On the zeros of degree one *L*-functions from the extended Selberg class

by

HASEO KI (Seoul) and YOONBOK LEE (Pohang and Seoul)

1. Introduction. In [13], Selberg introduced the class S consisting of the functions F(s) satisfying the following conditions.

(1) (Dirichlet series) For $\sigma>1,\,F(s)$ is an absolutely convergent Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \quad (s = \sigma + it).$$

- (2) (Analytic continuation) For some integer $m \ge 0$, $(s-1)^m F(s)$ is an entire function of finite order.
- (3) (Functional equation) F(s) satisfies a functional equation of the form

$$\Phi(s) = \omega \bar{\Phi}(1-s),$$

where

$$\Phi(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j) F(s)$$

with $\overline{\Phi}(s) = \overline{\Phi(\overline{s})}, Q > 0, \lambda_j > 0, \operatorname{Re} \mu_j \ge 0 \text{ and } |\omega| = 1.$

- (4) (Ramanujan hypothesis) For every $\epsilon > 0, a(n) \ll n^{\epsilon}$.
- (5) (Euler product) For σ sufficiently large,

$$\log F(s) = \sum_{n=1}^{\infty} \frac{b(n)}{n^s} \quad (s = \sigma + it),$$

where b(n) = 0 unless n is a positive power of a prime, and $b(n) \ll n^{\theta}$ for some $\theta < 1/2$.

²⁰¹⁰ Mathematics Subject Classification: Primary 11M41.

Key words and phrases: extended Selberg class, non-trivial zero, Riemann hypothesis, Euler product, mean motion.

For a function F(s) in the Selberg class S, we define $d = 2\sum_j \lambda_j$ to be the *degree* of F. We denote by S_d the subclass of functions of degree din S. We note that the structure of S_d has been completely determined for $0 \leq d \leq 1$. From the work of Conrey and Ghosh [4], we have $S_0 = \{1\}$ and $S_d = \emptyset$ for 0 < d < 1. For d = 1, by Kaczorowski and Perelli [9], the functions $F \in S_1$ are of the forms $F(s) = \zeta(s)$ or $F(s) = L(s + i\theta, \chi)$ with a primitive Dirichlet character χ and $\theta \in \mathbb{R}$. On the other hand, we denote by $S^{\#}$ the extended Selberg class of functions satisfying conditions (1)–(3), and we define $S_d^{\#}$ similarly to S_d . Theorems 1 and 2 in [9] describe the structure of $S_d^{\#}$ for $0 \leq d \leq 1$.

If d = 0, the functional equation is $Q^s F(s) = \omega Q^{1-s} \overline{F}(1-s)$. The proof of [9, Theorem 1] shows that the Dirichlet series $F(s) = \sum_n a(n)/n^s \in \mathcal{S}_0^{\#}$ is absolutely convergent in the whole complex plane. Thus, we have

$$\sum_{n=1}^{\infty} a(n) \left(\frac{Q^2}{n}\right)^s = \omega Q \sum_{n=1}^{\infty} \frac{\overline{a(n)}}{n} n^s.$$

We let $q = Q^2$; then a(n) = 0 for $n \nmid q$. For $n \mid q$, we have

(1.1)
$$a(n) = \frac{\omega n}{\sqrt{q}} \overline{a\left(\frac{q}{n}\right)}.$$

THEOREM A (Theorem 1 of [9]).

- (1) If 0 < d < 1, then $\mathcal{S}_d^{\#} = \emptyset$. If $F \in \mathcal{S}_0^{\#}$, then $q \in \mathbb{N}$, the pair (q, ω) is an invariant of F(s) and $\mathcal{S}_0^{\#}$ is the disjoint union of the subclasses $\mathcal{S}_0^{\#}(q, \omega)$ with $q \in \mathbb{N}$ and $|\omega| = 1$.
- (2) Every $F \in \mathcal{S}_0^{\#}(q,\omega)$ with q and ω as above is a Dirichlet polynomial of the form

$$F(s) = \sum_{n|q} \frac{a(n)}{n^s}.$$

For d = 1, we use the notation

$$\beta = \prod_{j=1}^r \lambda_j^{-2\lambda_j}, \quad \xi = 2\sum_{j=1}^r (\mu_j - 1/2) = \eta + i\theta, \quad q = \frac{2\pi Q^2}{\beta},$$
$$\omega^* = \omega e^{-i\pi(\eta + 1)/2} \left(\frac{Q^2}{\beta}\right)^{i\theta} \prod_{j=1}^r \lambda_j^{-2i\operatorname{Im}\mu_j}.$$

If χ is a Dirichlet character modulo q, we denote by f_{χ} its conductor, and by χ^* the primitive character inducing χ . We denote by ω_{χ^*} and Q_{χ^*} the ω -factor and the Q-factor in the standard functional equation for $L(s,\chi^*)$, i.e., $\omega_{\chi^*} = \tau(\chi^*)/i^{\mathfrak{a}}\sqrt{f_{\chi}}$, where $\tau(\chi^*)$ is the Gauss sum, $\mathfrak{a} = 0$ if $\chi(-1) = 1$

and
$$\mathfrak{a} = 1$$
 if $\chi(-1) = -1$, and $Q_{\chi^*} = \sqrt{f_{\chi}/\pi}$. Moreover, we write

$$\mathfrak{X}(q,\xi) = \begin{cases} \{\chi \mod q \mid \chi(-1) = 1\} & \text{if } \eta = -1, \\ \{\chi \mod q \mid \chi(-1) = -1\} & \text{if } \eta = 0. \end{cases}$$

 χ_0 denotes the principal character modulo q.

THEOREM B (Theorem 2 of [9]).

