On the zeros of degree one L-functions from the extended Selberg class

by

Haseo Ki (Seoul) and Yoonbok Lee (Pohang and Seoul)

1. Introduction. In [13], Selberg introduced the class \mathcal{S} consisting of the functions $F(s)$ satisfying the following conditions.
(1) (Dirichlet series) For $\sigma>1, F(s)$ is an absolutely convergent Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \quad(s=\sigma+i t)
$$

(2) (Analytic continuation) For some integer $m \geq 0,(s-1)^{m} F(s)$ is an entire function of finite order.
(3) (Functional equation) $F(s)$ satisfies a functional equation of the form

$$
\Phi(s)=\omega \bar{\Phi}(1-s)
$$

where

$$
\Phi(s)=Q^{s} \prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right) F(s)
$$

with $\bar{\Phi}(s)=\overline{\Phi(\bar{s})}, Q>0, \lambda_{j}>0, \operatorname{Re} \mu_{j} \geq 0$ and $|\omega|=1$.
(4) (Ramanujan hypothesis) For every $\epsilon>0, a(n) \ll n^{\epsilon}$.
(5) (Euler product) For σ sufficiently large,

$$
\log F(s)=\sum_{n=1}^{\infty} \frac{b(n)}{n^{s}} \quad(s=\sigma+i t)
$$

where $b(n)=0$ unless n is a positive power of a prime, and $b(n) \ll n^{\theta}$ for some $\theta<1 / 2$.

[^0]For a function $F(s)$ in the Selberg class \mathcal{S}, we define $d=2 \sum_{j} \lambda_{j}$ to be the degree of F. We denote by \mathcal{S}_{d} the subclass of functions of degree d in \mathcal{S}. We note that the structure of \mathcal{S}_{d} has been completely determined for $0 \leq d \leq 1$. From the work of Conrey and Ghosh [4, we have $\mathcal{S}_{0}=\{1\}$ and $\mathcal{S}_{d}=\emptyset$ for $0<d<1$. For $d=1$, by Kaczorowski and Perelli 9 , the functions $F \in \mathcal{S}_{1}$ are of the forms $F(s)=\zeta(s)$ or $F(s)=L(s+i \theta, \chi)$ with a primitive Dirichlet character χ and $\theta \in \mathbb{R}$. On the other hand, we denote by $\mathcal{S}^{\#}$ the extended Selberg class of functions satisfying conditions (1)-(3), and we define $\mathcal{S}_{d}^{\#}$ similarly to \mathcal{S}_{d}. Theorems 1 and 2 in [9] describe the structure of $\mathcal{S}_{d}^{\#}$ for $0 \leq d \leq 1$.

If $d=0$, the functional equation is $Q^{s} F(s)=\omega Q^{1-s} \bar{F}(1-s)$. The proof of [9, Theorem 1] shows that the Dirichlet series $F(s)=\sum_{n} a(n) / n^{s} \in \mathcal{S}_{0}^{\#}$ is absolutely convergent in the whole complex plane. Thus, we have

$$
\sum_{n=1}^{\infty} a(n)\left(\frac{Q^{2}}{n}\right)^{s}=\omega Q \sum_{n=1}^{\infty} \frac{\overline{a(n)}}{n} n^{s}
$$

We let $q=Q^{2}$; then $a(n)=0$ for $n \nmid q$. For $n \mid q$, we have

$$
\begin{equation*}
a(n)=\frac{\omega n}{\sqrt{q}} \overline{a\left(\frac{q}{n}\right)} . \tag{1.1}
\end{equation*}
$$

Theorem A (Theorem 1 of (9)).
(1) If $0<d<1$, then $\mathcal{S}_{d}^{\#}=\emptyset$. If $F \in \mathcal{S}_{0}^{\#}$, then $q \in \mathbb{N}$, the pair (q, ω) is an invariant of $F(s)$ and $\mathcal{S}_{0}^{\#}$ is the disjoint union of the subclasses $\mathcal{S}_{0}^{\#}(q, \omega)$ with $q \in \mathbb{N}$ and $|\omega|=1$.
(2) Every $F \in \mathcal{S}_{0}^{\#}(q, \omega)$ with q and ω as above is a Dirichlet polynomial of the form

$$
F(s)=\sum_{n \mid q} \frac{a(n)}{n^{s}}
$$

For $d=1$, we use the notation

$$
\begin{gathered}
\beta=\prod_{j=1}^{r} \lambda_{j}^{-2 \lambda_{j}}, \quad \xi=2 \sum_{j=1}^{r}\left(\mu_{j}-1 / 2\right)=\eta+i \theta, \quad q=\frac{2 \pi Q^{2}}{\beta} \\
\omega^{*}=\omega e^{-i \pi(\eta+1) / 2}\left(\frac{Q^{2}}{\beta}\right)^{i \theta} \prod_{j=1}^{r} \lambda_{j}^{-2 i \operatorname{Im} \mu_{j}}
\end{gathered}
$$

If χ is a Dirichlet character modulo q, we denote by f_{χ} its conductor, and by χ^{*} the primitive character inducing χ. We denote by $\omega_{\chi^{*}}$ and $Q_{\chi^{*}}$ the ω-factor and the Q-factor in the standard functional equation for $L\left(s, \chi^{*}\right)$, i.e., $\omega_{\chi^{*}}=\tau\left(\chi^{*}\right) / i^{\mathfrak{a}} \sqrt{f_{\chi}}$, where $\tau\left(\chi^{*}\right)$ is the Gauss sum, $\mathfrak{a}=0$ if $\chi(-1)=1$
and $\mathfrak{a}=1$ if $\chi(-1)=-1$, and $Q_{\chi^{*}}=\sqrt{f_{\chi} / \pi}$. Moreover, we write

$$
\mathfrak{X}(q, \xi)= \begin{cases}\{\chi \bmod q \mid \chi(-1)=1\} & \text { if } \eta=-1 \\ \{\chi \bmod q \mid \chi(-1)=-1\} & \text { if } \eta=0 .\end{cases}
$$

