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On the zeros of degree one L-functions from
the extended Selberg class

by

Haseo Ki (Seoul) and Yoonbok Lee (Pohang and Seoul)

1. Introduction. In [13], Selberg introduced the class S consisting of
the functions F (s) satisfying the following conditions.

(1) (Dirichlet series) For σ > 1, F (s) is an absolutely convergent Dirich-
let series

F (s) =
∞∑
n=1

a(n)
ns

(s = σ + it).

(2) (Analytic continuation) For some integer m ≥ 0, (s− 1)mF (s) is an
entire function of finite order.

(3) (Functional equation) F (s) satisfies a functional equation of the
form

Φ(s) = ωΦ̄(1− s),

where

Φ(s) = Qs
r∏
j=1

Γ (λjs+ µj)F (s)

with Φ̄(s) = Φ(s̄), Q > 0, λj > 0, Reµj ≥ 0 and |ω| = 1.
(4) (Ramanujan hypothesis) For every ε > 0, a(n)� nε.
(5) (Euler product) For σ sufficiently large,

logF (s) =
∞∑
n=1

b(n)
ns

(s = σ + it),

where b(n) = 0 unless n is a positive power of a prime, and b(n)� nθ

for some θ < 1/2.
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For a function F (s) in the Selberg class S, we define d = 2
∑

j λj to
be the degree of F . We denote by Sd the subclass of functions of degree d
in S. We note that the structure of Sd has been completely determined for
0 ≤ d ≤ 1. From the work of Conrey and Ghosh [4], we have S0 = {1}
and Sd = ∅ for 0 < d < 1. For d = 1, by Kaczorowski and Perelli [9], the
functions F ∈ S1 are of the forms F (s) = ζ(s) or F (s) = L(s+ iθ, χ) with a
primitive Dirichlet character χ and θ ∈ R. On the other hand, we denote by
S# the extended Selberg class of functions satisfying conditions (1)–(3), and
we define S#

d similarly to Sd. Theorems 1 and 2 in [9] describe the structure
of S#

d for 0 ≤ d ≤ 1.
If d = 0, the functional equation is QsF (s) = ωQ1−sF̄ (1− s). The proof

of [9, Theorem 1] shows that the Dirichlet series F (s) =
∑

n a(n)/ns ∈ S#
0

is absolutely convergent in the whole complex plane. Thus, we have
∞∑
n=1

a(n)
(
Q2

n

)s
= ωQ

∞∑
n=1

a(n)
n

ns.

We let q = Q2; then a(n) = 0 for n - q. For n | q, we have

(1.1) a(n) =
ωn
√
q
a

(
q

n

)
.

Theorem A (Theorem 1 of [9]).

(1) If 0 < d < 1, then S#
d = ∅. If F ∈ S#

0 , then q ∈ N, the pair (q, ω) is
an invariant of F (s) and S#

0 is the disjoint union of the subclasses
S#

0 (q, ω) with q ∈ N and |ω| = 1.
(2) Every F ∈ S#

0 (q, ω) with q and ω as above is a Dirichlet polynomial
of the form

F (s) =
∑
n|q

a(n)
ns

.

For d = 1, we use the notation

β =
r∏
j=1

λ
−2λj
j , ξ = 2

r∑
j=1

(µj − 1/2) = η + iθ, q =
2πQ2

β
,

ω∗ = ωe−iπ(η+1)/2

(
Q2

β

)iθ r∏
j=1

λ
−2i Imµj
j .

If χ is a Dirichlet character modulo q, we denote by fχ its conductor, and
by χ∗ the primitive character inducing χ. We denote by ωχ∗ and Qχ∗ the
ω-factor and the Q-factor in the standard functional equation for L(s, χ∗),
i.e., ωχ∗ = τ(χ∗)/ia

√
fχ, where τ(χ∗) is the Gauss sum, a = 0 if χ(−1) = 1
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and a = 1 if χ(−1) = −1, and Qχ∗ =
√
fχ/π. Moreover, we write

X(q, ξ) =
{ {χ mod q | χ(−1) = 1} if η = −1,
{χ mod q | χ(−1) = −1} if η = 0.

χ0 denotes the principal character modulo q.

