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On the zeros of degree one L-functions from
the extended Selberg class
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Haseo KI (Seoul) and YOONBOK LEE (Pohang and Seoul)

1. Introduction. In [I3], Selberg introduced the class S consisting of
the functions F(s) satisfying the following conditions.

(1) (Dirichlet series) For o > 1, F'(s) is an absolutely convergent Dirich-
let series

>, a(n)

F(s)=)_ - (s=o+it).
n=1

(2) (Analytic continuation) For some integer m > 0, (s —1)™F(s) is an
entire function of finite order.

(3) (Functional equation) F'(s) satisfies a functional equation of the

form

D(s) = wd(1 — s),

where

B(s) = Q° [ T(\js + 1) F(s)
j=1
with &(s) = &(5), Q >0, \; >0, Rep; >0 and |w| = 1.
(4) (Ramanujan hypothesis) For every € > 0, a(n) < n¢.
(5) (Euler product) For o sufficiently large,

-~ b(n)

logF(s) =) —=F (s=o+it),
n=1

where b(n) = 0 unless n is a positive power of a prime, and b(n) < n?

for some 6 < 1/2.
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For a function F(s) in the Selberg class S, we define d = 23, A; to
be the degree of F. We denote by S; the subclass of functions of degree d
in §. We note that the structure of S; has been completely determined for
0 < d < 1. From the work of Conrey and Ghosh [4], we have Sy = {1}
and Sy = 0 for 0 < d < 1. For d = 1, by Kaczorowski and Perelli [9], the
functions F' € S; are of the forms F(s) = ((s) or F(s) = L(s+1i6, x) with a
primitive Dirichlet character xy and 6 € R. On the other hand, we denote by
S# the extended Selberg class of functions satisfying conditions (1)—(3), and

we define Sj similarly to Sg. Theorems 1 and 2 in [9] describe the structure
oij for 0 <d<1.

If d = 0, the functional equation is Q*F(s) = wQ'~*F(1 — s). The proof
of [9, Theorem 1] shows that the Dirichlet series F(s) =), a(n)/n® € Sf
is absolutely convergent in the whole complex plane. Thus, we have

ga(n)<cf>s :nga(”) ;

We let ¢ = Q?; then a(n) = 0 for n{q. For n|q, we have

wn (q
1.1 an) =—al — ).
(L) )= “a(2)
THEOREM A (Theorem 1 of [9]).
1 0<d<1, then = 0. € , then g € N, the pair (q,w) s
If0o<d hen ST =0. If F € S, th N, th

an invariant of F(s) and S# is the disjoint union of the subclasses
Sf(q,w) with ¢ € N and |w| = 1.

(2) Every F € S#(q,w) with ¢ and w as above is a Dirichlet polynomial
of the form

For d = 1, we use the notation

=2\ 21 Q?
ﬁ:H)\] jv _22 _1/2 _77‘1‘29 q= ’
=1

5
Wt = we—’bﬂ'(n-‘rl /2< > H )\_2111'[1/1]

If x is a Dirichlet character modulo ¢, we denote by fy its conductor, and
by x* the primitive character inducing x. We denote by w,+ and @~ the
w-factor and the @-factor in the standard functional equation for L(s, x*),
ie., wy = T(x*)/i%/ [y, where 7(x*) is the Gauss sum, a = 0 if x(—1) =1
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and a = 1if xy(—1) = —1, and Qy+ = 4/ fy /7. Moreover, we write

_ [Axmodg|x(-1)=1} ifn=-1,
Ha.b) = { {x mod ¢ | x(=1) = -1} ifn=0.

xo denotes the principal character modulo q.

THEOREM B (Theorem 2 of [9]).

(1) If F € S#, then ¢ € N and n € {—1,0}. The triple (q,&, w*) is
an invariant of F(s), and Sf”t 1s the disjoint union of the subclasses
S#(q,f,w*) with ¢ € N, n € {—1,0}, 0 € R and |w*| = 1. Moreover,
a(n)n®® is periodic with period q.

(2) Every F € S#(q,f,w*) with q, £ and w* as above can be uniquely
written as

Fls)= 3 Pls+i0)L(s+i6,x),
X€X(q:€)

where Py, € S#(q/fx,w*ax*). Moreover, Py,(1) =0 if 6 # 0.

