

P = (X2 − Y 2)2, Q = 4X2Y 2, R = (X2 + Y 2)2, f ' x5y − xy5.

For m = 4 the relevant squareful forms are of type X3Y 2, thus the total
number of projectively distinct linear factors of three such forms is 6 < m+3.
Form = 5 the relevant squareful forms are of typeX4Y 2, X3Y 3, orX2Y 2Z2.
The condition on the total number of projectively distinct linear factors leads
to P = P 2

1 , R = R2
1, where P1, R1 have three factors each, and Q = R − P

has two such factors. Therefore, R1+P1, R1−P1 have one linear factor each,
and taking them equal to 2X3, 2Y 3 we obtain

P = (X3 − Y 3)2, Q = X3Y 3, R = (X3 + Y 3)2, f ' x8y2 − x2y8.

Proof of Corollary 7. For a form f of degree 2m, coprime polynomials
P,Q ∈ Am+1(f) determine A(f) by virtue of Lemma 2.2, hence by Lemma
9.1, f is determined by them up to a constant factor. Transforming P,Q
by a linear substitution results in transforming f by the inverse of that
substitution, thus it suffices to prove that up to a linear substitution there
are only finitely many triples P,Q,R = P + Q of coprime forms of degree
m+1, which together have exactly m+3 projectively distinct linear factors.
Assuming without loss of generality that Y |Q and putting

P = P (X, 1), Q = Q(X, 1), R = R(X, 1)

we obtain

ω(P ) + ω(Q) + ω(R) = m+ 2.
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Now, we apply Lemma 9.3 with a = P/R and b = Q/R. Here

−
∑
p∈S

min{ordp a, ordp b} = degR = m+ 1,

|S| = ω(P ) + ω(Q) + ω(R) = m+ 3.

Thus the assumptions of the lemma are satisfied and so there exist, up to
a fractional linear transformation, only finitely many pairs P/R, Q/R in
question. It follows that up to a linear transformation there exist only finitely
many relevant triples P,Q,R.

Example (due to J. Browkin). For m = 6 the conditions of Theorem 5
are satisfied by the following forms in K[X,Y ]m+1:

P = (X − Y )3(4X2 −XY + Y 2)2, Q = Y 3(7X2 − 7XY + 4Y 2)2,

R = X3(7XY + 7Y 2)2.

10. Proof of Proposition 5. In all three cases we argue in the same
way. First we notice that, in all three cases, the number on the right hand side
is equal to d− s(f) + 2 = deg Ef . Denote that number by t(f). Next notice
that dimAt(f)(f) ≥ 2, t(f) ≤ r(f). Moreover, At(f)(f) contains coprime
forms and contains a Zariski dense subset consisting of squarefree forms.
Then it follows from Lemma 2.1 that it is sufficient to prove that, for any
given finite family M1, . . . ,Mt of projectively distinct linear operators, we
can find linear forms L1, . . . , Lr such that all forms L1, . . . , Lr,M1, . . . ,Mt

are pairwise projectively distinct and G = L1 . . . Lr ∈ At(f)(f). However,
for i = 1, . . . , r, Mi does not divide all forms from At(f)(f), since At(f)

contains coprime forms. Thus forms in At(f)(f) divisible by Mi belong to a
hyperplane and hence for a Zariski dense subset U ⊂ At(f)(f) the condition
G ∈ U implies that Mi -G for all i = 1, . . . , r. On the other hand, as noticed
above, for a Zariski dense subset V ⊂ At(f)(f) the condition G ∈ V implies
that G is squarefree. Hence, U ∩ V 6= ∅ and every form G ∈ U ∩ V satisfies
the required conditions.
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