Theorem B (Theorem 2 of [9]).

(1) If F ∈ S#
1 , then q ∈ N and η ∈ {−1, 0}. The triple (q, ξ, ω∗) is

an invariant of F (s), and S#
1 is the disjoint union of the subclasses

S#
1 (q, ξ, ω∗) with q ∈ N, η ∈ {−1, 0}, θ ∈ R and |ω∗| = 1. Moreover,
a(n)niθ is periodic with period q.

(2) Every F ∈ S#
1 (q, ξ, ω∗) with q, ξ and ω∗ as above can be uniquely

written as

F (s) =
∑

χ∈X(q,ξ)

Pχ(s+ iθ)L(s+ iθ, χ∗),

where Pχ ∈ S#
0 (q/fχ, ω∗ω̄χ∗). Moreover, Pχ0(1) = 0 if θ 6= 0.

Bombieri and Hejhal [2] studied the distribution of zeros of the linear
combinations F (s) =

∑J
j=1 bje

iαjLj(s) of various L-functions with the same
gamma factor. Assuming an orthonormality condition on aj(p) (where aj(n)
are the coefficients of Lj(s)), the generalized Riemann hypothesis for Lj(s)
and a weak condition on the spacing of zeros of Lj(s), they proved that
almost all zeros of F (s) are simple and on the critical line Re s = 1/2.
Hejhal [6] studied the behavior of zeros of F (s) near the critical line and
announced that the true order of the number of zeros of F (s) in Re s ≥ σ,
T ≤ Im s ≤ T +H is

H

(σ − 1/2)
√

log log T

for 1/2 + (log log T )κ/log T ≤ σ ≤ 1/2 + (log T )−δ, c1T
w ≤ H ≤ c2T , κ > 2

with possibly few exceptional {bj}Jj=1. Note that this result for the special
case J = 2 was also justified by the same author in [5].

Recently, the second author [11] investigated the off-line zeros of the
Epstein zeta function E(s,Q) associated to the quadratic form Q(x, y) =
ax2 + bxy+ cy2, a > 0, b2−4ac < 0, a, b, c ∈ Z. It is a classical example that
belongs to the class S#

2 . We find the number of zeros NE(σ1, σ2; 0, T ) in the
rectangular region σ1 < Re s < σ2, 0 < Im s < T to be c(σ1, σ2)T + o(T )
for 1/2 < σ1 < σ2, which improves Voronin’s result NE(σ1, σ2; 0, T )� T
for 1/2 < σ1 < σ2 < 1 (see [14] or Chapter 7 of [10]) based on the joint dis-
tribution for Hecke L-functions. We observe that one can apply our method
to degree one objects.
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For F ∈ S#, Kaczorowski and Kulas [8] defined the density property to
be NF (σ, T ) = o(T ) for every fixed 1/2 < σ < 1. This property classifies
the elements in S#

1 . If F ∈ S#
1 has the density property, then F (s + iθ) =

P (s)L(s, χ) for certain real θ, a Dirichlet polynomial P ∈ S#
0 and a prim-

itive Dirichlet character χ. Otherwise, F (s + iθ) =
∑

j≤J Pj(s)L(s, χj) for
J ≥ 2, θ ∈ R, Dirichlet polynomials Pj ∈ S#

0 and primitive inequivalent
Dirichlet characters χj . For F ∈ S#

1 violating the density property, they
obtain NF (σ1, σ2; 0, T ) � T for 1/2 < σ1 < σ2 < 1. Saias and Weingartner
[12] extend their method to the strip 1 < Re s < 1 + η for some small η > 0
and achieve NF (σ1, σ2; 0, T ) � T for 1/2 < σ1 < σ2 < 1 + η. Our main
purpose is to improve these results by obtaining an asymptotic formula for
NF (σ1, σ2; 0, T ).