Bombieri and Hejhal [2] studied the distribution of zeros of the linear
combinations F'(s) = Z‘jjzl bje' L;(s) of various L-functions with the same
gamma factor. Assuming an orthonormality condition on a;(p) (where a;(n)
are the coefficients of L;(s)), the generalized Riemann hypothesis for L;(s)
and a weak condition on the spacing of zeros of L;(s), they proved that
almost all zeros of F(s) are simple and on the critical line Res = 1/2.
Hejhal [6] studied the behavior of zeros of F'(s) near the critical line and
announced that the true order of the number of zeros of F(s) in Res > o,
T<Ims<T+ H is

H

(0 —1/2)\/loglog T

for 1/2 + (loglog T)"/log T < o < 1/2+ (logT)™°, e1T" < H < 2T, K > 2
with possibly few exceptional {b; }3-]:1. Note that this result for the special
case J = 2 was also justified by the same author in [5].

Recently, the second author [II] investigated the off-line zeros of the
Epstein zeta function E(s, Q) associated to the quadratic form Q(z,y) =
ax?® +bxy+cy?, a >0, b> —4dac < 0, a,b, c € Z. It is a classical example that
belongs to the class 82#. We find the number of zeros Ng(o1,02;0,T) in the
rectangular region 03 < Res < 02, 0 < Ims < T to be ¢(o1,02)T + o(T)
for 1/2 < 01 < 09, which improves Voronin’s result Ng(o1,09;0,7) > T
for 1/2 < 01 < o9 < 1 (see [14] or Chapter 7 of [10]) based on the joint dis-
tribution for Hecke L-functions. We observe that one can apply our method
to degree one objects.
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For F € 8%, Kaczorowski and Kulas [§] defined the density property to
be Np(0,T) = o(T) for every fixed 1/2 < o < 1. This property classifies
the elements in S#. If Fe S# has the density property, then F(s + i) =
P(s)L(s,x) for certain real 6, a Dirichlet polynomial P & S# and a prim-
itive Dirichlet character y. Otherwise, F'(s +1i0) = >, ; Pj(s)L(s, x;) for
J > 2, 0 € R, Dirichlet polynomials P; € Saé’é and primitive inequivalent
Dirichlet characters x;. For I’ € Sf& violating the density property, they
obtain Np(o1,02;0,T) > T for 1/2 < 01 < 09 < 1. Saias and Weingartner
[12] extend their method to the strip 1 < Res < 1+ n for some small > 0
and achieve Np(o1,02;0,7) > T for 1/2 < 01 < 02 < 1+ 7. Our main
purpose is to improve these results by obtaining an asymptotic formula for
NF(O’l,O'Q;O,T).

By Theorems A and B, we can write the function E(s + i) € S# as

S PR )\
(1.2) E(s) Zhj(pl o) I (1 =

J=1 P>Pk
for some integer k£ > 0, where
B, k) = by, [ = xp0en) ™

1<k

and ﬁj is a polynomial of k variables. Let

J ‘ .
Bu(s) = > hiwi®s o) [] <1_><gp(sp)>

j=1 Pr<p<pn

for n > k. Then, E,(s) converges in the mean with index 2 towards F(s) in
[1/2, 0] by Parseval’s identity for almost periodic functions, i.e.,

T8
1
lim sup — S S |E(0 +it) — En(0 +it)|*dodt — 0
T—o0 T 1a

as n — oo for any 1/2 < a < 3 (for the method of proof, see Proposition 2.3
of [11]). Applying Lemma to E,(s), we get an asymptotic formula for
Ng, (01,02;0,T). The theory of mean motions partially preserves this prop-
erty through the convergence in the mean with index p > 0 via Lemma 2.4.

If J =1, then we encounter the Riemann hypothesis. Our method does
not work in this case, since we are using the Euler product log((s) =
D p D=t ﬁ and this cannot give any information about ((s) = 0. Con-
cerning this matter, see Borchsenius and Jessen [3]. From now on, we only
consider the case J > 1.
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We consider S# (p, &, w*) for p prime or 1. By 1’ and Theorem B, we
have

wa;(1)
ps—1/2’

hj = a;j(1) or a;(1) +

and as a result }Nlj # 0 for Res > 1/2. In this case, the method in [I1] works,
and we have the following theorem.