- (1) If $F \in \mathcal{S}_1^{\#}$, then $q \in \mathbb{N}$ and $\eta \in \{-1,0\}$. The triple (q,ξ,ω^*) is an invariant of F(s), and $\mathcal{S}_1^{\#}$ is the disjoint union of the subclasses $\mathcal{S}_1^{\#}(q,\xi,\omega^*)$ with $q \in \mathbb{N}, \eta \in \{-1,0\}, \theta \in \mathbb{R}$ and $|\omega^*| = 1$. Moreover, $a(n)n^{i\theta}$ is periodic with period q.
- (2) Every $F \in \mathcal{S}_1^{\#}(q,\xi,\omega^*)$ with q, ξ and ω^* as above can be uniquely written as

$$F(s) = \sum_{\chi \in \mathfrak{X}(q,\xi)} P_{\chi}(s+i\theta)L(s+i\theta,\chi^*),$$

where $P_{\chi} \in \mathcal{S}_0^{\#}(q/f_{\chi}, \omega^* \bar{\omega}_{\chi^*})$. Moreover, $P_{\chi_0}(1) = 0$ if $\theta \neq 0$.

Bombieri and Hejhal [2] studied the distribution of zeros of the linear combinations $F(s) = \sum_{j=1}^{J} b_j e^{i\alpha_j} L_j(s)$ of various *L*-functions with the same gamma factor. Assuming an orthonormality condition on $a_j(p)$ (where $a_j(n)$ are the coefficients of $L_j(s)$), the generalized Riemann hypothesis for $L_j(s)$ and a weak condition on the spacing of zeros of $L_j(s)$, they proved that almost all zeros of F(s) are simple and on the critical line $\operatorname{Re} s = 1/2$. Hejhal [6] studied the behavior of zeros of F(s) near the critical line and announced that the true order of the number of zeros of F(s) in $\operatorname{Re} s \geq \sigma$, $T \leq \operatorname{Im} s \leq T + H$ is

$$\frac{H}{(\sigma - 1/2)\sqrt{\log\log T}}$$

for $1/2 + (\log \log T)^{\kappa}/\log T \le \sigma \le 1/2 + (\log T)^{-\delta}$, $c_1 T^w \le H \le c_2 T$, $\kappa > 2$ with possibly few exceptional $\{b_j\}_{j=1}^J$. Note that this result for the special case J = 2 was also justified by the same author in [5].

Recently, the second author [11] investigated the off-line zeros of the Epstein zeta function E(s,Q) associated to the quadratic form $Q(x,y) = ax^2 + bxy + cy^2$, a > 0, $b^2 - 4ac < 0$, $a, b, c \in \mathbb{Z}$. It is a classical example that belongs to the class $S_2^{\#}$. We find the number of zeros $N_E(\sigma_1, \sigma_2; 0, T)$ in the rectangular region $\sigma_1 < \operatorname{Re} s < \sigma_2$, $0 < \operatorname{Im} s < T$ to be $c(\sigma_1, \sigma_2; 0, T)$ in the rectangular $\sigma_1 < \operatorname{Re} s < \sigma_2$, $0 < \operatorname{Im} s < T$ to be $c(\sigma_1, \sigma_2; 0, T) = T$ for $1/2 < \sigma_1 < \sigma_2 < 1$ (see [14] or Chapter 7 of [10]) based on the joint distribution for Hecke *L*-functions. We observe that one can apply our method to degree one objects.

For $F \in S^{\#}$, Kaczorowski and Kulas [8] defined the *density property* to be $N_F(\sigma, T) = o(T)$ for every fixed $1/2 < \sigma < 1$. This property classifies the elements in $S_1^{\#}$. If $F \in S_1^{\#}$ has the density property, then $F(s + i\theta) = P(s)L(s,\chi)$ for certain real θ , a Dirichlet polynomial $P \in S_0^{\#}$ and a primitive Dirichlet character χ . Otherwise, $F(s + i\theta) = \sum_{j \le J} P_j(s)L(s,\chi_j)$ for $J \ge 2, \ \theta \in \mathbb{R}$, Dirichlet polynomials $P_j \in S_0^{\#}$ and primitive inequivalent Dirichlet characters χ_j . For $F \in S_1^{\#}$ violating the density property, they obtain $N_F(\sigma_1, \sigma_2; 0, T) \gg T$ for $1/2 < \sigma_1 < \sigma_2 < 1$. Saias and Weingartner [12] extend their method to the strip $1 < \operatorname{Re} s < 1 + \eta$ for some small $\eta > 0$ and achieve $N_F(\sigma_1, \sigma_2; 0, T) \gg T$ for $1/2 < \sigma_1 < \sigma_2 < 1 + \eta$. Our main purpose is to improve these results by obtaining an asymptotic formula for $N_F(\sigma_1, \sigma_2; 0, T)$.

By Theorems A and B, we can write the function $E(s+i\theta) \in \mathcal{S}_1^{\#}$ as

(1.2)
$$E(s) = \sum_{j=1}^{J} h_j(p_1^{-s}, \dots, p_k^{-s}) \prod_{p > p_k} \left(1 - \frac{\chi_j(p)}{p^s}\right)^{-1}$$

for some integer k > 0, where

$$h_j(x_1, \dots, x_k) = \tilde{h}_j(x_1, \dots, x_k) \prod_{l \le k} (1 - \chi_j(p_l) x_l)^{-1}$$

and \dot{h}_j is a polynomial of k variables. Let

$$E_n(s) = \sum_{j=1}^J h_j(p_1^{-s}, \dots, p_k^{-s}) \prod_{p_k$$

for n > k. Then, $E_n(s)$ converges in the mean with index 2 towards E(s) in $[1/2, \infty]$ by Parseval's identity for almost periodic functions, i.e.,

$$\limsup_{T \to \infty} \frac{1}{T} \int_{1}^{T} \int_{\alpha}^{\beta} |E(\sigma + it) - E_n(\sigma + it)|^2 \, d\sigma \, dt \to 0$$

as $n \to \infty$ for any $1/2 < \alpha < \beta$ (for the method of proof, see Proposition 2.3 of [11]). Applying Lemma 2.3 to $E_n(s)$, we get an asymptotic formula for $N_{E_n}(\sigma_1, \sigma_2; 0, T)$. The theory of mean motions partially preserves this property through the convergence in the mean with index p > 0 via Lemma 2.4.