By Theorems A and B, we can write the function E(s+ iθ) ∈ S#
1 as

(1.2) E(s) =
J∑
j=1

hj(p−s1 , . . . , p−sk )
∏
p>pk

(
1− χj(p)

ps

)−1

for some integer k > 0, where

hj(x1, . . . , xk) = h̃j(x1, . . . , xk)
∏
l≤k

(1− χj(pl)xl)−1

and h̃j is a polynomial of k variables. Let

En(s) =
J∑
j=1

hj(p−s1 , . . . , p−sk )
∏

pk<p≤pn

(
1− χj(p)

ps

)−1

for n > k. Then, En(s) converges in the mean with index 2 towards E(s) in
[1/2,∞] by Parseval’s identity for almost periodic functions, i.e.,

lim sup
T→∞

1
T

T�

1

β�

α

|E(σ + it)− En(σ + it)|2 dσ dt→ 0

as n→∞ for any 1/2 < α < β (for the method of proof, see Proposition 2.3
of [11]). Applying Lemma 2.3 to En(s), we get an asymptotic formula for
NEn(σ1, σ2; 0, T ). The theory of mean motions partially preserves this prop-
erty through the convergence in the mean with index p > 0 via Lemma 2.4.

If J = 1, then we encounter the Riemann hypothesis. Our method does
not work in this case, since we are using the Euler product log ζ(s) =∑

p

∑∞
m=1

1
mpms and this cannot give any information about ζ(s) = 0. Con-

cerning this matter, see Borchsenius and Jessen [3]. From now on, we only
consider the case J > 1.
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We consider S#
1 (p, ξ, ω∗) for p prime or 1. By (1.1) and Theorem B, we

have

h̃j = aj(1) or aj(1) +
ωaj(1)
ps−1/2

,

and as a result h̃j 6= 0 for Re s > 1/2. In this case, the method in [11] works,
and we have the following theorem.

Theorem 1.1. Let E(s + iθ) ∈ S#
1 (p, ξ, ω∗) for p prime or p = 1, and

|ω| = 1, and let 1/2 < σ1 < σ2. Suppose J > 1 in (1.2). Then

NE(σ1, σ2; 0, T ) = c(σ1, σ2)T + o(T )

as T → ∞. The constant c(σ1, σ2) can be represented as an integral	σ2

σ1
Hσ(0) dσ for the density function Hσ(x) of some distribution µσ, and

c(σ1, σ2) > 0 if 1/2 < σ1 ≤ 1. In particular, for σ0 > 1/2, the number of
zeros on the line segment Re s = σ0, 0 < Im s < T is o(T ).

When q is a prime power, the h̃j are polynomials of the same single
variable by Theorems A(2) and B(2). If these polynomials have the same
factor with cT + o(T ) zeros on the line segment Re s = σ0, 0 < Im s < T for
some 1/2 < σ0 < 1, then we cannot expect the integral form of the constant
c(σ1, σ2) in general. Indeed, we may take h̃j(p−s) = 1 + 2p3/4−s + p1−2s by
letting ω = a(1) = 1, and a(p) = 2p−3/4. Then the function s 7→ h̃j(p−s) has
log p
2π T + O(1) zeros on Re s = log(p3/4 +

√
p3/2 − p)/log p, 0 < Im s < T .

We still have the following.

Theorem 1.2. Let E(s+ iθ) ∈ S#
1 (q, ξ, ω∗) for q a prime power, and let

1/2 < σ1 < σ2. Suppose J > 1 in (1.2). Then

NE(σ1, σ2; 0, T ) = c(σ1, σ2)T + o(T )

as T → ∞, and c(σ1, σ2) > 0 if 1/2 < σ1 ≤ 1. Suppose that the closed
interval [σ1, σ2] does not contain the real part of exceptional points satisfy-
ing hj = 0. Then the constant c(σ1, σ2) can be represented as an integral	σ2

σ1
Hσ(0) dσ for the density function Hσ(x) of some distribution µσ. In this

case for σ0 ∈ [σ1, σ2], the number of zeros on the line segment Re s = σ0,
0 < Im s < T is o(T ).

For general q, we could also prove a similar theorem, although it is not
easy to classify the common zeros of h̃j with multiple variables. We will
discuss and prove a general theorem in Section 3.