χ_{0} denotes the principal character modulo q.
Theorem B (Theorem 2 of [9]).
(1) If $F \in \mathcal{S}_{1}^{\#}$, then $q \in \mathbb{N}$ and $\eta \in\{-1,0\}$. The triple $\left(q, \xi, \omega^{*}\right)$ is an invariant of $F(s)$, and $\mathcal{S}_{1}^{\#}$ is the disjoint union of the subclasses $\mathcal{S}_{1}^{\#}\left(q, \xi, \omega^{*}\right)$ with $q \in \mathbb{N}, \eta \in\{-1,0\}, \theta \in \mathbb{R}$ and $\left|\omega^{*}\right|=1$. Moreover, $a(n) n^{i \theta}$ is periodic with period q.
(2) Every $F \in \mathcal{S}_{1}^{\#}\left(q, \xi, \omega^{*}\right)$ with q, ξ and ω^{*} as above can be uniquely written as

$$
F(s)=\sum_{\chi \in \mathfrak{X}(q, \xi)} P_{\chi}(s+i \theta) L\left(s+i \theta, \chi^{*}\right)
$$

where $P_{\chi} \in \mathcal{S}_{0}^{\#}\left(q / f_{\chi}, \omega^{*} \bar{\omega}_{\chi^{*}}\right)$. Moreover, $P_{\chi_{0}}(1)=0$ if $\theta \neq 0$.
Bombieri and Hejhal [2] studied the distribution of zeros of the linear combinations $F(s)=\sum_{j=1}^{J} b_{j} e^{i \alpha_{j}} L_{j}(s)$ of various L-functions with the same gamma factor. Assuming an orthonormality condition on $a_{j}(p)$ (where $a_{j}(n)$ are the coefficients of $\left.L_{j}(s)\right)$, the generalized Riemann hypothesis for $L_{j}(s)$ and a weak condition on the spacing of zeros of $L_{j}(s)$, they proved that almost all zeros of $F(s)$ are simple and on the critical line $\operatorname{Re} s=1 / 2$. Hejhal [6] studied the behavior of zeros of $F(s)$ near the critical line and announced that the true order of the number of zeros of $F(s)$ in $\operatorname{Re} s \geq \sigma$, $T \leq \operatorname{Im} s \leq T+H$ is

$$
\frac{H}{(\sigma-1 / 2) \sqrt{\log \log T}}
$$

for $1 / 2+(\log \log T)^{\kappa} / \log T \leq \sigma \leq 1 / 2+(\log T)^{-\delta}, c_{1} T^{w} \leq H \leq c_{2} T, \kappa>2$ with possibly few exceptional $\left\{b_{j}\right\}_{j=1}^{J}$. Note that this result for the special case $J=2$ was also justified by the same author in [5].

Recently, the second author [11] investigated the off-line zeros of the Epstein zeta function $E(s, Q)$ associated to the quadratic form $Q(x, y)=$ $a x^{2}+b x y+c y^{2}, a>0, b^{2}-4 a c<0, a, b, c \in \mathbb{Z}$. It is a classical example that belongs to the class $\mathcal{S}_{2}^{\#}$. We find the number of zeros $N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)$ in the rectangular region $\sigma_{1}<\operatorname{Re} s<\sigma_{2}, 0<\operatorname{Im} s<T$ to be $c\left(\sigma_{1}, \sigma_{2}\right) T+o(T)$ for $1 / 2<\sigma_{1}<\sigma_{2}$, which improves Voronin's result $N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right) \gg T$ for $1 / 2<\sigma_{1}<\sigma_{2}<1$ (see [14] or Chapter 7 of [10]) based on the joint distribution for Hecke L-functions. We observe that one can apply our method to degree one objects.

For $F \in \mathcal{S}^{\#}$, Kaczorowski and Kulas [8] defined the density property to be $N_{F}(\sigma, T)=o(T)$ for every fixed $1 / 2<\sigma<1$. This property classifies the elements in $\mathcal{S}_{1}^{\#}$. If $F \in \mathcal{S}_{1}^{\#}$ has the density property, then $F(s+i \theta)=$ $P(s) L(s, \chi)$ for certain real θ, a Dirichlet polynomial $P \in \mathcal{S}_{0}^{\#}$ and a primitive Dirichlet character χ. Otherwise, $F(s+i \theta)=\sum_{j \leq J} P_{j}(s) L\left(s, \chi_{j}\right)$ for $J \geq 2, \theta \in \mathbb{R}$, Dirichlet polynomials $P_{j} \in \mathcal{S}_{0}^{\#}$ and primitive inequivalent Dirichlet characters χ_{j}. For $F \in \mathcal{S}_{1}^{\#}$ violating the density property, they obtain $N_{F}\left(\sigma_{1}, \sigma_{2} ; 0, T\right) \gg T$ for $1 / 2<\sigma_{1}<\sigma_{2}<1$. Saias and Weingartner [12] extend their method to the strip $1<\operatorname{Re} s<1+\eta$ for some small $\eta>0$ and achieve $N_{F}\left(\sigma_{1}, \sigma_{2} ; 0, T\right) \gg T$ for $1 / 2<\sigma_{1}<\sigma_{2}<1+\eta$. Our main purpose is to improve these results by obtaining an asymptotic formula for $N_{F}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)$.

By Theorems A and B, we can write the function $E(s+i \theta) \in \mathcal{S}_{1}^{\#}$ as

$$
\begin{equation*}
E(s)=\sum_{j=1}^{J} h_{j}\left(p_{1}^{-s}, \ldots, p_{k}^{-s}\right) \prod_{p>p_{k}}\left(1-\frac{\chi_{j}(p)}{p^{s}}\right)^{-1} \tag{1.2}
\end{equation*}
$$

for some integer $k>0$, where

$$
h_{j}\left(x_{1}, \ldots, x_{k}\right)=\tilde{h}_{j}\left(x_{1}, \ldots, x_{k}\right) \prod_{l \leq k}\left(1-\chi_{j}\left(p_{l}\right) x_{l}\right)^{-1}
$$

and \tilde{h}_{j} is a polynomial of k variables. Let

$$
E_{n}(s)=\sum_{j=1}^{J} h_{j}\left(p_{1}^{-s}, \ldots, p_{k}^{-s}\right) \prod_{p_{k}<p \leq p_{n}}\left(1-\frac{\chi_{j}(p)}{p^{s}}\right)^{-1}
$$

for $n>k$. Then, $E_{n}(s)$ converges in the mean with index 2 towards $E(s)$ in $[1 / 2, \infty]$ by Parseval's identity for almost periodic functions, i.e.,

$$
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{1}^{T} \int_{\alpha}^{\beta}\left|E(\sigma+i t)-E_{n}(\sigma+i t)\right|^{2} d \sigma d t \rightarrow 0
$$

as $n \rightarrow \infty$ for any $1 / 2<\alpha<\beta$ (for the method of proof, see Proposition 2.3 of [11]). Applying Lemma 2.3 to $E_{n}(s)$, we get an asymptotic formula for $N_{E_{n}}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)$. The theory of mean motions partially preserves this property through the convergence in the mean with index $p>0$ via Lemma 2.4.

If $J=1$, then we encounter the Riemann hypothesis. Our method does not work in this case, since we are using the Euler product $\log \zeta(s)=$ $\sum_{p} \sum_{m=1}^{\infty} \frac{1}{m p^{m s}}$ and this cannot give any information about $\zeta(s)=0$. Concerning this matter, see Borchsenius and Jessen [3]. From now on, we only consider the case $J>1$.