THEOREM 1.1. Let E(s + i) € S#(p,g,w*) for p prime or p =1, and
lw| =1, and let 1/2 < 01 < og. Suppose J > 1 in (1.2). Then

Ng(01,02;0,T) = c(o1,02)T + o(T)

as T — oo. The constant c(o1,02) can be represented as an integral
SZ? H,(0)do for the density function Hy,(x) of some distribution ., and

c(oy,09) > 0 if 1/2 < o1 < 1. In particular, for o9 > 1/2, the number of
zeros on the line segment Res = 09, 0 <Ims < T is o(T).

When ¢ is a prime power, the Bj are polynomials of the same single
variable by Theorems A(2) and B(2). If these polynomials have the same
factor with ¢T'+ o(T") zeros on the line segment Re s = ¢, 0 < Im s < T for
some 1/2 < o¢ < 1, then we cannot expect the integral form of the constant
¢(o1,09) in general. Indeed, we may take ﬁj(p_s) =14 2p?/45 4 pl=25 by
letting w = a(1) = 1, and a(p) = 2p~*/*. Then the function s — h;(p~*) has
%T + O(1) zeros on Res = log(p*/* + /p3/2 — p)/logp, 0 < Ims < T.
We still have the following.

THEOREM 1.2. Let E(s+1i0) € S#(q,f,w*) for q a prime power, and let
1/2 < 01 < og. Suppose J > 1 in (1.2). Then

Ng(01,02;0,T) = c(01,02)T + o(T)

as T — o0, and c(o1,02) > 0 if 1/2 < o1 < 1. Suppose that the closed
interval [o1,02] does not contain the real part of exceptional points satisfy-
ing h; = 0. Then the constant c(o1,02) can be represented as an integral
Sji H,(0)do for the density function H,(x) of some distribution pi. In this

case for oy € [01,09], the number of zeros on the line segment Res = oy,
0<Ims<Tiso(T).

For general ¢, we could also prove a similar theorem, although it is not
easy to classify the common zeros of h; with multiple variables. We will
discuss and prove a general theorem in Section 3.

2. Lemmas. We begin with the work of Jessen and Tornehave [7] that
concerns zeros of a Dirichlet series in the region of its absolute convergence.
For the basic theory of almost periodic functions, we refer to [1J.
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LEMMA 2.1 (Theorem 8 of [7]). A function f(s) almost periodic in [, (]
and not identically zero has no zeros in the substrip (o <) ag < o, fo (< ),
if and only if its Jensen function

T
1
S 1 )] dt
plo) = lm Z—0p 151 og|f(o + it)]

is linear in the interval (o, Bo).
LEMMA 2.2 (Theorem 31 of [7]). For an ordinary Dirichlet series
oo
Qn

f(S): Zﬁa ano#Ov

n=ng

with the uniform convergence abscissa o, the Jensen function ¢(o) has on
every half-line 0 > a1 (> «) only a finite number of linearity intervals
and a finite number of points of non-differentiability. The values of ¢'(o)
i the linearity intervals belong to the set of numbers —logn, n > ng. For
o > (some) og, we have

(o) = —(logng)o + log |an,|-

For an arbitrary strip (o1,02), where a < o1 < 09 < 00, the relative fre-
quency H(o1,09) of zeros exists and is determined by

1

H(oy,02) = g(@l(az—) —¢'(o14)).

The following lemma guarantees the existence of the second derivative
of Jensen functions for almost periodic functions and gives another repre-
sentation by a certain distribution. The proof can be found in §9 of [3].

LEMMA 2.3 (Proposition 2.1 of [11]). Let f(s) be almost periodic in the
strip [a, B] and not identically zero. Let v, be the asymptotic distribution
function of f(o + it) with respect to |f'(c + it)|>. Suppose v, is absolutely
continuous for every o and its density Go(x) is a continuous function of
x and o. Then the Jensen function pr_,(0) is twice differentiable with

@i _p(0) =21Gq ().

The next lemma is an extension of Lemma [2.3 which is applicable inside
the critical strip and which plays the main role in this method.

LEMMA 2.4 (Theorem 1 of [3]). Let —o0 < a < ag < fy < f < 0
and let fi(s), fa(s),... be a sequence of functions almost periodic in [, ]
converging uniformly in [«o, fo] towards a function f(s). Suppose that none
of the functions is identically zero and f(s) may be continued as a regqular
function in the half-strip a < o < 3, t > 79, and that f,(s) converges in
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mean with an index p > 0 towards f( ) in [, B]. Then the Jensen function

pr(o) = hm — \log|f(o +it)|dt

QL/:H

exists uniformly in [, B] for some y > 7o, and ¢y, (o) converges uniformly in
[, B] towards py(0) asn — oo. The function ¢¢(o) is convex in (a, 3), and
for every strip (o1,02) where a < o1 < 09 < 3, the two relative frequencies
of zeros defined by

|
H(01,02) = liminf TNf(O'l,O'Q;’y,T),

T—o00

— 1
Hy(o1,092) = limsup —Ny(o1,02;7,T),
T—o0 T

satisfy the inequalities
1 _
%(%0}(02—) — ¢(o14)) < Hy(o1,09) < Hy(o1,09)

1

(f(o2+) = @flo1-)).