2. Lemmas. We begin with the work of Jessen and Tornehave [7] that
concerns zeros of a Dirichlet series in the region of its absolute convergence.
For the basic theory of almost periodic functions, we refer to [1].
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Lemma 2.1 (Theorem 8 of [7]). A function f(s) almost periodic in [α, β]
and not identically zero has no zeros in the substrip (α ≤) α0 < σ, β0 (≤ β),
if and only if its Jensen function

ϕ(σ) = lim
T2−T1→∞

1
T2 − T1

T2�

T1

log |f(σ + it)| dt

is linear in the interval (α0, β0).

Lemma 2.2 (Theorem 31 of [7]). For an ordinary Dirichlet series

f(s) =
∞∑

n=n0

an
ns
, an0 6= 0,

with the uniform convergence abscissa α, the Jensen function ϕ(σ) has on
every half-line σ > α1 (> α) only a finite number of linearity intervals
and a finite number of points of non-differentiability. The values of ϕ′(σ)
in the linearity intervals belong to the set of numbers − log n, n ≥ n0. For
σ > (some) σ0, we have

ϕ(σ) = −(log n0)σ + log |an0 |.

For an arbitrary strip (σ1, σ2), where α < σ1 < σ2 < ∞, the relative fre-
quency H(σ1, σ2) of zeros exists and is determined by

H(σ1, σ2) =
1

2π
(ϕ′(σ2−)− ϕ′(σ1+)).

The following lemma guarantees the existence of the second derivative
of Jensen functions for almost periodic functions and gives another repre-
sentation by a certain distribution. The proof can be found in §9 of [3].

Lemma 2.3 (Proposition 2.1 of [11]). Let f(s) be almost periodic in the
strip [α, β] and not identically zero. Let νσ be the asymptotic distribution
function of f(σ + it) with respect to |f ′(σ + it)|2. Suppose νσ is absolutely
continuous for every σ and its density Gσ(x) is a continuous function of
x and σ. Then the Jensen function ϕf−x(σ) is twice differentiable with
ϕ′′f−x(σ) = 2πGσ(x).

The next lemma is an extension of Lemma 2.3 which is applicable inside
the critical strip and which plays the main role in this method.

Lemma 2.4 (Theorem 1 of [3]). Let −∞ ≤ α < α0 < β0 < β ≤ ∞
and let f1(s), f2(s), . . . be a sequence of functions almost periodic in [α, β]
converging uniformly in [α0, β0] towards a function f(s). Suppose that none
of the functions is identically zero and f(s) may be continued as a regular
function in the half-strip α < σ < β, t > γ0, and that fn(s) converges in
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mean with an index p > 0 towards f(s) in [α, β]. Then the Jensen function

ϕf (σ) = lim
T→∞

1
T

T�

γ

log |f(σ + it)| dt

exists uniformly in [α, β] for some γ > γ0, and ϕfn(σ) converges uniformly in
[α, β] towards ϕf (σ) as n→∞. The function ϕf (σ) is convex in (α, β), and
for every strip (σ1, σ2) where α < σ1 < σ2 < β, the two relative frequencies
of zeros defined by

Hf (σ1, σ2) = lim inf
T→∞

1
T
Nf (σ1, σ2; γ, T ),

Hf (σ1, σ2) = lim sup
T→∞

1
T
Nf (σ1, σ2; γ, T ),

satisfy the inequalities
1

2π
(ϕ′f (σ2−)− ϕ′f (σ1+)) ≤ Hf (σ1, σ2) ≤ Hf (σ1, σ2)

≤ 1
2π

(ϕ′f (σ2+)− ϕ′f (σ1−)).

Suppose further that ϕf (σ) is twice differentiable. Then

Nf (σ1, σ2; 0, T ) =
T

2π

σ2�

σ1

ϕ′′f (σ) dσ + o(T )

for α < σ1 < σ2 < β as T →∞.