We consider $\mathcal{S}_{1}^{\#}\left(p, \xi, \omega^{*}\right)$ for p prime or 1 . By 1.1 and Theorem B, we have

$$
\tilde{h}_{j}=a_{j}(1) \text { or } a_{j}(1)+\frac{\omega \overline{a_{j}(1)}}{p^{s-1 / 2}}
$$

and as a result $\tilde{h}_{j} \neq 0$ for $\operatorname{Re} s>1 / 2$. In this case, the method in [11] works, and we have the following theorem.

Theorem 1.1. Let $E(s+i \theta) \in \mathcal{S}_{1}^{\#}\left(p, \xi, \omega^{*}\right)$ for p prime or $p=1$, and $|\omega|=1$, and let $1 / 2<\sigma_{1}<\sigma_{2}$. Suppose $J>1$ in 1.2 . Then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=c\left(\sigma_{1}, \sigma_{2}\right) T+o(T)
$$

as $T \rightarrow \infty$. The constant $c\left(\sigma_{1}, \sigma_{2}\right)$ can be represented as an integral $\int_{\sigma_{1}}^{\sigma_{2}} H_{\sigma}(0) d \sigma$ for the density function $H_{\sigma}(x)$ of some distribution μ_{σ}, and $c\left(\sigma_{1}, \sigma_{2}\right)>0$ if $1 / 2<\sigma_{1} \leq 1$. In particular, for $\sigma_{0}>1 / 2$, the number of zeros on the line segment $\operatorname{Re} s=\sigma_{0}, 0<\operatorname{Im} s<T$ is $o(T)$.

When q is a prime power, the \tilde{h}_{j} are polynomials of the same single variable by Theorems $A(2)$ and $B(2)$. If these polynomials have the same factor with $c T+o(T)$ zeros on the line segment $\operatorname{Re} s=\sigma_{0}, 0<\operatorname{Im} s<T$ for some $1 / 2<\sigma_{0}<1$, then we cannot expect the integral form of the constant $c\left(\sigma_{1}, \sigma_{2}\right)$ in general. Indeed, we may take $\tilde{h}_{j}\left(p^{-s}\right)=1+2 p^{3 / 4-s}+p^{1-2 s}$ by letting $\omega=a(1)=1$, and $a(p)=2 p^{-3 / 4}$. Then the function $s \mapsto \tilde{h}_{j}\left(p^{-s}\right)$ has $\frac{\log p}{2 \pi} T+O(1)$ zeros on $\operatorname{Re} s=\log \left(p^{3 / 4}+\sqrt{p^{3 / 2}-p}\right) / \log p, 0<\operatorname{Im} s<T$. We still have the following.

Theorem 1.2. Let $E(s+i \theta) \in \mathcal{S}_{1}^{\#}\left(q, \xi, \omega^{*}\right)$ for q a prime power, and let $1 / 2<\sigma_{1}<\sigma_{2}$. Suppose $J>1$ in 1.2). Then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=c\left(\sigma_{1}, \sigma_{2}\right) T+o(T)
$$

as $T \rightarrow \infty$, and $c\left(\sigma_{1}, \sigma_{2}\right)>0$ if $1 / 2<\sigma_{1} \leq 1$. Suppose that the closed interval $\left[\sigma_{1}, \sigma_{2}\right]$ does not contain the real part of exceptional points satisfying $h_{j}=0$. Then the constant $c\left(\sigma_{1}, \sigma_{2}\right)$ can be represented as an integral $\int_{\sigma_{1}}^{\sigma_{2}} H_{\sigma}(0) d \sigma$ for the density function $H_{\sigma}(x)$ of some distribution μ_{σ}. In this case for $\sigma_{0} \in\left[\sigma_{1}, \sigma_{2}\right]$, the number of zeros on the line segment $\operatorname{Re} s=\sigma_{0}$, $0<\operatorname{Im} s<T$ is $o(T)$.

For general q, we could also prove a similar theorem, although it is not easy to classify the common zeros of \tilde{h}_{j} with multiple variables. We will discuss and prove a general theorem in Section 3.
2. Lemmas. We begin with the work of Jessen and Tornehave [7] that concerns zeros of a Dirichlet series in the region of its absolute convergence. For the basic theory of almost periodic functions, we refer to [1].

Lemma 2.1 (Theorem 8 of [7]). A function $f(s)$ almost periodic in $[\alpha, \beta]$ and not identically zero has no zeros in the substrip $(\alpha \leq) \alpha_{0}<\sigma, \beta_{0}(\leq \beta)$, if and only if its Jensen function

$$
\varphi(\sigma)=\lim _{T_{2}-T_{1} \rightarrow \infty} \frac{1}{T_{2}-T_{1}} \int_{T_{1}}^{T_{2}} \log |f(\sigma+i t)| d t
$$

is linear in the interval $\left(\alpha_{0}, \beta_{0}\right)$.
Lemma 2.2 (Theorem 31 of [7]). For an ordinary Dirichlet series

$$
f(s)=\sum_{n=n_{0}}^{\infty} \frac{a_{n}}{n^{s}}, \quad a_{n_{0}} \neq 0
$$

with the uniform convergence abscissa α, the Jensen function $\varphi(\sigma)$ has on every half-line $\sigma>\alpha_{1}(>\alpha)$ only a finite number of linearity intervals and a finite number of points of non-differentiability. The values of $\varphi^{\prime}(\sigma)$ in the linearity intervals belong to the set of numbers $-\log n, n \geq n_{0}$. For $\sigma>($ some $) \sigma_{0}$, we have

$$
\varphi(\sigma)=-\left(\log n_{0}\right) \sigma+\log \left|a_{n_{0}}\right|
$$

For an arbitrary strip $\left(\sigma_{1}, \sigma_{2}\right)$, where $\alpha<\sigma_{1}<\sigma_{2}<\infty$, the relative frequency $H\left(\sigma_{1}, \sigma_{2}\right)$ of zeros exists and is determined by

$$
H\left(\sigma_{1}, \sigma_{2}\right)=\frac{1}{2 \pi}\left(\varphi^{\prime}\left(\sigma_{2}-\right)-\varphi^{\prime}\left(\sigma_{1}+\right)\right)
$$

The following lemma guarantees the existence of the second derivative of Jensen functions for almost periodic functions and gives another representation by a certain distribution. The proof can be found in $\S 9$ of [3].

LEMMA 2.3 (Proposition 2.1 of [11]). Let $f(s)$ be almost periodic in the strip $[\alpha, \beta]$ and not identically zero. Let ν_{σ} be the asymptotic distribution function of $f(\sigma+i t)$ with respect to $\left|f^{\prime}(\sigma+i t)\right|^{2}$. Suppose ν_{σ} is absolutely continuous for every σ and its density $G_{\sigma}(x)$ is a continuous function of x and σ. Then the Jensen function $\varphi_{f-x}(\sigma)$ is twice differentiable with $\varphi_{f-x}^{\prime \prime}(\sigma)=2 \pi G_{\sigma}(x)$.

