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An algorithmic construction of cyclic p-extensions of fields,
with characteristic different from p,
not containing the pth roots of unity

by

RICHARD MASSY (Valenciennes)

Since the nineteenth century, when Kummer theory was first developed,
we know how to build the cyclic p-extensions of fields E//F containing suffi-
ciently many roots of unity, more precisely when F' contains the p™th roots
where p" = [E : F]is the degree of E/F (cf. [6, p. 289]). In 1989, Karpilovsky
[5, p. 389] set the problem of finding an explicit description of all cyclic p-
extensions. In 2002, the author [7] gave an algorithmic construction of any
cyclic p-extension of fields with characteristic different from p, containing
only the pth roots of unity. The next and final step is to eliminate any prim-
itive pth root of unity in the extension. This is what is done in the theorem
stated below. The method uses the notion of a Galois average introduced
in [8] (see also [4]). As a corollary for p = 3, we exhibit an algorithmic
computable primitive element for any cyclic 3-extension.

Here, the notations of [7] have been changed to be more algorithmic and
functional in the cyclotomic descent (so, in this aesthetic sense also, this
paper is an improvement of |7]).

To state the theorem we have to recall briefly the definition of a p-Galois
average [8, Sect. 2]. Let p be a prime number and F be a field of characteristic
not p. Denote by E//F a finite Galois extension where the top field F contains
the group p, of pth roots of unity. Let G, be the characteristic subgroup of
G := Gal(E/F) generated by all the p-Sylow subgroups of G (with G, =1
whenever p 1 |G|). A p-Galois average of E/F is an endomorphism of the
(I, := Z/pZ)-vector space

(B /E*")Cr = {7 € BXJE"? | ¥y € Gy 7(7) = 7},
Precisely, for each ¢ € Hom(G/G), F}), the p-Galois average of E/F' for ¢,
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which we denote gag P is defined by

e G —1\47"
gag/F L (EXJE*P)Gr — (BX/E*P)% | 7 ( H 7(@@(’7 )) ’
¥€G/Gp
where d is the order of G/G, and d~! its inverse in Fy.

THEOREM. Letp be an odd prime number. Let Dq be a field, of character-
istic different from p, not containing the pth roots of unity: Do N p, = {1}.
Let Dy,/Dq be a cyclic p-extension of degree p™ (m € N\ {0}). For each
n € {0,...,m}, denote by D,, the subfield of D,, with degree [D,, : Dy| = p",
and Cy, its pth cyclotomic translation: Cy, = Dy (1p).

(1) Let ¢, be a primitive pth root of unity. There exists a field D1 D Dy,
such that Dy, 11/ Do is a cyclic p-extension of degree p™+1 if and only if there

exists an element § € Cyp, with norm (, over Co: Ng, 1c,(§) = (p-
(2) Assume that in (1) the field Dy,11 exists. Then:

(2.1) A primitive element X1 0f Cr1:= D1 (pp) over Cy, is given by

le+1 = Co(m+1)Ym
where, in succession for each n € {0,...,m}, a primitive element x,4+1 of
Cht1 over Cy is given by
fﬂﬁﬂ = Co(n+1)Yn-
All of this with the following definitions:
® 02,5 CO(n41)s - - - Co(m1) 07€ fized elements of C;
e yo € Cy /C7;
o forallne{l,...,m},

p—1 P -1
ipn—1 I ;
Yn = Tn H Unp (Zn)a Rp = H U%(NCm/Cn (‘S))a
i=1 j=0
e 0, is the generator of the cyclic group Gal(C,,/Cy) defined by
on(Tn
1(; ) :Ncm/cn_l(f), Vn € {2,...,m}, On|Cp_1 = On—1-

(2.2) The trace over D11 Of Tyt in (2.1) provides a primitive element
of Dpy1 over Dy,:
D1 = Dm(TrDm+1/Dm (Tm+1))-
(3) Conversely, assume that there exists an element £ € Cy, with norm
Ne,.jco(€) = G (cf (1)). As in (2), the datum of the cyclic p-extension
D,/ Dy allows us to define algorithmically the elements

Yo, Y1,y Ym—1,T15-+- -3 Tm,01,---,0m-

(3.1) (Cm(y}n/p)/Co) is a cyclic p-extension of degree p™+1.
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(3.2) Let m € Hom(Gal(Co/ Do), ) be the “cyclotomic homomorphism”

defined by
V7 € Gal(Co/Do) V¢ € pp  7(C) = ¢T7).
For any element 41 (in an algebraic closure of Dy containing C,,) such
that .
xfn—i—l = gagm/DO (ym)a

the following properties hold for the field Cp,y1 = Cpp(Tmy1):

o Cpi1/Cy is a cyclic p-extension of degree p™+1;

e Cpi1/Dyo is a Galois extension;

o Gal(Cp,41/Co) admits a unique complement, say Ty, in

Gal(cm—i-l/DO);
o Gal(Cy,+1/Dy) splits into the direct product

Gal(cm+1/D0) = Gal(cm+1/00) X Tm+1.
(3.3) Let Diyy be the fived field of Tyy1 in Coir: Dpgr = Chmit,

m
Necessarily Dy,41 contains Dy,, and Dy,11/Dg is a cyclic p-extension of

degree p™t1.
(3.4) Finally, a primitive element of D1 over Dy, is the following:

Dm-‘rl :Dm( Z T(xm-i‘l))
TETm+1
where Ty,y1 is any element in (3.2).
Proof. (1) Cf. [8, Prop. 7.3].