Together with the above lemmas, we investigate the Fourier transforms
of certain distributions. We need two more lemmas, in which we use the
following notation:

Ln(σ,Θ;χj) = Lk(σ, θ;χj)Lk,n(σ, ϑ;χj),

Lk(σ, θ;χj) = hj(p−σ1 e2πiθ1 , . . . , p−σk e2πiθk),

Lk,n(σ, ϑ;χj) =
∏

k<l≤n

(
1− χj(pl)e2πiϑl

pσl

)−1

,

Mn,σ(ϑ) = (logLk,n(σ, ϑ;χ1), . . . , logLk,n(σ, ϑ;χJ)),

En,σ(Θ) =
J∑
j=1

Ln(σ,Θ;χj)

for n> k, Θ= (θ, ϑ) ∈ [0, 1]n, θ= (θ1, . . . , θk)∈ [0, 1]k and ϑ= (ϑk+1, . . . , ϑn)
∈ [0, 1]n−k. Let µn,σ be the distribution function of En,σ with respect to∣∣ ∂
∂σEn,σ

∣∣2. Its Fourier transform is

µ̂n,σ(y) =
�

[0,1]n

ei
P
j Ln(σ,Θ;χj)·y

∣∣∣∑
j

L′n(σ,Θ;χj)
∣∣∣2dΘ.
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Lemma 2.5. For σ > 1/2, δ > 0 and j ≤ J , define

Aj,σ(δ) = {θ ∈ [0, 1]k : |h̃j(p−σ1 e2πiθ1 , . . . , p−σk e2πiθk)| < δ}.
Then for any integer K ≤ J we have

µ̂n,σ(y)�
∣∣∣ ⋂
r1<···<rK≤J

(Ar1,σ(δ) ∪ · · · ∪ArK ,σ(δ))
∣∣∣+ |δy|−K

as |y| → ∞, where the corresponding constant does not depend on n.

Proof. We write

µ̂n,σ(y) =
∑
l1,l2

�

[0,1]n

ei
P
j Ln(σ,Θ;χj)·yL′n(σ,Θ;χl1)L′n(σ,Θ;χl2) dΘ.

Define set functions

λn,σ;l1,l2(B) =
�

M−1
n,σ(B)

L′k,n
Lk,n

(σ, ϑ;χl1)
L′k,n
Lk,n

(σ, ϑ;χl2) dϑ,

λn,σ;l(B) =
�

M−1
n,σ(B)

L′k,n
Lk,n

(σ, ϑ;χl) dϑ,

λn,σ(B) = |M−1
n,σ(B)|,

for any Borel set B ⊂ CJ . Applying the identity

ab̄ =
1
4

4∑
m=1

im|a+ imb|2, a, b ∈ C,

one can prove that µ̂n,σ(y) is a linear combination of at most four abso-
lutely continuous distribution functions. (See [11] for details.) We denote by
Gn,σ;l1,l2(x), Gn,σ;l(x), Gn,σ(x) the densities of λn,σ;l1,l2 , λn,σ;l, λn,σ, respec-
tively. By Theorem 6 of [3], all these densities have majorants of the form
Ke−λ|x|

2
, and their partial derivatives of order ≤ q have majorants of the

form Kqe
−λ|x|2 for n ≥ nq. Thus,

µ̂n,σ(y) =
∑
l1,l2

�

[0,1]k

�

CJ
ei

P
j(Lk(σ,θ;χj)e

xj )·y+xl1+x̄l2Gn,σ;l1,l2(x, θ) dx dθ,

where

Gn,σ;l1,l2(x, θ)

= L′k(σ, θ;χl1)L′k(σ, θ;χl2)Gn,σ(x) + L′k(σ, θ;χl1)Lk(σ, θ;χl2)Gn,σ;l2(x)

+Lk(σ, θ;χl1)L′k(σ, θ;χl2)Gn,σ;l1(x)+Lk(σ, θ;χl1)Lk(σ, θ;χl2)Gn,σ;l1,l2(x).

We only consider the first term L′k(σ, θ;χl1)L′k(σ, θ;χl2)Gn,σ(x), since the
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others can be treated similarly. If θ /∈ Aj,σ(δ) for K-many j, we will prove

(2.1)
�

CJ
ei

P
j(Lk(σ,θ;χj)e

xj )·y+xl1+x̄l2Gn,σ(x) dx = O(|δy|−K).