The next lemma is an extension of Lemma 2.3 which is applicable inside the critical strip and which plays the main role in this method.

Lemma 2.4 (Theorem 1 of [3]). Let $-\infty \leq \alpha<\alpha_{0}<\beta_{0}<\beta \leq \infty$ and let $f_{1}(s), f_{2}(s), \ldots$ be a sequence of functions almost periodic in $[\alpha, \beta]$ converging uniformly in $\left[\alpha_{0}, \beta_{0}\right]$ towards a function $f(s)$. Suppose that none of the functions is identically zero and $f(s)$ may be continued as a regular function in the half-strip $\alpha<\sigma<\beta, t>\gamma_{0}$, and that $f_{n}(s)$ converges in
mean with an index $p>0$ towards $f(s)$ in $[\alpha, \beta]$. Then the Jensen function

$$
\varphi_{f}(\sigma)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{\gamma}^{T} \log |f(\sigma+i t)| d t
$$

exists uniformly in $[\alpha, \beta]$ for some $\gamma>\gamma_{0}$, and $\varphi_{f_{n}}(\sigma)$ converges uniformly in $[\alpha, \beta]$ towards $\varphi_{f}(\sigma)$ as $n \rightarrow \infty$. The function $\varphi_{f}(\sigma)$ is convex in (α, β), and for every strip $\left(\sigma_{1}, \sigma_{2}\right)$ where $\alpha<\sigma_{1}<\sigma_{2}<\beta$, the two relative frequencies of zeros defined by

$$
\begin{aligned}
& \underline{H}_{f}\left(\sigma_{1}, \sigma_{2}\right)=\liminf _{T \rightarrow \infty} \frac{1}{T} N_{f}\left(\sigma_{1}, \sigma_{2} ; \gamma, T\right) \\
& \bar{H}_{f}\left(\sigma_{1}, \sigma_{2}\right)=\limsup _{T \rightarrow \infty} \frac{1}{T} N_{f}\left(\sigma_{1}, \sigma_{2} ; \gamma, T\right),
\end{aligned}
$$

satisfy the inequalities

$$
\begin{aligned}
\frac{1}{2 \pi}\left(\varphi_{f}^{\prime}\left(\sigma_{2}-\right)-\varphi_{f}^{\prime}\left(\sigma_{1}+\right)\right) \leq \underline{H}_{f}\left(\sigma_{1}, \sigma_{2}\right) & \leq \bar{H}_{f}\left(\sigma_{1}, \sigma_{2}\right) \\
& \leq \frac{1}{2 \pi}\left(\varphi_{f}^{\prime}\left(\sigma_{2}+\right)-\varphi_{f}^{\prime}\left(\sigma_{1}-\right)\right)
\end{aligned}
$$

Suppose further that $\varphi_{f}(\sigma)$ is twice differentiable. Then

$$
N_{f}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=\frac{T}{2 \pi} \int_{\sigma_{1}}^{\sigma_{2}} \varphi_{f}^{\prime \prime}(\sigma) d \sigma+o(T)
$$

for $\alpha<\sigma_{1}<\sigma_{2}<\beta$ as $T \rightarrow \infty$.
Together with the above lemmas, we investigate the Fourier transforms of certain distributions. We need two more lemmas, in which we use the following notation:

$$
\begin{aligned}
\mathfrak{L}_{n}\left(\sigma, \Theta ; \chi_{j}\right) & =L_{k}\left(\sigma, \theta ; \chi_{j}\right) L_{k, n}\left(\sigma, \vartheta ; \chi_{j}\right) \\
L_{k}\left(\sigma, \theta ; \chi_{j}\right) & =h_{j}\left(p_{1}^{-\sigma} e^{2 \pi i \theta_{1}}, \ldots, p_{k}^{-\sigma} e^{2 \pi i \theta_{k}}\right) \\
L_{k, n}\left(\sigma, \vartheta ; \chi_{j}\right) & =\prod_{k<l \leq n}\left(1-\frac{\chi_{j}\left(p_{l}\right) e^{2 \pi i \vartheta_{l}}}{p_{l}^{\sigma}}\right)^{-1} \\
M_{n, \sigma}(\vartheta) & =\left(\log L_{k, n}\left(\sigma, \vartheta ; \chi_{1}\right), \ldots, \log L_{k, n}\left(\sigma, \vartheta ; \chi_{J}\right)\right) \\
E_{n, \sigma}(\Theta) & =\sum_{j=1}^{J} \mathfrak{L}_{n}\left(\sigma, \Theta ; \chi_{j}\right)
\end{aligned}
$$

for $n>k, \Theta=(\theta, \vartheta) \in[0,1]^{n}, \theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \in[0,1]^{k}$ and $\vartheta=\left(\vartheta_{k+1}, \ldots, \vartheta_{n}\right)$ $\in[0,1]^{n-k}$. Let $\mu_{n, \sigma}$ be the distribution function of $E_{n, \sigma}$ with respect to $\left|\frac{\partial}{\partial \sigma} E_{n, \sigma}\right|^{2}$. Its Fourier transform is

$$
\hat{\mu}_{n, \sigma}(y)=\int_{[0,1]^{n}} e^{i \sum_{j} \mathfrak{L}_{n}\left(\sigma, \Theta ; \chi_{j}\right) \cdot y}\left|\sum_{j} \mathfrak{L}_{n}^{\prime}\left(\sigma, \Theta ; \chi_{j}\right)\right|^{2} d \Theta
$$

Lemma 2.5. For $\sigma>1 / 2, \delta>0$ and $j \leq J$, define

$$
A_{j, \sigma}(\delta)=\left\{\theta \in[0,1]^{k}:\left|\tilde{h}_{j}\left(p_{1}^{-\sigma} e^{2 \pi i \theta_{1}}, \ldots, p_{k}^{-\sigma} e^{2 \pi i \theta_{k}}\right)\right|<\delta\right\}
$$

Then for any integer $K \leq J$ we have

$$
\hat{\mu}_{n, \sigma}(y) \ll\left|\bigcap_{r_{1}<\cdots<r_{K} \leq J}\left(A_{r_{1}, \sigma}(\delta) \cup \cdots \cup A_{r_{K}, \sigma}(\delta)\right)\right|+|\delta y|^{-K}
$$

as $|y| \rightarrow \infty$, where the corresponding constant does not depend on n.
Proof. We write

$$
\hat{\mu}_{n, \sigma}(y)=\sum_{l_{1}, l_{2}} \int_{[0,1]^{n}} e^{i \sum_{j} \mathfrak{L}_{n}\left(\sigma, \Theta ; \chi_{j}\right) \cdot y} \mathfrak{L}_{n}^{\prime}\left(\sigma, \Theta ; \chi_{l_{1}}\right) \overline{\mathfrak{L}_{n}^{\prime}\left(\sigma, \Theta ; \chi_{l_{2}}\right)} d \Theta
$$