If J = 1, then we encounter the Riemann hypothesis. Our method does not work in this case, since we are using the Euler product $\log \zeta(s) = \sum_p \sum_{m=1}^{\infty} \frac{1}{mp^{ms}}$ and this cannot give any information about $\zeta(s) = 0$. Concerning this matter, see Borchsenius and Jessen [3]. From now on, we only consider the case J > 1. We consider $\mathcal{S}_1^{\#}(p,\xi,\omega^*)$ for p prime or 1. By (1.1) and Theorem B, we have

$$\tilde{h}_j = a_j(1) \text{ or } a_j(1) + \frac{\omega a_j(1)}{p^{s-1/2}}$$

and as a result $\tilde{h}_j \neq 0$ for Re s > 1/2. In this case, the method in [11] works, and we have the following theorem.

THEOREM 1.1. Let $E(s+i\theta) \in \mathcal{S}_1^{\#}(p,\xi,\omega^*)$ for p prime or p=1, and $|\omega|=1$, and let $1/2 < \sigma_1 < \sigma_2$. Suppose J > 1 in (1.2). Then

$$N_E(\sigma_1, \sigma_2; 0, T) = c(\sigma_1, \sigma_2)T + o(T)$$

as $T \to \infty$. The constant $c(\sigma_1, \sigma_2)$ can be represented as an integral $\int_{\sigma_1}^{\sigma_2} H_{\sigma}(0) d\sigma$ for the density function $H_{\sigma}(x)$ of some distribution μ_{σ} , and $c(\sigma_1, \sigma_2) > 0$ if $1/2 < \sigma_1 \leq 1$. In particular, for $\sigma_0 > 1/2$, the number of zeros on the line segment $\operatorname{Re} s = \sigma_0$, $0 < \operatorname{Im} s < T$ is o(T).

When q is a prime power, the h_j are polynomials of the same single variable by Theorems A(2) and B(2). If these polynomials have the same factor with cT + o(T) zeros on the line segment $\operatorname{Re} s = \sigma_0$, $0 < \operatorname{Im} s < T$ for some $1/2 < \sigma_0 < 1$, then we cannot expect the integral form of the constant $c(\sigma_1, \sigma_2)$ in general. Indeed, we may take $\tilde{h}_j(p^{-s}) = 1 + 2p^{3/4-s} + p^{1-2s}$ by letting $\omega = a(1) = 1$, and $a(p) = 2p^{-3/4}$. Then the function $s \mapsto \tilde{h}_j(p^{-s})$ has $\frac{\log p}{2\pi}T + O(1)$ zeros on $\operatorname{Re} s = \log(p^{3/4} + \sqrt{p^{3/2} - p})/\log p$, $0 < \operatorname{Im} s < T$. We still have the following.

THEOREM 1.2. Let $E(s+i\theta) \in \mathcal{S}_1^{\#}(q,\xi,\omega^*)$ for q a prime power, and let $1/2 < \sigma_1 < \sigma_2$. Suppose J > 1 in (1.2). Then

$$N_E(\sigma_1, \sigma_2; 0, T) = c(\sigma_1, \sigma_2)T + o(T)$$

as $T \to \infty$, and $c(\sigma_1, \sigma_2) > 0$ if $1/2 < \sigma_1 \leq 1$. Suppose that the closed interval $[\sigma_1, \sigma_2]$ does not contain the real part of exceptional points satisfying $h_j = 0$. Then the constant $c(\sigma_1, \sigma_2)$ can be represented as an integral $\int_{\sigma_1}^{\sigma_2} H_{\sigma}(0) d\sigma$ for the density function $H_{\sigma}(x)$ of some distribution μ_{σ} . In this case for $\sigma_0 \in [\sigma_1, \sigma_2]$, the number of zeros on the line segment $\operatorname{Re} s = \sigma_0$, $0 < \operatorname{Im} s < T$ is o(T).

For general q, we could also prove a similar theorem, although it is not easy to classify the common zeros of \tilde{h}_j with multiple variables. We will discuss and prove a general theorem in Section 3.

2. Lemmas. We begin with the work of Jessen and Tornehave [7] that concerns zeros of a Dirichlet series in the region of its absolute convergence. For the basic theory of almost periodic functions, we refer to [1].

LEMMA 2.1 (Theorem 8 of [7]). A function f(s) almost periodic in $[\alpha, \beta]$ and not identically zero has no zeros in the substrip $(\alpha \leq) \alpha_0 < \sigma, \beta_0 (\leq \beta)$, if and only if its Jensen function

$$\varphi(\sigma) = \lim_{T_2 - T_1 \to \infty} \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \log |f(\sigma + it)| \, dt$$

is linear in the interval (α_0, β_0) .

LEMMA 2.2 (Theorem 31 of [7]). For an ordinary Dirichlet series

$$f(s) = \sum_{n=n_0}^{\infty} \frac{a_n}{n^s}, \quad a_{n_0} \neq 0,$$

with the uniform convergence abscissa α , the Jensen function $\varphi(\sigma)$ has on every half-line $\sigma > \alpha_1 \ (> \alpha)$ only a finite number of linearity intervals and a finite number of points of non-differentiability. The values of $\varphi'(\sigma)$ in the linearity intervals belong to the set of numbers $-\log n, n \ge n_0$. For $\sigma > (some) \ \sigma_0$, we have

$$\varphi(\sigma) = -(\log n_0)\sigma + \log |a_{n_0}|.$$

For an arbitrary strip (σ_1, σ_2) , where $\alpha < \sigma_1 < \sigma_2 < \infty$, the relative frequency $H(\sigma_1, \sigma_2)$ of zeros exists and is determined by

$$H(\sigma_1, \sigma_2) = \frac{1}{2\pi} (\varphi'(\sigma_2 -) - \varphi'(\sigma_1 +)).$$

The following lemma guarantees the existence of the second derivative of Jensen functions for almost periodic functions and gives another representation by a certain distribution. The proof can be found in $\S 9$ of [3].