For the other θ, we give a trivial upper bound by the measure of the set of
those θ:

µ̂n,σ(y)�
∣∣∣ ⋂
r1<···<rK≤J

(Ar1,σ(δ) ∪ · · · ∪ArK ,σ(δ))
∣∣∣+ |δy|−K ,

where the corresponding constant does not depend on n as y →∞.
So, it is enough to prove (2.1). We decompose
�

CJ
ei

P
j(Lk(σ,θ;χj)e

xj )·y+xl1+x̄l2Gn,σ(x) dx

=
∑
m∈ZJ

�

(R×[0,2π])J

ei
P
j e
xj ·(Lk(σ,θ;χj)y)+xl1+x̄l2Gn,σ(x+ 2πmi) dx.

Changing variables exj = rje
zj with Jacobian r−1

j shows that the above
equals∑

m∈ZJ

�

[0,2π]J

�

(0,∞)J

ei
P
j rje

zj ·(Lk(σ,θ;χj)y)+zl1−zl2 rl1rl2

×
∏
j

r−1
j Gn,σ(log r + i(z + 2πm)) dr dz,

where r = (r1, . . . , rJ), z = (z1, . . . , zJ), and log r = (log r1, . . . , log rJ).
Consider the integral

2π�

0

∞�

0

eirje
zj ·(Lk(σ,θ;χj)y)+zl1−zl2 rl1rl2r

−1
j Gn,σ(log r + i(z + 2πm)) drj dzj

=
2π�

0

∞�

0

eirj |Lk(σ,θ;χj)y|cos(zj−αj)+zl1−zl2 rl1rl2r
−1
j Gn,σ(log r+i(z+2πm)) drj dzj

for some αj . For θ /∈ Aj,σ(δ), we integrate by parts with respect to zj for
|cos(zj − αj)| < 1/2, and with respect to rj for |cos(zj − αj)| > 1/2. With
the uniform upper bound Kqe

−λ|x|2 of partial derivatives of G of order ≤ q,
we obtain (2.1).

Lemma 2.6. µ̂n,σ(y) converges uniformly for every disc |y| ≤ a and
1/2 < σ1 ≤ σ ≤ σ2.

Proof. By definition, we have

µ̂n+1,σ(y) =
�

[0,1]n

1�

0

eiEn+1,σ(Θ,u)·y
∣∣∣∣ ∂∂σEn+1,σ(Θ, u)

∣∣∣∣2 du dΘ.
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We get

1�

0

eiEn+1,σ(Θ,u)·y
∣∣∣∣ ∂∂σEn+1,σ(Θ, u)

∣∣∣∣2 du
=

1�

0

eiEn+1,σ(Θ,u)·y du

∣∣∣∣ ∂∂σEn,σ(Θ)
∣∣∣∣2 +

1�

0

eiEn+1,σ(Θ,u)·y

× 2 Re
[
∂

∂σ
En,σ(Θ)e2πiu ∂

∂σ

J∑
j=1

hj(. . . )
∏

k<j≤n
(. . . )−1χj(pn+1)

pσn+1

]
du

+O

(
Fn(σ,Θ)2

p2σ
n+1

)
,

where

Fn(σ,Θ) =
J∑
j=1

∏
k<l≤n

∣∣∣∣1− χj(pl)
pσl

e2πiϑl

∣∣∣∣−1

.

As eix = 1 + ix+O(|x|2) (x ∈ R), we have
1�

0

eiEn+1,σ(Θ,u)·y du

=
1�

0

eiEn,σ(Θ)·y(1 + i(En+1,σ(Θ, u)− En,σ(Θ)) · y) du+O

(
Fn(σ,Θ)2

p2σ
n+1

)
= eiEn,σ(Θ)·y +O

(
Fn(σ,Θ)2

p2σ
n+1

)
.

Since eix = 1 +O(|x|) (x ∈ R), we have
1�

0

eiEn+1,σ(Θ,u)·y±2πiu du =
1�

0

eiEn,σ(Θ)·y±2πiu du+O

(
Fn(σ,Θ)
pσn+1

)
= O

(
Fn(σ,Θ)
pσn+1

)
.

Combining the above equalities yields

1�

0

eiEn+1,σ(Θ,u)·y
∣∣∣∣ ∂∂σEn+1,σ(Θ, u)

∣∣∣∣2du = eiEn,σ(Θ)·y
∣∣∣∣ ∂∂σEn,σ(Θ)

∣∣∣∣2
+O

(
Fn(σ,Θ)2 + Fn(σ,Θ)3 + Fn(σ,Θ)4

p2σ
n+1

log pn+1

)
.