2
Suppose further that ps(o) is twice differentiable. Then
T
Ny(01,020.T) = 5 | {0} do + o(T)

o1

fora<op <oy < fasT — 0.

Together with the above lemmas, we investigate the Fourier transforms
of certain distributions. We need two more lemmas, in which we use the
following notation:

f.‘, (O’ @’Xj) :Lk(O' 0 Xj)Lkn(U 79 Xj)
Lk(U 9 XJ) = h. ( —0 27”01,...,]?;0627”9’“),

. 6271'7,'(91 —1
oo = I1 (1-285=)

k<l<n Pi
MTL,U(ﬂ) = (log Lk,n(gv 197 X1)7 v 710g Lk,n(av 197 XJ))a

J
= Z 2%(0—7 9; Xj)
Jj=1

forn >k, ©=(0,9) € [0,1]", 0= (61,...,0;) €[0,1]* and ¥ = (Vp41,...,0n)
€ [0,1]"7*. Let fno be the distribution function of E, , with respect to
‘(%En’gf. Its Fourier transform is

. 2
Ian,o(y) = S et 2) Sn(CT,@;Xj)'y‘ Z 2;1(0-3 o; Xj) do.
[0,1]™ J
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LEMMA 2.5. Foro >1/2, >0 and j < J, define
Ajo(8) = {0 € [0,1) : |h(p7e*™ ... ™% < 6}
Then for any integer K < J we have
ﬂ (Ao (0) U U Ay 0(0))] + |5y‘7K

r<---<rg<J

fino (y) <

as y| — oo, where the corresponding constant does not depend on n.
Proof. We write
o) =37 | e S OINNE (0,05x0,)8(7, 0 x1,) 4O,
I1,l2 [0,1]"

Define set functions

, o
Aoty lo (B) = B (0,0 Xy ) 2 (o, 95 ;)

L/
k,n
/\n,a;l<B) - S (07 v, Xl) dv,

Mo (B) = |My 5 (B)],

for any Borel set B € C/. Applying the identity
o1 d
ab:z Zim\a—i—imb]Q, a,beC,

m=1

one can prove that fi,,(y) is a linear combination of at most four abso-
lutely continuous distribution functions. (See [11] for details.) We denote by
Ghoil1 1o (%), G oi(2), Gno(x) the densities of A\, 5.1, 15, Anoil, An,o, T€Spec-
tively. By Theorem 6 of [3], all these densities have majorants of the form
K e_)‘|“’|2, and their partial derivatives of order < ¢ have majorants of the

form qu*A‘g”|2 for n > ng. Thus,

fno(y) =Y | | el vtantag, 0 (2,0) dedo,
li,l2 [0,1]k C/

where

®n,0;l1,l2 (‘777 9)

= Li(0,0; x1,) L} (0,0; X15)Gn,o (z) + Ly (0,0; x1,) Li (0, 6; X1, ) Gt ()

+ Li(o, 05 x1,) L}, (0,05 X1,) Gty () + Lic(0, 05 X1,) Li (0, 05 X12) Gty 1 (2).-

We only consider the first term L} (o, 6; x1,) L} (0, 0; X1,)Gn,o (), since the
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others can be treated similarly. If 6 ¢ A; ;(9) for K-many j, we will prove
(2.1) | e SiErlotieDutentin g, () de = O(|5y) ).

cJ
For the other 6, we give a trivial upper bound by the measure of the set of
those 6:

@) < | () (Aro(®)Us-U Ar o (0))] + 09175,

where the corresponding constant does not depend on n as y — oo.
So, it is enough to prove (12.1)). We decompose

S ¢! 25 Lk (@00 ) yten +a, G (1) da

CcJ
_ Z S eizj elj.(Lk(a,G;Xj)y)+zll+:il2Gma(x+27Tmi> dz.
meZJ (Rx[0,27])”
Changing variables e®/ = r;e® with Jacobian rj_l shows that the above
equals