Define set functions

$$
\begin{aligned}
\lambda_{n, \sigma ; l_{1}, l_{2}}(B) & =\int_{M_{n, \sigma}^{-1}(B)} \frac{L_{k, n}^{\prime}}{L_{k, n}}\left(\sigma, \vartheta ; \chi_{l_{1}}\right) \frac{\overline{L_{k, n}^{\prime}}}{L_{k, n}}\left(\sigma, \vartheta ; \chi_{l_{2}}\right)
\end{aligned} \vartheta,
$$

for any Borel set $B \subset \mathbb{C}^{J}$. Applying the identity

$$
a \bar{b}=\frac{1}{4} \sum_{m=1}^{4} i^{m}\left|a+i^{m} b\right|^{2}, \quad a, b \in \mathbb{C}
$$

one can prove that $\hat{\mu}_{n, \sigma}(y)$ is a linear combination of at most four absolutely continuous distribution functions. (See [11] for details.) We denote by $G_{n, \sigma ; l_{1}, l_{2}}(x), G_{n, \sigma ; l}(x), G_{n, \sigma}(x)$ the densities of $\lambda_{n, \sigma ; l_{1}, l_{2}}, \lambda_{n, \sigma ; l}, \lambda_{n, \sigma}$, respectively. By Theorem 6 of [3], all these densities have majorants of the form $K e^{-\lambda|x|^{2}}$, and their partial derivatives of order $\leq q$ have majorants of the form $K_{q} e^{-\lambda|x|^{2}}$ for $n \geq n_{q}$. Thus,
where

$$
\begin{aligned}
& \mathfrak{G}_{n, \sigma ; l_{1}, l_{2}}(x, \theta) \\
& = \\
& L_{k}^{\prime}\left(\sigma, \theta ; \chi_{l_{1}}\right) \overline{L_{k}^{\prime}\left(\sigma, \theta ; \chi_{l_{2}}\right)} G_{n, \sigma}(x)+L_{k}^{\prime}\left(\sigma, \theta ; \chi_{l_{1}}\right) \overline{L_{k}\left(\sigma, \theta ; \chi_{l_{2}}\right) G_{n, \sigma ; l_{2}}(x)} \\
& \quad+L_{k}\left(\sigma, \theta ; \chi_{l_{1}}\right) \overline{L_{k}^{\prime}\left(\sigma, \theta ; \chi_{l_{2}}\right)} G_{n, \sigma ; l_{1}}(x)+L_{k}\left(\sigma, \theta ; \chi_{l_{1}}\right) \overline{L_{k}\left(\sigma, \theta ; \chi_{l_{2}}\right)} G_{n, \sigma ; l_{1}, l_{2}}(x)
\end{aligned}
$$

We only consider the first term $L_{k}^{\prime}\left(\sigma, \theta ; \chi_{l_{1}}\right) \overline{L_{k}^{\prime}\left(\sigma, \theta ; \chi_{l_{2}}\right)} G_{n, \sigma}(x)$, since the
others can be treated similarly. If $\theta \notin A_{j, \sigma}(\delta)$ for K-many j, we will prove

$$
\begin{equation*}
\int_{\mathbb{C}^{J}} e^{i \sum_{j}\left(L_{k}\left(\sigma, \theta ; \chi_{j}\right) e^{x_{j}}\right) \cdot y+x_{l_{1}}+\bar{x}_{l_{2}}} G_{n, \sigma}(x) d x=O\left(|\delta y|^{-K}\right) . \tag{2.1}
\end{equation*}
$$

For the other θ, we give a trivial upper bound by the measure of the set of those θ :

$$
\hat{\mu}_{n, \sigma}(y) \ll\left|\bigcap_{r_{1}<\cdots<r_{K} \leq J}\left(A_{r_{1}, \sigma}(\delta) \cup \cdots \cup A_{r_{K}, \sigma}(\delta)\right)\right|+|\delta y|^{-K}
$$

where the corresponding constant does not depend on n as $y \rightarrow \infty$.
So, it is enough to prove (2.1). We decompose

$$
\begin{aligned}
& \int_{\mathbb{C}^{J}} e^{i \sum_{j}\left(L_{k}\left(\sigma, \theta ; \chi_{j}\right) e^{x_{j}}\right) \cdot y+x_{l_{1}}+\bar{x}_{l_{2}}} G_{n, \sigma}(x) d x \\
& \quad=\sum_{m \in \mathbb{Z}^{J}(\mathbb{R} \times[0,2 \pi])^{J}} \int^{i \sum_{j} e^{x_{j}} \cdot\left(\overline{L_{k}\left(\sigma, \theta ; \chi_{j}\right)} y\right)+x_{l_{1}}+\bar{x}_{l_{2}}} G_{n, \sigma}(x+2 \pi m i) d x
\end{aligned}
$$

Changing variables $e^{x_{j}}=r_{j} e^{z_{j}}$ with Jacobian r_{j}^{-1} shows that the above equals

$$
\begin{aligned}
& \sum_{m \in \mathbb{Z}^{J}} \int_{[0,2 \pi]^{J}} \int_{(0, \infty)^{J}} e^{i \sum_{j} r_{j} e^{z} \cdot\left(\overline{L_{k}\left(\sigma, \theta ; \chi_{j}\right)} y\right)+z_{l_{1}}-z_{l_{2}}} r_{l_{1}} r_{l_{2}} \\
& \times \prod_{j} r_{j}^{-1} G_{n, \sigma}(\log r+i(z+2 \pi m)) d r d z
\end{aligned}
$$

where $r=\left(r_{1}, \ldots, r_{J}\right), z=\left(z_{1}, \ldots, z_{J}\right)$, and $\log r=\left(\log r_{1}, \ldots, \log r_{J}\right)$. Consider the integral

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\infty} e^{i r_{j} e^{z_{j}} \cdot\left(\overline{L_{k}\left(\sigma, \theta ; \chi_{j}\right)} y\right)+z_{l_{1}}-z_{l_{2}}} r_{l_{1}} r_{l_{2}} r_{j}^{-1} G_{n, \sigma}(\log r+i(z+2 \pi m)) d r_{j} d z_{j} \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{i r_{j}\left|L_{k}\left(\sigma, \theta ; \chi_{j}\right) y\right| \cos \left(z_{j}-\alpha_{j}\right)+z_{l_{1}}-z_{l_{2}}} r_{l_{1}} r_{l_{2}} r_{j}^{-1} G_{n, \sigma}(\log r+i(z+2 \pi m)) d r_{j} d z_{j}
\end{aligned}
$$

for some α_{j}. For $\theta \notin A_{j, \sigma}(\delta)$, we integrate by parts with respect to z_{j} for $\left|\cos \left(z_{j}-\alpha_{j}\right)\right|<1 / 2$, and with respect to r_{j} for $\left|\cos \left(z_{j}-\alpha_{j}\right)\right|>1 / 2$. With the uniform upper bound $K_{q} e^{-\lambda|x|^{2}}$ of partial derivatives of G of order $\leq q$, we obtain 2.1.