LEMMA 2.3 (Proposition 2.1 of [11]). Let f(s) be almost periodic in the strip $[\alpha, \beta]$ and not identically zero. Let ν_{σ} be the asymptotic distribution function of $f(\sigma + it)$ with respect to $|f'(\sigma + it)|^2$. Suppose ν_{σ} is absolutely continuous for every σ and its density $G_{\sigma}(x)$ is a continuous function of x and σ . Then the Jensen function $\varphi_{f-x}(\sigma)$ is twice differentiable with $\varphi''_{f-x}(\sigma) = 2\pi G_{\sigma}(x)$.

The next lemma is an extension of Lemma 2.3 which is applicable inside the critical strip and which plays the main role in this method.

LEMMA 2.4 (Theorem 1 of [3]). Let $-\infty \leq \alpha < \alpha_0 < \beta_0 < \beta \leq \infty$ and let $f_1(s), f_2(s), \ldots$ be a sequence of functions almost periodic in $[\alpha, \beta]$ converging uniformly in $[\alpha_0, \beta_0]$ towards a function f(s). Suppose that none of the functions is identically zero and f(s) may be continued as a regular function in the half-strip $\alpha < \sigma < \beta, t > \gamma_0$, and that $f_n(s)$ converges in mean with an index p > 0 towards f(s) in $[\alpha, \beta]$. Then the Jensen function

$$\varphi_f(\sigma) = \lim_{T \to \infty} \frac{1}{T} \int_{\gamma}^T \log |f(\sigma + it)| dt$$

exists uniformly in $[\alpha, \beta]$ for some $\gamma > \gamma_0$, and $\varphi_{f_n}(\sigma)$ converges uniformly in $[\alpha, \beta]$ towards $\varphi_f(\sigma)$ as $n \to \infty$. The function $\varphi_f(\sigma)$ is convex in (α, β) , and for every strip (σ_1, σ_2) where $\alpha < \sigma_1 < \sigma_2 < \beta$, the two relative frequencies of zeros defined by

$$\underline{H}_f(\sigma_1, \sigma_2) = \liminf_{T \to \infty} \frac{1}{T} N_f(\sigma_1, \sigma_2; \gamma, T),$$

$$\overline{H}_f(\sigma_1, \sigma_2) = \limsup_{T \to \infty} \frac{1}{T} N_f(\sigma_1, \sigma_2; \gamma, T),$$

satisfy the inequalities

$$\frac{1}{2\pi}(\varphi_f'(\sigma_2 -) - \varphi_f'(\sigma_1 +)) \le \underline{H}_f(\sigma_1, \sigma_2) \le \overline{H}_f(\sigma_1, \sigma_2) \le \frac{1}{2\pi}(\varphi_f'(\sigma_2 +) - \varphi_f'(\sigma_1 -)).$$

Suppose further that $\varphi_f(\sigma)$ is twice differentiable. Then

$$N_f(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} \int_{\sigma_1}^{\sigma_2} \varphi_f''(\sigma) \, d\sigma + o(T)$$

for $\alpha < \sigma_1 < \sigma_2 < \beta$ as $T \to \infty$.

Together with the above lemmas, we investigate the Fourier transforms of certain distributions. We need two more lemmas, in which we use the following notation:

$$\begin{aligned} \mathfrak{L}_{n}(\sigma,\Theta;\chi_{j}) &= L_{k}(\sigma,\theta;\chi_{j})L_{k,n}(\sigma,\vartheta;\chi_{j}),\\ L_{k}(\sigma,\theta;\chi_{j}) &= h_{j}(p_{1}^{-\sigma}e^{2\pi i\theta_{1}},\ldots,p_{k}^{-\sigma}e^{2\pi i\theta_{k}}),\\ L_{k,n}(\sigma,\vartheta;\chi_{j}) &= \prod_{k$$

for $n > k, \Theta = (\theta, \vartheta) \in [0, 1]^n, \theta = (\theta_1, \dots, \theta_k) \in [0, 1]^k$ and $\vartheta = (\vartheta_{k+1}, \dots, \vartheta_n) \in [0, 1]^{n-k}$. Let $\mu_{n,\sigma}$ be the distribution function of $E_{n,\sigma}$ with respect to $\left|\frac{\partial}{\partial \sigma} E_{n,\sigma}\right|^2$. Its Fourier transform is

$$\hat{\mu}_{n,\sigma}(y) = \int_{[0,1]^n} e^{i\sum_j \mathfrak{L}_n(\sigma,\Theta;\chi_j) \cdot y} \Big| \sum_j \mathfrak{L}'_n(\sigma,\Theta;\chi_j) \Big|^2 d\Theta.$$

LEMMA 2.5. For $\sigma > 1/2$, $\delta > 0$ and $j \leq J$, define

$$A_{j,\sigma}(\delta) = \{ \theta \in [0,1]^k : |\tilde{h}_j(p_1^{-\sigma}e^{2\pi i\theta_1}, \dots, p_k^{-\sigma}e^{2\pi i\theta_k})| < \delta \}.$$

Then for any integer $K \leq J$ we have

$$\hat{\mu}_{n,\sigma}(y) \ll \left| \bigcap_{r_1 < \cdots < r_K \leq J} (A_{r_1,\sigma}(\delta) \cup \cdots \cup A_{r_K,\sigma}(\delta)) \right| + |\delta y|^{-K}$$

as $|y| \to \infty$, where the corresponding constant does not depend on n.