S| S G
meZ7 [0,2x]7 (0,00)7
% [1 75 Guollogr +i(= + 2mm)) dr dz,
J

where r = (r1,...,75), 2 = (21,...,27), and logr = (logry,...,logry).
Consider the integral

21 0o

| §erme Bt sty Gy (log T + (2 + 27m)) dr; dz

00
27 00

- S S eimlbw(@,0ix3 )yleos(z5=as) 21, =21, 1,117y G o (log r+i(2+2mm)) drj dz;
00

for some «;. For 6 ¢ A;,(6), we integrate by parts with respect to z; for

|cos(z; — aj)| < 1/2, and with respect to r; for |cos(z; — «j)| > 1/2. With

the uniform upper bound qu_>‘|‘l”‘2

we obtain (2.1f). =

LEMMA 2.6. fin,(y) converges uniformly for every disc |y| < a and
1/2 <01 <o <o

of partial derivatives of G of order < g,

Proof. By definition, we have
1
fini1o(y) = | [elFrre@0y
[0,1]m 0

2

0 du do.

Ent1,6(0,
9o +1, (O,u)
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We get
. o 2
SezEnH,U(@,u)-y Eni10(0,u)| du
) do
1 D) 2 1
_ SeiEn+1’a(@,u)-y du’ 7En,a(9) + S eiEn+1,a(@7u)'y
5 0
o LE @ S T (e,
g k<j<n Pr1
Fy(0,0
+0 ((2’0)>
pn+l
where

20

= (B OV 1 i(Byy1,0(0,1) — Fng(6)) - y) du+ 0<W>

0 pn+1
2
= e iEn,0(O)y + O<Fn((270’_9) >
pn+1
Since € =1+ O(|z|) (z € R), we have
1 1
SeiEn+l,a(@’u)'yi27riu du — SeiEn,o‘(@)‘yizﬂ'iu du + O <Fn(:’ @)>
0 0 pn+1
- 0<F”(f’ @)>.
pn+1
Combining the above equalities yields
1 E ©.u)y| 9 ? B0 (0)y| O ?
(S)e e (O - B 1,0(6,u)| du = o OV~ F, 4(O)
F,(0,0)? 4+ F,(0,0) + F,(0,0)*
+O< (00" + o0 + Fo,O) 1ogpn+1>.
n+1

Thus, we have

fin+1,0(Y) — fino(y) = O(p; 37 10g Prt1)
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and
Iam,a(y) - ﬂn,a(y) = O(p7117201)

for m > n > k. Hence, Lemma [2.6] follows. m

3. Main results. We consider separately the cases J = 2 and J > 3. For
J = 2, our function is the sum of two spoiled Euler products fi(s) + fa(s).
We then apply the theory of value distribution for fi(s) and %(s)

PROPOSITION 3.1. Let J = 2 and 1/2 < o1 < og. Suppose that
hj(py €™ . p 7€ %) £ 0 for j = 1,2, 01 < 0 < 09, and 6 € [0, 1]~
Then

02
Ng(01,02;0,T) =T | Hy(—1)do + o(T),
o1
where Hy(x) is the density of some distribution function py. Moreover,
H,(x) >0 for1/2 <o < 1.
Proof. By Lemmal2.4] g, () converges uniformly to ¢ (o) on [1/2, 00).
If pg(o) is twice differentiable, then

02

T
Ng(01,02;0,T) = o S ¢p(0)do +o(T).

o1

By direct calculation,

PE, (U) = Phy (U) + (pf,n.;_l (0)7
where

- hy, L 1 —x2(p)/p°
Ly(s)=—(p;°...,p || —
( ) h2( ' ’ )pk<p§pn1_X1(p)/ps

By Lemma we have 90;12(0) =0 for 0y < o < 09. For L, the method in
Chapter II of [3] works. Define

~ h . , 1 — 2midy [0
Ln,o(@) — 1 o 2mif, 7p;oe2mek) H Xg(pl)e /pl

(py%e . A
ha ™ ’ weizn LT X1 (PO /DT

pino(B) = | de

Lns(B)
for any Borel set BC Cand n >k, © = (0y,...,0k,Vk11,...,9,) € [0,1]™.
Applying Theorems 5-10 in [3] with some modifications, we deduce that the
absolutely continuous distributions 1, » converge to a distribution p, with
a density H,(z) and gp’finﬂ(a) =2rH,(—1)>0for1/2<o<1.m

— L, +(O)

For the case J > 3, we cannot do the same thing as for J = 2. However,
by the method of [11], we obtain the following.
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PROPOSITION 3.2. Let J > 3 and 1/2 < o1 < o03. Suppose that
hj(py7e2 .. ,p,;”e%”@k) £ 0 forj =1l1,ls,13, 01 <o <09, and 6 € [0, 1]*.
Then

o2
Ng(01,02;0,7) =T | Hy(0) do + o(T),

g1
where H,(x) is the density of some distribution function fiy.