LEMMA 2.6. $\hat{\mu}_{n, \sigma}(y)$ converges uniformly for every disc $|y| \leq a$ and $1 / 2<\sigma_{1} \leq \sigma \leq \sigma_{2}$.

Proof. By definition, we have

$$
\hat{\mu}_{n+1, \sigma}(y)=\int_{[0,1]^{n}} \int_{0}^{1} e^{i E_{n+1, \sigma}(\Theta, u) \cdot y}\left|\frac{\partial}{\partial \sigma} E_{n+1, \sigma}(\Theta, u)\right|^{2} d u d \Theta
$$

We get

$$
\begin{aligned}
& \int_{0}^{1} e^{i E_{n+1, \sigma}(\Theta, u) \cdot y}\left|\frac{\partial}{\partial \sigma} E_{n+1, \sigma}(\Theta, u)\right|^{2} d u \\
& = \\
& \quad \int_{0}^{1} e^{i E_{n+1, \sigma}(\Theta, u) \cdot y} d u\left|\frac{\partial}{\partial \sigma} E_{n, \sigma}(\Theta)\right|^{2}+\int_{0}^{1} e^{i E_{n+1, \sigma}(\Theta, u) \cdot y} \\
& \quad \times 2 \operatorname{Re}\left[\frac{\partial}{\partial \sigma} \overline{E_{n, \sigma}(\Theta)} e^{2 \pi i u} \frac{\partial}{\partial \sigma} \sum_{j=1}^{J} h_{j}(\ldots) \prod_{k<j \leq n}(\ldots)^{-1} \frac{\chi_{j}\left(p_{n+1}\right)}{p_{n+1}^{\sigma}}\right] d u \\
& \quad
\end{aligned}
$$

where

$$
F_{n}(\sigma, \Theta)=\sum_{j=1}^{J} \prod_{k<l \leq n}\left|1-\frac{\chi_{j}\left(p_{l}\right)}{p_{l}^{\sigma}} e^{2 \pi i \vartheta_{l}}\right|^{-1}
$$

As $e^{i x}=1+i x+O\left(|x|^{2}\right)(x \in \mathbb{R})$, we have

$$
\begin{aligned}
& \int_{0}^{1} e^{i E_{n+1, \sigma}(\Theta, u) \cdot y} d u \\
& \quad=\quad \int_{0}^{1} e^{i E_{n, \sigma}(\Theta) \cdot y}\left(1+i\left(E_{n+1, \sigma}(\Theta, u)-E_{n, \sigma}(\Theta)\right) \cdot y\right) d u+O\left(\frac{F_{n}(\sigma, \Theta)^{2}}{p_{n+1}^{2 \sigma}}\right) \\
& \quad=e^{i E_{n, \sigma}(\Theta) \cdot y}+O\left(\frac{F_{n}(\sigma, \Theta)^{2}}{p_{n+1}^{2 \sigma}}\right)
\end{aligned}
$$

Since $e^{i x}=1+O(|x|)(x \in \mathbb{R})$, we have

$$
\begin{aligned}
\int_{0}^{1} e^{i E_{n+1, \sigma}(\Theta, u) \cdot y \pm 2 \pi i u} d u & =\int_{0}^{1} e^{i E_{n, \sigma}(\Theta) \cdot y \pm 2 \pi i u} d u+O\left(\frac{F_{n}(\sigma, \Theta)}{p_{n+1}^{\sigma}}\right) \\
& =O\left(\frac{F_{n}(\sigma, \Theta)}{p_{n+1}^{\sigma}}\right)
\end{aligned}
$$

Combining the above equalities yields

$$
\begin{aligned}
\int_{0}^{1} e^{i E_{n+1, \sigma}(\Theta, u) \cdot y} \mid & \left.\frac{\partial}{\partial \sigma} E_{n+1, \sigma}(\Theta, u)\right|^{2} d u=e^{i E_{n, \sigma}(\Theta) \cdot y}\left|\frac{\partial}{\partial \sigma} E_{n, \sigma}(\Theta)\right|^{2} \\
& +O\left(\frac{F_{n}(\sigma, \Theta)^{2}+F_{n}(\sigma, \Theta)^{3}+F_{n}(\sigma, \Theta)^{4}}{p_{n+1}^{2 \sigma}} \log p_{n+1}\right)
\end{aligned}
$$

Thus, we have

$$
\hat{\mu}_{n+1, \sigma}(y)-\hat{\mu}_{n, \sigma}(y)=O\left(p_{n+1}^{-2 \sigma} \log p_{n+1}\right)
$$

and

$$
\hat{\mu}_{m, \sigma}(y)-\hat{\mu}_{n, \sigma}(y)=O\left(p_{n}^{1-2 \sigma_{1}}\right)
$$

for $m>n>k$. Hence, Lemma 2.6 follows.
3. Main results. We consider separately the cases $J=2$ and $J \geq 3$. For $J=2$, our function is the sum of two spoiled Euler products $f_{1}(s)+f_{2}(s)$. We then apply the theory of value distribution for $f_{1}(s)$ and $\frac{f_{2}}{f_{1}}(s)$.

Proposition 3.1. Let $J=2$ and $1 / 2<\sigma_{1}<\sigma_{2}$. Suppose that $h_{j}\left(p_{1}^{-\sigma} e^{2 \pi i \theta_{1}}, \ldots, p_{k}^{-\sigma} e^{2 \pi i \theta_{k}}\right) \neq 0$ for $j=1,2, \sigma_{1} \leq \sigma \leq \sigma_{2}$, and $\theta \in[0,1]^{k}$. Then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=T \int_{\sigma_{1}}^{\sigma_{2}} H_{\sigma}(-1) d \sigma+o(T)
$$

where $H_{\sigma}(x)$ is the density of some distribution function μ_{σ}. Moreover, $H_{\sigma}(x)>0$ for $1 / 2<\sigma \leq 1$.