Proof. We write

$$\hat{\mu}_{n,\sigma}(y) = \sum_{l_1,l_2} \int_{[0,1]^n} e^{i\sum_j \mathfrak{L}_n(\sigma,\Theta;\chi_j)\cdot y} \mathfrak{L}'_n(\sigma,\Theta;\chi_{l_1}) \overline{\mathfrak{L}'_n(\sigma,\Theta;\chi_{l_2})} \, d\Theta.$$

Define set functions

$$\begin{split} \lambda_{n,\sigma;l_1,l_2}(B) &= \int\limits_{M_{n,\sigma}^{-1}(B)} \frac{L'_{k,n}}{L_{k,n}}(\sigma,\vartheta;\chi_{l_1}) \frac{L'_{k,n}}{L_{k,n}}(\sigma,\vartheta;\chi_{l_2}) \, d\vartheta, \\ \lambda_{n,\sigma;l}(B) &= \int\limits_{M_{n,\sigma}^{-1}(B)} \frac{L'_{k,n}}{L_{k,n}}(\sigma,\vartheta;\chi_l) \, d\vartheta, \\ \lambda_{n,\sigma}(B) &= |M_{n,\sigma}^{-1}(B)|, \end{split}$$

for any Borel set $B \subset \mathbb{C}^J$. Applying the identity

$$a\bar{b} = \frac{1}{4} \sum_{m=1}^{4} i^m |a + i^m b|^2, \quad a, b \in \mathbb{C},$$

one can prove that $\hat{\mu}_{n,\sigma}(y)$ is a linear combination of at most four absolutely continuous distribution functions. (See [11] for details.) We denote by $G_{n,\sigma;l_1,l_2}(x)$, $G_{n,\sigma;l}(x)$, $G_{n,\sigma}(x)$ the densities of $\lambda_{n,\sigma;l_1,l_2}$, $\lambda_{n,\sigma;l}$, $\lambda_{n,\sigma}$, respectively. By Theorem 6 of [3], all these densities have majorants of the form $Ke^{-\lambda|x|^2}$, and their partial derivatives of order $\leq q$ have majorants of the form $K_q e^{-\lambda|x|^2}$ for $n \geq n_q$. Thus,

$$\hat{\mu}_{n,\sigma}(y) = \sum_{l_1,l_2} \iint_{[0,1]^k} \int_{\mathbb{C}^J} e^{i \sum_j (L_k(\sigma,\theta;\chi_j)e^{x_j}) \cdot y + x_{l_1} + \bar{x}_{l_2}} \mathfrak{G}_{n,\sigma;l_1,l_2}(x,\theta) \, dx \, d\theta,$$

where

$$\mathfrak{G}_{n,\sigma;l_1,l_2}(x,\theta) = L'_k(\sigma,\theta;\chi_{l_1})\overline{L'_k(\sigma,\theta;\chi_{l_2})}G_{n,\sigma}(x) + L'_k(\sigma,\theta;\chi_{l_1})\overline{L_k(\sigma,\theta;\chi_{l_2})}G_{n,\sigma;l_2}(x) + L_k(\sigma,\theta;\chi_{l_1})\overline{L_k(\sigma,\theta;\chi_{l_2})}G_{n,\sigma;l_1,l_2}(x).$$

We only consider the first term $L'_k(\sigma,\theta;\chi_{l_1})L'_k(\sigma,\theta;\chi_{l_2})G_{n,\sigma}(x)$, since the

others can be treated similarly. If $\theta \notin A_{j,\sigma}(\delta)$ for K-many j, we will prove

(2.1)
$$\int_{\mathbb{C}^J} e^{i \sum_j (L_k(\sigma,\theta;\chi_j)e^{x_j}) \cdot y + x_{l_1} + \bar{x}_{l_2}} G_{n,\sigma}(x) \, dx = O(|\delta y|^{-K}).$$

For the other θ , we give a trivial upper bound by the measure of the set of those θ :

$$\hat{\mu}_{n,\sigma}(y) \ll \Big| \bigcap_{r_1 < \cdots < r_K \le J} (A_{r_1,\sigma}(\delta) \cup \cdots \cup A_{r_K,\sigma}(\delta)) \Big| + |\delta y|^{-K},$$

where the corresponding constant does not depend on n as $y \to \infty$.

So, it is enough to prove (2.1). We decompose

$$\int_{\mathbb{C}^J} e^{i\sum_j (L_k(\sigma,\theta;\chi_j)e^{x_j})\cdot y + x_{l_1} + \bar{x}_{l_2}} G_{n,\sigma}(x) dx$$
$$= \sum_{m \in \mathbb{Z}^J} \int_{(\mathbb{R} \times [0,2\pi])^J} e^{i\sum_j e^{x_j} \cdot (\overline{L_k(\sigma,\theta;\chi_j)}y) + x_{l_1} + \bar{x}_{l_2}} G_{n,\sigma}(x + 2\pi mi) dx.$$

Changing variables $e^{x_j} = r_j e^{z_j}$ with Jacobian r_j^{-1} shows that the above equals

$$\sum_{m \in \mathbb{Z}^J} \int_{[0,2\pi]^J} \int_{(0,\infty)^J} e^{i\sum_j r_j e^{z_j} \cdot (\overline{L_k(\sigma,\theta;\chi_j)}y) + z_{l_1} - z_{l_2}} r_{l_1} r_{l_2}$$
$$\times \prod_j r_j^{-1} G_{n,\sigma}(\log r + i(z+2\pi m)) \, dr \, dz,$$

where $r = (r_1, \ldots, r_J)$, $z = (z_1, \ldots, z_J)$, and $\log r = (\log r_1, \ldots, \log r_J)$. Consider the integral

$$\int_{0}^{2\pi} \int_{0}^{\infty} e^{ir_j e^{z_j} \cdot (\overline{L_k(\sigma,\theta;\chi_j)}y) + z_{l_1} - z_{l_2}} r_{l_1} r_{l_2} r_j^{-1} G_{n,\sigma}(\log r + i(z + 2\pi m)) dr_j dz_j$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{ir_j |L_k(\sigma,\theta;\chi_j)y| \cos(z_j - \alpha_j) + z_{l_1} - z_{l_2}} r_{l_1} r_{l_2} r_j^{-1} G_{n,\sigma}(\log r + i(z + 2\pi m)) dr_j dz_j$$

for some α_j . For $\theta \notin A_{j,\sigma}(\delta)$, we integrate by parts with respect to z_j for $|\cos(z_j - \alpha_j)| < 1/2$, and with respect to r_j for $|\cos(z_j - \alpha_j)| > 1/2$. With the uniform upper bound $K_q e^{-\lambda |x|^2}$ of partial derivatives of G of order $\leq q$, we obtain (2.1).