Proof. By Lemma[2.4] ¢, (o) converges uniformly to g (o) on [1/2, 00).
If pr(o) is twice differentiable, then
T
Ng(o1,09;0,T) = o S op(o)do + o(T).
o1

By Lemma [2.5| with
0= min{|ﬁj(pf062”i91, .. ,plzge%w’“ﬂ |7 =1l,l2,13,
o1 <o<o09,0¢€ [0,1]k} > 0,

we have [i, »(y) < |y|™> and this implies that i, . is absolutely continuous
and its density H, ,(x) is continuous. Let v, , be the asymptotic distribu-
tion of E, (o + it) with respect to |E! (o + it)[%. Since jino(y) = Pno(y)
by Kronecker’s theorem, (i, » = v and H,, , is their common density. By
Lemma O _o(0) = 2nHy o(7). By Lemma H, s(x) converges to
H, () which is the density of some distribution p, = limy, 0 fin,o. There-

fore,
o2

Ng(01,09;0,7) =T | Hy(0)do + o(T). =
o1

By Lemma , each Dirichlet polynomial h;(p;®,...,p, ) has at most a
finite number of linearity intervals of its Jensen function ¢, (o) in [1/2, 00).
Let J; be the union of those intervals. By Lemmas [2.3] and [2.4) and almost
periodicity, h; has no zero in J;. We let ¢; = infJ; > 1/2, and ¢g be the
third smallest ¢;, more precisely, ¢g = ¢, when ¢, < g, < ¢, < --- is the
linear order of ¢1,...,¢s. By combining Lemma and Proposition we
obtain the following theorem.

THEOREM 3.3. Let J > 3 and g < 01 < 02. Suppose that 01,02 € J;
for at least three j. Then
T
Np(01,02:0,T) = o—(¢p(02=) = wp(o1+)) + o(T).
Suppose further that [o1,02) C J; for at least three j. Then
o2
Ng(01,02,0,T) =T | Hy(0)do + o(T),

o1
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where H,(x) is the density of some distribution .. In this case, for o1 <
oo < o2, the number of zeros of E(s) on the line segment Res = og, 0 <
Ims < T is o(T).

If each ij is non-vanishing on Re s > 1/2, the conclusion of Theorem
holds.

THEOREM 3.4. Let J > 3 and 1/2 < 01 < o9. Suppose that ﬁj #£ 0 for
Res > 1/2. Then
02
(3.1) Ng(01,02;0,7) =T | Hy(0) do + o(T),
o1
where H,(x) is the density of a distribution py. For oo > 1/2, the number
of zeros of E(s) on the line segment Res = op and 0 < Ims < T is o(T).

As a consequence, we obtain Theorem [1.1

We now consider the case when Bj is a one-variable polynomial. Then it
has only finitely many solutions, say (1, ..., 0m € C. So izj (p~%) =0 if and
only if p~* = f3; for some ¢. Thus, each line segment Re s = —log |3;|/log p,
0 < Ims < T contains ¢T" 4 O(1) zeros of hj(p~*). So we may not have the
equation for E(s). However, if we disregard these exceptional points,
we obtain the following theorem.

THEOREM 3.5. Let J >3 and 1/2 < 01 < 03. Let
E(S) = Z B](pfsa cee 7p];s)L(87 Xj)a
J<J
where each izj 1 a polynomial of one variable. Then
T
Np(01,02:0.T) = o (¢p(02=) = ¢p(o1+)) + o(T).

Suppose I = Uy, cy<is<s (I 0 11, N 11y) is (1/2,00) minus finitely many
points. If [01,09] C T, then

o2

Ng(01,09;0,T) =T | Hy(0) do + o(T),

o1
where Hy(x) is the density of some distribution u,. For og € J, the number
of zeros of E(s) on the line segment Res = 09, 0 <Ims < T is o(T).

As a consequence, we obtain Theorem
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