Proof. By Lemma 2.4, $\varphi_{E_{n}}(\sigma)$ converges uniformly to $\varphi_{E}(\sigma)$ on $[1 / 2, \infty)$. If $\varphi_{E}(\sigma)$ is twice differentiable, then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=\frac{T}{2 \pi} \int_{\sigma_{1}}^{\sigma_{2}} \varphi_{E}^{\prime \prime}(\sigma) d \sigma+o(T)
$$

By direct calculation,

$$
\varphi_{E_{n}}(\sigma)=\varphi_{h_{2}}(\sigma)+\varphi_{\tilde{L}_{n}+1}(\sigma)
$$

where

$$
\tilde{L}_{n}(s)=\frac{h_{1}}{h_{2}}\left(p_{1}^{-s}, \ldots, p_{k}^{-s}\right) \prod_{p_{k}<p \leq p_{n}} \frac{1-\chi_{2}(p) / p^{s}}{1-\chi_{1}(p) / p^{s}}
$$

By Lemma 2.1, we have $\varphi_{h_{2}}^{\prime \prime}(\sigma)=0$ for $\sigma_{1} \leq \sigma \leq \sigma_{2}$. For \tilde{L}_{n}, the method in Chapter II of [3] works. Define

$$
\begin{gathered}
\tilde{L}_{n, \sigma}(\Theta)=\frac{h_{1}}{h_{2}}\left(p_{1}^{-\sigma} e^{2 \pi i \theta_{1}}, \ldots, p_{k}^{-\sigma} e^{2 \pi i \theta_{k}}\right) \prod_{k<l \leq n} \frac{1-\chi_{2}\left(p_{l}\right) e^{2 \pi i \vartheta_{l}} / p_{l}^{\sigma}}{1-\chi_{1}\left(p_{l}\right) e^{2 \pi i \vartheta_{l}} / p_{l}^{\sigma}} \\
\mu_{n, \sigma}(B)=\int_{\tilde{L}_{n, \sigma}^{-1}(B)}\left|\frac{\partial}{\partial \sigma} \tilde{L}_{n, \sigma}(\Theta)\right|^{2} d \Theta
\end{gathered}
$$

for any Borel set $B \subset \mathbb{C}$ and $n>k, \Theta=\left(\theta_{1}, \ldots, \theta_{k}, \vartheta_{k+1}, \ldots, \vartheta_{n}\right) \in[0,1]^{n}$. Applying Theorems 5-10 in [3] with some modifications, we deduce that the absolutely continuous distributions $\mu_{n, \sigma}$ converge to a distribution μ_{σ} with a density $H_{\sigma}(x)$ and $\varphi_{\tilde{L}_{n}+1}^{\prime \prime}(\sigma)=2 \pi H_{\sigma}(-1)>0$ for $1 / 2<\sigma \leq 1$.

For the case $J \geq 3$, we cannot do the same thing as for $J=2$. However, by the method of [11], we obtain the following.

Proposition 3.2. Let $J \geq 3$ and $1 / 2<\sigma_{1}<\sigma_{2}$. Suppose that $h_{j}\left(p_{1}^{-\sigma} e^{2 \pi i \theta_{1}}, \ldots, p_{k}^{-\sigma} e^{2 \pi i \theta_{k}}\right) \neq 0$ for $j=l_{1}, l_{2}, l_{3}, \sigma_{1} \leq \sigma \leq \sigma_{2}$, and $\theta \in[0,1]^{k}$. Then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=T \int_{\sigma_{1}}^{\sigma_{2}} H_{\sigma}(0) d \sigma+o(T)
$$

where $H_{\sigma}(x)$ is the density of some distribution function μ_{σ}.
Proof. By Lemma 2.4, $\varphi_{E_{n}}(\sigma)$ converges uniformly to $\varphi_{E}(\sigma)$ on $[1 / 2, \infty)$. If $\varphi_{E}(\sigma)$ is twice differentiable, then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=\frac{T}{2 \pi} \int_{\sigma_{1}}^{\sigma_{2}} \varphi_{E}^{\prime \prime}(\sigma) d \sigma+o(T)
$$

By Lemma 2.5 with

$$
\begin{aligned}
\delta=\min \left\{\left|\tilde{h}_{j}\left(p_{1}^{-\sigma} e^{2 \pi i \theta_{1}}, \ldots, p_{k}^{-\sigma} e^{2 \pi i \theta_{k}}\right)\right| \mid\right. & j=l_{1}, l_{2}, l_{3} \\
& \left.\sigma_{1} \leq \sigma \leq \sigma_{2}, \theta \in[0,1]^{k}\right\}>0
\end{aligned}
$$

we have $\hat{\mu}_{n, \sigma}(y) \ll|y|^{-3}$ and this implies that $\mu_{n, \sigma}$ is absolutely continuous and its density $H_{n, \sigma}(x)$ is continuous. Let $\nu_{n, \sigma}$ be the asymptotic distribution of $E_{n}(\sigma+i t)$ with respect to $\left|E_{n}^{\prime}(\sigma+i t)\right|^{2}$. Since $\hat{\mu}_{n, \sigma}(y)=\hat{\nu}_{n, \sigma}(y)$ by Kronecker's theorem, $\mu_{n, \sigma}=\nu_{n, \sigma}$ and $H_{n, \sigma}$ is their common density. By Lemma 2.3, $\varphi_{E_{n}-x}^{\prime \prime}(\sigma)=2 \pi H_{n, \sigma}(x)$. By Lemma 2.6, $H_{n, \sigma}(x)$ converges to $H_{\sigma}(x)$ which is the density of some distribution $\mu_{\sigma}=\lim _{n \rightarrow \infty} \mu_{n, \sigma}$. Therefore,

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=T \int_{\sigma_{1}}^{\sigma_{2}} H_{\sigma}(0) d \sigma+o(T)
$$

By Lemma 2.2, each Dirichlet polynomial $h_{j}\left(p_{1}^{-s}, \ldots, p_{k}^{-s}\right)$ has at most a finite number of linearity intervals of its Jensen function $\varphi_{h_{j}}(\sigma)$ in $[1 / 2, \infty)$. Let \Im_{j} be the union of those intervals. By Lemmas 2.3 and 2.4 and almost periodicity, h_{j} has no zero in \mathfrak{I}_{j}. We let $\varsigma_{j}=\inf \mathfrak{I}_{j} \geq 1 / 2$, and ς_{E} be the third smallest ς_{j}, more precisely, $\varsigma_{E}=\varsigma_{l_{3}}$ when $\varsigma_{l_{1}} \leq \varsigma_{l_{2}} \leq \varsigma_{l_{3}} \leq \cdots$ is the linear order of $\varsigma_{1}, \ldots, \varsigma_{J}$. By combining Lemma 2.4 and Proposition 3.2, we obtain the following theorem.