LEMMA 2.6. $\hat{\mu}_{n,\sigma}(y)$ converges uniformly for every disc $|y| \leq a$ and $1/2 < \sigma_1 \leq \sigma \leq \sigma_2$.

Proof. By definition, we have

$$\hat{\mu}_{n+1,\sigma}(y) = \int_{[0,1]^n} \int_0^1 e^{iE_{n+1,\sigma}(\Theta, u) \cdot y} \left| \frac{\partial}{\partial \sigma} E_{n+1,\sigma}(\Theta, u) \right|^2 du \, d\Theta$$

We get

$$\begin{split} \int_{0}^{1} e^{iE_{n+1,\sigma}(\Theta,u)\cdot y} \left| \frac{\partial}{\partial\sigma} E_{n+1,\sigma}(\Theta,u) \right|^{2} du \\ &= \int_{0}^{1} e^{iE_{n+1,\sigma}(\Theta,u)\cdot y} du \left| \frac{\partial}{\partial\sigma} E_{n,\sigma}(\Theta) \right|^{2} + \int_{0}^{1} e^{iE_{n+1,\sigma}(\Theta,u)\cdot y} \\ &\times 2\operatorname{Re} \left[\frac{\partial}{\partial\sigma} \overline{E_{n,\sigma}(\Theta)} e^{2\pi i u} \frac{\partial}{\partial\sigma} \sum_{j=1}^{J} h_{j}(\dots) \prod_{k < j \le n} (\dots)^{-1} \frac{\chi_{j}(p_{n+1})}{p_{n+1}^{\sigma}} \right] du \\ &+ O\left(\frac{F_{n}(\sigma,\Theta)^{2}}{p_{n+1}^{2\sigma}} \right), \end{split}$$

where

$$F_n(\sigma, \Theta) = \sum_{j=1}^J \prod_{k < l \le n} \left| 1 - \frac{\chi_j(p_l)}{p_l^{\sigma}} e^{2\pi i \vartheta_l} \right|^{-1}.$$

As
$$e^{i\omega} = 1 + ix + O(|x|^2)$$
 $(x \in \mathbb{R})$, we have

$$\int_{0}^{1} e^{iE_{n+1,\sigma}(\Theta, u) \cdot y} du$$

$$= \int_{0}^{1} e^{iE_{n,\sigma}(\Theta) \cdot y} (1 + i(E_{n+1,\sigma}(\Theta, u) - E_{n,\sigma}(\Theta)) \cdot y) du + O\left(\frac{F_n(\sigma, \Theta)^2}{p_{n+1}^{2\sigma}}\right)$$

$$= e^{iE_{n,\sigma}(\Theta) \cdot y} + O\left(\frac{F_n(\sigma, \Theta)^2}{p_{n+1}^{2\sigma}}\right).$$

Since $e^{ix} = 1 + O(|x|)$ $(x \in \mathbb{R})$, we have

$$\int_{0}^{1} e^{iE_{n+1,\sigma}(\Theta,u)\cdot y \pm 2\pi i u} du = \int_{0}^{1} e^{iE_{n,\sigma}(\Theta)\cdot y \pm 2\pi i u} du + O\left(\frac{F_n(\sigma,\Theta)}{p_{n+1}^{\sigma}}\right)$$
$$= O\left(\frac{F_n(\sigma,\Theta)}{p_{n+1}^{\sigma}}\right).$$

Combining the above equalities yields

$$\begin{split} \int_{0}^{1} e^{iE_{n+1,\sigma}(\Theta,u)\cdot y} \bigg| \frac{\partial}{\partial\sigma} E_{n+1,\sigma}(\Theta,u) \bigg|^{2} du &= e^{iE_{n,\sigma}(\Theta)\cdot y} \bigg| \frac{\partial}{\partial\sigma} E_{n,\sigma}(\Theta) \bigg|^{2} \\ &+ O\bigg(\frac{F_{n}(\sigma,\Theta)^{2} + F_{n}(\sigma,\Theta)^{3} + F_{n}(\sigma,\Theta)^{4}}{p_{n+1}^{2\sigma}} \log p_{n+1} \bigg). \end{split}$$

Thus, we have

$$\hat{\mu}_{n+1,\sigma}(y) - \hat{\mu}_{n,\sigma}(y) = O(p_{n+1}^{-2\sigma} \log p_{n+1})$$

and

$$\hat{\mu}_{m,\sigma}(y) - \hat{\mu}_{n,\sigma}(y) = O(p_n^{1-2\sigma_1})$$

for m > n > k. Hence, Lemma 2.6 follows.

3. Main results. We consider separately the cases J = 2 and $J \ge 3$. For J = 2, our function is the sum of two spoiled Euler products $f_1(s) + f_2(s)$. We then apply the theory of value distribution for $f_1(s)$ and $\frac{f_2}{f_1}(s)$.

PROPOSITION 3.1. Let J = 2 and $1/2 < \sigma_1 < \sigma_2$. Suppose that $h_j(p_1^{-\sigma}e^{2\pi i\theta_1},\ldots,p_k^{-\sigma}e^{2\pi i\theta_k}) \neq 0$ for $j = 1, 2, \sigma_1 \leq \sigma \leq \sigma_2$, and $\theta \in [0,1]^k$. Then

$$N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(-1) \, d\sigma + o(T),$$

where $H_{\sigma}(x)$ is the density of some distribution function μ_{σ} . Moreover, $H_{\sigma}(x) > 0$ for $1/2 < \sigma \leq 1$.