Thus, we have

µ̂n+1,σ(y)− µ̂n,σ(y) = O(p−2σ
n+1 log pn+1)
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and
µ̂m,σ(y)− µ̂n,σ(y) = O(p1−2σ1

n )

for m > n > k. Hence, Lemma 2.6 follows.

3. Main results. We consider separately the cases J = 2 and J ≥ 3. For
J = 2, our function is the sum of two spoiled Euler products f1(s) + f2(s).
We then apply the theory of value distribution for f1(s) and f2

f1
(s).

Proposition 3.1. Let J = 2 and 1/2 < σ1 < σ2. Suppose that
hj(p−σ1 e2πiθ1 , . . . , p−σk e2πiθk) 6= 0 for j = 1, 2, σ1 ≤ σ ≤ σ2, and θ ∈ [0, 1]k.
Then

NE(σ1, σ2; 0, T ) = T

σ2�

σ1

Hσ(−1) dσ + o(T ),

where Hσ(x) is the density of some distribution function µσ. Moreover,
Hσ(x) > 0 for 1/2 < σ ≤ 1.

Proof. By Lemma 2.4, ϕEn(σ) converges uniformly to ϕE(σ) on [1/2,∞).
If ϕE(σ) is twice differentiable, then

NE(σ1, σ2; 0, T ) =
T

2π

σ2�

σ1

ϕ′′E(σ) dσ + o(T ).

By direct calculation,

ϕEn(σ) = ϕh2(σ) + ϕL̃n+1(σ),

where

L̃n(s) =
h1

h2
(p−s1 , . . . , p−sk )

∏
pk<p≤pn

1− χ2(p)/ps

1− χ1(p)/ps
.

By Lemma 2.1, we have ϕ′′h2
(σ) = 0 for σ1 ≤ σ ≤ σ2. For L̃n, the method in

Chapter II of [3] works. Define

L̃n,σ(Θ) =
h1

h2
(p−σ1 e2πiθ1 , . . . , p−σk e2πiθk)

∏
k<l≤n

1− χ2(pl)e2πiϑl/pσl
1− χ1(pl)e2πiϑl/pσl

,

µn,σ(B) =
�

L̃−1
n,σ(B)

∣∣∣∣ ∂∂σ L̃n,σ(Θ)
∣∣∣∣2dΘ

for any Borel set B ⊂ C and n > k, Θ = (θ1, . . . , θk, ϑk+1, . . . , ϑn) ∈ [0, 1]n.
Applying Theorems 5–10 in [3] with some modifications, we deduce that the
absolutely continuous distributions µn,σ converge to a distribution µσ with
a density Hσ(x) and ϕ′′

L̃n+1
(σ) = 2πHσ(−1) > 0 for 1/2 < σ ≤ 1.

For the case J ≥ 3, we cannot do the same thing as for J = 2. However,
by the method of [11], we obtain the following.
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Proposition 3.2. Let J ≥ 3 and 1/2 < σ1 < σ2. Suppose that
hj(p−σ1 e2πiθ1 , . . . , p−σk e2πiθk) 6= 0 for j = l1, l2, l3, σ1≤ σ≤ σ2, and θ ∈ [0, 1]k.
Then

NE(σ1, σ2; 0, T ) = T

σ2�

σ1

Hσ(0) dσ + o(T ),

where Hσ(x) is the density of some distribution function µσ.

Proof. By Lemma 2.4, ϕEn(σ) converges uniformly to ϕE(σ) on [1/2,∞).
If ϕE(σ) is twice differentiable, then

NE(σ1, σ2; 0, T ) =
T

2π

σ2�

σ1

ϕ′′E(σ) dσ + o(T ).