TheOrem 3.3. Let $J \geq 3$ and $\varsigma_{E}<\sigma_{1}<\sigma_{2}$. Suppose that $\sigma_{1}, \sigma_{2} \in \mathfrak{I}_{j}$ for at least three j. Then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=\frac{T}{2 \pi}\left(\varphi_{E}^{\prime}\left(\sigma_{2}-\right)-\varphi_{E}^{\prime}\left(\sigma_{1}+\right)\right)+o(T)
$$

Suppose further that $\left[\sigma_{1}, \sigma_{2}\right] \subset \mathfrak{I}_{j}$ for at least three j. Then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=T \int_{\sigma_{1}}^{\sigma_{2}} H_{\sigma}(0) d \sigma+o(T)
$$

where $H_{\sigma}(x)$ is the density of some distribution μ_{σ}. In this case, for $\sigma_{1}<$ $\sigma_{0}<\sigma_{2}$, the number of zeros of $E(s)$ on the line segment $\operatorname{Re} s=\sigma_{0}, 0<$ $\operatorname{Im} s<T$ is $o(T)$.

If each \tilde{h}_{j} is non-vanishing on $\operatorname{Re} s>1 / 2$, the conclusion of Theorem 3.3 holds.

Theorem 3.4. Let $J \geq 3$ and $1 / 2<\sigma_{1}<\sigma_{2}$. Suppose that $\tilde{h}_{j} \neq 0$ for $\operatorname{Re} s>1 / 2$. Then

$$
\begin{equation*}
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=T \int_{\sigma_{1}}^{\sigma_{2}} H_{\sigma}(0) d \sigma+o(T) \tag{3.1}
\end{equation*}
$$

where $H_{\sigma}(x)$ is the density of a distribution μ_{σ}. For $\sigma_{0}>1 / 2$, the number of zeros of $E(s)$ on the line segment $\operatorname{Re} s=\sigma_{0}$ and $0<\operatorname{Im} s<T$ is $o(T)$.

As a consequence, we obtain Theorem 1.1.
We now consider the case when \tilde{h}_{j} is a one-variable polynomial. Then it has only finitely many solutions, say $\beta_{1}, \ldots, \beta_{m} \in \mathbb{C}$. So $\tilde{h}_{j}\left(p^{-s}\right)=0$ if and only if $p^{-s}=\beta_{i}$ for some i. Thus, each line segment $\operatorname{Re} s=-\log \left|\beta_{j}\right| / \log p$, $0<\operatorname{Im} s<T$ contains $c T+O(1)$ zeros of $\tilde{h}_{j}\left(p^{-s}\right)$. So we may not have the equation (3.1) for $E(s)$. However, if we disregard these exceptional points, we obtain the following theorem.

Theorem 3.5. Let $J \geq 3$ and $1 / 2<\sigma_{1}<\sigma_{2}$. Let

$$
E(s)=\sum_{j \leq J} \tilde{h}_{j}\left(p_{1}^{-s}, \ldots, p_{k}^{-s}\right) L\left(s, \chi_{j}\right)
$$

where each \tilde{h}_{j} is a polynomial of one variable. Then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=\frac{T}{2 \pi}\left(\varphi_{E}^{\prime}\left(\sigma_{2}-\right)-\varphi_{E}^{\prime}\left(\sigma_{1}+\right)\right)+o(T)
$$

Suppose $\mathfrak{I}=\bigcup_{l_{1}<l_{2}<l_{3} \leq J}\left(I_{l_{1}} \cap I_{l_{2}} \cap I_{l_{3}}\right)$ is $(1 / 2, \infty)$ minus finitely many points. If $\left[\sigma_{1}, \sigma_{2}\right] \subset \mathfrak{I}$, then

$$
N_{E}\left(\sigma_{1}, \sigma_{2} ; 0, T\right)=T \int_{\sigma_{1}}^{\sigma_{2}} H_{\sigma}(0) d \sigma+o(T),
$$

where $H_{\sigma}(x)$ is the density of some distribution μ_{σ}. For $\sigma_{0} \in \mathfrak{I}$, the number of zeros of $E(s)$ on the line segment $\operatorname{Re} s=\sigma_{0}, 0<\operatorname{Im} s<T$ is $o(T)$.

As a consequence, we obtain Theorem 1.2 .
Acknowledgments. The research of the first author is supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund, KRF-2008-313-C00009). This work was completed while the second author was a postdoc at POSTECH.

He would like to thank the faculty members of POSTECH for their hospitality. Finally, the authors would like to thank the referee for some helpful comments.

References

[1] A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1954.
[2] E. Bombieri and D. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J. 80 (1995), 821-862.
[3] V. Borchsenius and B. Jessen, Mean motions and values of the Riemann zeta function, Acta Math. 80 (1948), 97-166.
[4] J. B. Conrey and A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J. 72 (1993), 673-693.
[5] D. Hejhal, On a result of Selberg concerning zeros of linear combinations of Lfunctions, Int. Math. Res. Notices 2000, 551-577.
[6] -, On the horizontal distribution of zeros of linear combinations of Euler products, C. R. Math. Acad. Sci. Paris 338 (2004), 755-758.
[7] B. Jessen and H. Tornehave, Mean motions and zeros of almost periodic functions, Acta Math. 77 (1945), 137-279.
[8] J. Kaczorowski and M. Kulas, On the non-trivial zeros off the critical line for Lfunctions from the extended Selberg class, Monatsh. Math. 150 (2007), 217-232.
[9] J. Kaczorowski and A. Perelli, On the structure of the Selberg class, I: $0 \leq d \leq 1$, Acta Math. 182 (1999), 207-241.
[10] A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, de Gruyter, Berlin, 1992.
[11] Y. Lee, On the zeros of Epstein zeta functions, preprint.
[12] E. Saias and A. Weingartner, Zeros of Dirichlet series with periodic coefficients, Acta Arith. 140 (2009), 335-344.
[13] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Collected Papers, Vol. 2, Springer, Berlin, 1991, 47-63.
[14] S. M. Voronin, The zeros of zeta-functions of quadratic forms, Trudy Mat. Inst. Steklov. 142 (1976), 135-147 (in Russian).

Haseo Ki	Yoonbok Lee Department of Mathematics Yonsei University
Seoul, 120-749, Korea Department of Mathematics and POSTECH	
Korea Institute for Advanced Study	Pohang, Gyungbuk 790-784, Korea
207-43 Cheongnyangni-dong	Current address:
Dongdaemun-gu Seoul 130-722, Korea E-mail: ki.haseo97@gmail.com haseo@yonsei.ac.kr	Korstitute for Advanced Study
	207-43 Cheongnyangni-dong
Dongdaemun-gu	

Received on 18.3.2010 and in revised form on 4.10.2010

[^0]: 2010 Mathematics Subject Classification: Primary 11M41.
 Key words and phrases: extended Selberg class, non-trivial zero, Riemann hypothesis, Euler product, mean motion.