Proof. By Lemma 2.4, $\varphi_{E_n}(\sigma)$ converges uniformly to $\varphi_E(\sigma)$ on $[1/2, \infty)$. If $\varphi_E(\sigma)$ is twice differentiable, then

$$N_E(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} \int_{\sigma_1}^{\sigma_2} \varphi_E''(\sigma) \, d\sigma + o(T).$$

By direct calculation,

$$\varphi_{E_n}(\sigma) = \varphi_{h_2}(\sigma) + \varphi_{\tilde{L}_n+1}(\sigma),$$

where

$$\widetilde{L}_n(s) = \frac{h_1}{h_2}(p_1^{-s}, \dots, p_k^{-s}) \prod_{p_k$$

By Lemma 2.1, we have $\varphi_{h_2}''(\sigma) = 0$ for $\sigma_1 \leq \sigma \leq \sigma_2$. For \tilde{L}_n , the method in Chapter II of [3] works. Define

$$\tilde{L}_{n,\sigma}(\Theta) = \frac{h_1}{h_2} (p_1^{-\sigma} e^{2\pi i \theta_1}, \dots, p_k^{-\sigma} e^{2\pi i \theta_k}) \prod_{k < l \le n} \frac{1 - \chi_2(p_l) e^{2\pi i \theta_l} / p_l^{\sigma}}{1 - \chi_1(p_l) e^{2\pi i \theta_l} / p_l^{\sigma}},$$
$$\mu_{n,\sigma}(B) = \int_{\tilde{L}_{n,\sigma}^{-1}(B)} \left| \frac{\partial}{\partial \sigma} \tilde{L}_{n,\sigma}(\Theta) \right|^2 d\Theta$$

for any Borel set $B \subset \mathbb{C}$ and n > k, $\Theta = (\theta_1, \ldots, \theta_k, \vartheta_{k+1}, \ldots, \vartheta_n) \in [0, 1]^n$. Applying Theorems 5–10 in [3] with some modifications, we deduce that the absolutely continuous distributions $\mu_{n,\sigma}$ converge to a distribution μ_{σ} with a density $H_{\sigma}(x)$ and $\varphi''_{\tilde{L}_n+1}(\sigma) = 2\pi H_{\sigma}(-1) > 0$ for $1/2 < \sigma \leq 1$.

For the case $J \ge 3$, we cannot do the same thing as for J = 2. However, by the method of [11], we obtain the following.

PROPOSITION 3.2. Let $J \geq 3$ and $1/2 < \sigma_1 < \sigma_2$. Suppose that $h_j(p_1^{-\sigma}e^{2\pi i\theta_1},\ldots,p_k^{-\sigma}e^{2\pi i\theta_k}) \neq 0$ for $j = l_1, l_2, l_3, \sigma_1 \leq \sigma \leq \sigma_2$, and $\theta \in [0,1]^k$. Then

$$N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma + o(T),$$

where $H_{\sigma}(x)$ is the density of some distribution function μ_{σ} .

Proof. By Lemma 2.4, $\varphi_{E_n}(\sigma)$ converges uniformly to $\varphi_E(\sigma)$ on $[1/2, \infty)$. If $\varphi_E(\sigma)$ is twice differentiable, then

$$N_E(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} \int_{\sigma_1}^{\sigma_2} \varphi_E''(\sigma) \, d\sigma + o(T).$$

By Lemma 2.5 with

$$\delta = \min\{ |\tilde{h}_j(p_1^{-\sigma} e^{2\pi i \theta_1}, \dots, p_k^{-\sigma} e^{2\pi i \theta_k})| \mid j = l_1, l_2, l_3, \\ \sigma_1 \le \sigma \le \sigma_2, \theta \in [0, 1]^k \} > 0,$$

we have $\hat{\mu}_{n,\sigma}(y) \ll |y|^{-3}$ and this implies that $\mu_{n,\sigma}$ is absolutely continuous and its density $H_{n,\sigma}(x)$ is continuous. Let $\nu_{n,\sigma}$ be the asymptotic distribution of $E_n(\sigma + it)$ with respect to $|E'_n(\sigma + it)|^2$. Since $\hat{\mu}_{n,\sigma}(y) = \hat{\nu}_{n,\sigma}(y)$ by Kronecker's theorem, $\mu_{n,\sigma} = \nu_{n,\sigma}$ and $H_{n,\sigma}$ is their common density. By Lemma 2.3, $\varphi''_{E_n-x}(\sigma) = 2\pi H_{n,\sigma}(x)$. By Lemma 2.6, $H_{n,\sigma}(x)$ converges to $H_{\sigma}(x)$ which is the density of some distribution $\mu_{\sigma} = \lim_{n\to\infty} \mu_{n,\sigma}$. Therefore,

$$N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma + o(T). \blacksquare$$

By Lemma 2.2, each Dirichlet polynomial $h_j(p_1^{-s}, \ldots, p_k^{-s})$ has at most a finite number of linearity intervals of its Jensen function $\varphi_{h_j}(\sigma)$ in $[1/2, \infty)$. Let \mathfrak{I}_j be the union of those intervals. By Lemmas 2.3 and 2.4 and almost periodicity, h_j has no zero in \mathfrak{I}_j . We let $\varsigma_j = \inf \mathfrak{I}_j \ge 1/2$, and ς_E be the third smallest ς_j , more precisely, $\varsigma_E = \varsigma_{l_3}$ when $\varsigma_{l_1} \le \varsigma_{l_2} \le \varsigma_{l_3} \le \cdots$ is the linear order of $\varsigma_1, \ldots, \varsigma_J$. By combining Lemma 2.4 and Proposition 3.2, we obtain the following theorem.