By Lemma 2.5 with

δ = min{|h̃j(p−σ1 e2πiθ1 , . . . , p−σk e2πiθk)| | j = l1, l2, l3,

σ1 ≤ σ ≤ σ2, θ ∈ [0, 1]k} > 0,

we have µ̂n,σ(y)� |y|−3 and this implies that µn,σ is absolutely continuous
and its density Hn,σ(x) is continuous. Let νn,σ be the asymptotic distribu-
tion of En(σ + it) with respect to |E′n(σ + it)|2. Since µ̂n,σ(y) = ν̂n,σ(y)
by Kronecker’s theorem, µn,σ = νn,σ and Hn,σ is their common density. By
Lemma 2.3, ϕ′′En−x(σ) = 2πHn,σ(x). By Lemma 2.6, Hn,σ(x) converges to
Hσ(x) which is the density of some distribution µσ = limn→∞ µn,σ. There-
fore,

NE(σ1, σ2; 0, T ) = T

σ2�

σ1

Hσ(0) dσ + o(T ).

By Lemma 2.2, each Dirichlet polynomial hj(p−s1 , . . . , p−sk ) has at most a
finite number of linearity intervals of its Jensen function ϕhj (σ) in [1/2,∞).
Let Ij be the union of those intervals. By Lemmas 2.3 and 2.4 and almost
periodicity, hj has no zero in Ij . We let ςj = inf Ij ≥ 1/2, and ςE be the
third smallest ςj , more precisely, ςE = ςl3 when ςl1 ≤ ςl2 ≤ ςl3 ≤ · · · is the
linear order of ς1, . . . , ςJ . By combining Lemma 2.4 and Proposition 3.2, we
obtain the following theorem.

Theorem 3.3. Let J ≥ 3 and ςE < σ1 < σ2. Suppose that σ1, σ2 ∈ Ij
for at least three j. Then

NE(σ1, σ2; 0, T ) =
T

2π
(ϕ′E(σ2−)− ϕ′E(σ1+)) + o(T ).

Suppose further that [σ1, σ2] ⊂ Ij for at least three j. Then

NE(σ1, σ2; 0, T ) = T

σ2�

σ1

Hσ(0) dσ + o(T ),
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where Hσ(x) is the density of some distribution µσ. In this case, for σ1 <
σ0 < σ2, the number of zeros of E(s) on the line segment Re s = σ0, 0 <
Im s < T is o(T ).

If each h̃j is non-vanishing on Re s > 1/2, the conclusion of Theorem 3.3
holds.

Theorem 3.4. Let J ≥ 3 and 1/2 < σ1 < σ2. Suppose that h̃j 6= 0 for
Re s > 1/2. Then

(3.1) NE(σ1, σ2; 0, T ) = T

σ2�

σ1

Hσ(0) dσ + o(T ),

where Hσ(x) is the density of a distribution µσ. For σ0 > 1/2, the number
of zeros of E(s) on the line segment Re s = σ0 and 0 < Im s < T is o(T ).

As a consequence, we obtain Theorem 1.1.
We now consider the case when h̃j is a one-variable polynomial. Then it

has only finitely many solutions, say β1, . . . , βm ∈ C. So h̃j(p−s) = 0 if and
only if p−s = βi for some i. Thus, each line segment Re s = −log |βj |/log p,
0 < Im s < T contains cT +O(1) zeros of h̃j(p−s). So we may not have the
equation (3.1) for E(s). However, if we disregard these exceptional points,
we obtain the following theorem.

Theorem 3.5. Let J ≥ 3 and 1/2 < σ1 < σ2. Let

E(s) =
∑
j≤J

h̃j(p−s1 , . . . , p−sk )L(s, χj),

where each h̃j is a polynomial of one variable. Then

NE(σ1, σ2; 0, T ) =
T

2π
(ϕ′E(σ2−)− ϕ′E(σ1+)) + o(T ).

Suppose I =
⋃
l1<l2<l3≤J(Il1 ∩ Il2 ∩ Il3) is (1/2,∞) minus finitely many

points. If [σ1, σ2] ⊂ I, then

NE(σ1, σ2; 0, T ) = T

σ2�

σ1

Hσ(0) dσ + o(T ),

where Hσ(x) is the density of some distribution µσ. For σ0 ∈ I, the number
of zeros of E(s) on the line segment Re s = σ0, 0 < Im s < T is o(T ).

As a consequence, we obtain Theorem 1.2.
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