THEOREM 3.3. Let $J \geq 3$ and $\varsigma_E < \sigma_1 < \sigma_2$. Suppose that $\sigma_1, \sigma_2 \in \mathfrak{I}_j$ for at least three j. Then

$$N_E(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} (\varphi'_E(\sigma_2 -) - \varphi'_E(\sigma_1 +)) + o(T).$$

Suppose further that $[\sigma_1, \sigma_2] \subset \mathfrak{I}_j$ for at least three j. Then

$$N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma + o(T),$$

where $H_{\sigma}(x)$ is the density of some distribution μ_{σ} . In this case, for $\sigma_1 < \sigma_0 < \sigma_2$, the number of zeros of E(s) on the line segment $\operatorname{Re} s = \sigma_0$, $0 < \operatorname{Im} s < T$ is o(T).

If each \tilde{h}_j is non-vanishing on $\operatorname{Re} s > 1/2$, the conclusion of Theorem 3.3 holds.

THEOREM 3.4. Let $J \ge 3$ and $1/2 < \sigma_1 < \sigma_2$. Suppose that $h_j \ne 0$ for Re s > 1/2. Then

(3.1)
$$N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_{\sigma}(0) \, d\sigma + o(T),$$

where $H_{\sigma}(x)$ is the density of a distribution μ_{σ} . For $\sigma_0 > 1/2$, the number of zeros of E(s) on the line segment $\operatorname{Re} s = \sigma_0$ and $0 < \operatorname{Im} s < T$ is o(T).

As a consequence, we obtain Theorem 1.1.

We now consider the case when h_j is a one-variable polynomial. Then it has only finitely many solutions, say $\beta_1, \ldots, \beta_m \in \mathbb{C}$. So $\tilde{h}_j(p^{-s}) = 0$ if and only if $p^{-s} = \beta_i$ for some *i*. Thus, each line segment Re $s = -\log |\beta_j|/\log p$, $0 < \operatorname{Im} s < T$ contains cT + O(1) zeros of $\tilde{h}_j(p^{-s})$. So we may not have the equation (3.1) for E(s). However, if we disregard these exceptional points, we obtain the following theorem.

THEOREM 3.5. Let $J \geq 3$ and $1/2 < \sigma_1 < \sigma_2$. Let

$$E(s) = \sum_{j \le J} \tilde{h}_j(p_1^{-s}, \dots, p_k^{-s}) L(s, \chi_j),$$

where each h_i is a polynomial of one variable. Then

$$N_E(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} (\varphi'_E(\sigma_2 -) - \varphi'_E(\sigma_1 +)) + o(T).$$

Suppose $\mathfrak{I} = \bigcup_{l_1 < l_2 < l_3 \leq J} (I_{l_1} \cap I_{l_2} \cap I_{l_3})$ is $(1/2, \infty)$ minus finitely many points. If $[\sigma_1, \sigma_2] \subset \mathfrak{I}$, then

$$N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma + o(T),$$

where $H_{\sigma}(x)$ is the density of some distribution μ_{σ} . For $\sigma_0 \in \mathfrak{I}$, the number of zeros of E(s) on the line segment $\operatorname{Re} s = \sigma_0$, $0 < \operatorname{Im} s < T$ is o(T).

As a consequence, we obtain Theorem 1.2.

Acknowledgments. The research of the first author is supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund, KRF-2008-313-C00009). This work was completed while the second author was a postdoc at POSTECH. He would like to thank the faculty members of POSTECH for their hospitality. Finally, the authors would like to thank the referee for some helpful comments.

References

- [1] A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1954.
- [2] E. Bombieri and D. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J. 80 (1995), 821–862.
- [3] V. Borchsenius and B. Jessen, Mean motions and values of the Riemann zeta function, Acta Math. 80 (1948), 97–166.
- [4] J. B. Conrey and A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J. 72 (1993), 673–693.
- [5] D. Hejhal, On a result of Selberg concerning zeros of linear combinations of Lfunctions, Int. Math. Res. Notices 2000, 551–577.
- [6] —, On the horizontal distribution of zeros of linear combinations of Euler products, C. R. Math. Acad. Sci. Paris 338 (2004), 755–758.
- B. Jessen and H. Tornehave, Mean motions and zeros of almost periodic functions, Acta Math. 77 (1945), 137–279.
- [8] J. Kaczorowski and M. Kulas, On the non-trivial zeros off the critical line for Lfunctions from the extended Selberg class, Monatsh. Math. 150 (2007), 217–232.
- [9] J. Kaczorowski and A. Perelli, On the structure of the Selberg class, I: $0 \le d \le 1$, Acta Math. 182 (1999), 207–241.
- [10] A. A. Karatsuba and S. M. Voronin, *The Riemann Zeta-Function*, de Gruyter, Berlin, 1992.
- [11] Y. Lee, On the zeros of Epstein zeta functions, preprint.
- [12] E. Saias and A. Weingartner, Zeros of Dirichlet series with periodic coefficients, Acta Arith. 140 (2009), 335–344.
- [13] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Collected Papers, Vol. 2, Springer, Berlin, 1991, 47–63.
- [14] S. M. Voronin, The zeros of zeta-functions of quadratic forms, Trudy Mat. Inst. Steklov. 142 (1976), 135–147 (in Russian).

Haseo Ki Department of Mathematics Yonsei University Seoul, 120-749, Korea and Korea Institute for Advanced Study 207-43 Cheongnyangni-dong Dongdaemun-gu Seoul 130-722, Korea E-mail: ki.haseo97@gmail.com haseo@yonsei.ac.kr Yoonbok Lee Department of Mathematics POSTECH Pohang, Gyungbuk 790-784, Korea *Current address:* Korea Institute for Advanced Study 207-43 Cheongnyangni-dong Dongdaemun-gu Seoul 130-722, Korea E-mail: leeyb131@gmail.com leeyb@kias.re.kr

Received on 18.3.2010 and in revised form on 4.10.2010

(6337)