(2) (2.1) Since C}/Cy is a Kummer extension of degree p, the element yq
exists. From yo, we deduce z1 by z} = yo and o1 such that

o1(z1)/71 = G = Ne,, /¢, (§)-

From z1 and o1, we define

p—1
Y1 =T H oi(z1), z1:= NCm/C1 ()
i=1

Then we deduce z3, o9, and so on until we find x,, and o,,. Assume now that
Yn is defined as in the statement of the Theorem. We have

o) _ /Cn_1<s>ﬁaip”_l <<U()>)

Yn i=1

where

n—1

on(zn) on (NCm/Cn(Q).

Zn B NCm/Cn (5)
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Then, by a straightforward calculation, we get

O'n(yn)
Un

= (Ne,,/c, (§))P.

At this point, instead of the proof of [7], it is more convenient to use

LEMMA. Let L/K be a cyclic p-extension with p, C K, and (o) =
Gal(L/K). Let M/L be a cyclic extension of degree p. For M/K to be a
cyclic extension, it is necessary and sufficient that for any x € L such that
M = L({/x), there exists A € L for which

o(x)/x = NP
with the norm Np g () # 1.
Proof. Standard fact from Galois theory (see [9, p. 15]). m

Here, since Nc, /c,(Ne,,/c,.(§)) = Ne,,jco(§) = ¢ # 1, the Lemma

ensures that Cn(y}/ P)/Cy is a cyclic extension (of degree p"*!). But so is

Cn+1/Co (by translation of D, 1/Dg). Let us write Cp11 = Cn(a}l/p) with
an € Cy. By the Lemma again, there exist A\, € C,, and ¢ € F; for which

onlan)/an =N, Ne,jc,(AaNe,, /0, (67 = 1.

Then we apply the Hilbert Theorem 90: there exist b, € C,¢, and conse-
quently ag € CJ, such that

an, = aobyy,.

To complete the proof of (2.1), it suffices to choose ' € N with i’ = 1+
qp (q € N); indeed, for

-/ -/ -/
- X
Tna1 = by %l P o, = ab € Cy,

_ P _
we have Cyy1 = Cp(2ny1) and ), = Con¥n-

(2.2) Standard fact from number theory: in our situation see [11, Thm.
3.2(2)] or more generally [2, p. 245, Thm. 5.3.5(2)].

(3) (3.1) By the same calculation as in (2.1), we get

(5)/§a Um(fUm) = EYm.

Then it suffices to apply the Lemma.

(3.2) A direct application of [8, Thm. 5.4(1.2)].

(3.3) Here we fill a gap in the proof of [8, Thm. 5.4(2.1)|. Indeed, why does
D41 necessarily have to contain D,,,? We have the Galois parallelogram [10]

[D07 007 Cm—i-b Dm-{—l]

Om(zm))2m = o2
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By construction, the following restriction homomorphisms exist:
rCm+1,Co : Gal(Cm+1/D0) — Gal(CQ/D()),
TCm+1,Cm : Gal(cm+1/D0) — Gal(Cm/Do),
rCn.Co : Gal(Chy /Do) — Gal(Co/Dy),
and clearly
TCmt1,Co = TCm,Co © T"Crny1,Crm -
From [Dy, Co, Crt1, Din1], we deduce |Ty41]| = [Co : Dol |p — 1, and

Tt = 17Cy00,C0(Tm1)| = 1€ 00 (TCpir O (Tm1))|
< |rCm+17Cm (Tint1)| < [Tt l;
then
|rCm+1,Cm(Tm+1)| = |Tm+1| |p -1
Since [Cy, : Co] = p™, we get
TCri1,Com (Tm+1) N Gal(C’m/Co) =1.

Consequently, the image r¢, ., ¢, (Tm+1) is a complement of Gal(Cy,/Ch)
into Gal(C),/Dy). But so is Gal(C,,,/D,,) which is a normal subgroup. Then
necessarily, by the Hauptsatz of Zassenhaus [3, p. 127, 18.2],

TCm—O—LCm (Tm+1) = Gal(Cm/Dm);
and so

TCyyg1:Cm (Tm+1) T
Dm = CTGnal(CWT/DM) = Cmc +1:9 i < CmJ’:;l = Dm+1.

To conclude the proof, it now suffices to apply point (2) of Theorem 5.4
in [8]. =
COROLLARY. When p = 3, the conclusion of the Theorem holds for:

(3-2) @11 = Ny /D (Ym) Y

(3:4) D41 = Din(@mt1 + $$n+1/ym)-

Proof. Indeed, in the definition of the Galois average gagm /D> We have
G3 = Gal(C,,/Ch), whence G/G3 = Gal(Cy/Do) and d = 2 so d~ ' =
(into F3). Let us write Gal(Cy/Dy) =: {1, 79} where 7j(79) = 2. The Galois
parallelogram [Dg, Cy, Cyy, D] implies that Gal(Ch,/Dy,) =: {1, 7} with
Tm = To. Therefore,

gat 10y Tm) = T T Gm)*)? = U (Gim) = Nev /Dy i) T

Now, for any element x;,1 such that

31 = Nep /Do (Ym)Ym,

let Crt1 := Cp(@m+1) and Dyyqq := C’Z{fll where T}, 41 is the unique com-

plement of Gal(Cly,+1/Co) into Gal(Cpy+1/Dp) (cf. Thm. (3.2)). Following
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[8, Thm. 5.4(2.1)], we have the Galois parallelograms
[Do, Co, Crnt1, Dint1ls  [Dmy Cimy Cing1s Dint1]-
For Gal(Cht1/Dm+1) =: {1, Tm+1}, we then have
Tm+1 = Tmn41|Crp = Tm-
Moreover, following [8, Prop. 2.5(4)],
ﬂ € Im(gagm/DO) = Nor"(C,,,/Dy),
with (7)) = 7(Tm) = 7(70) = 2. Indeed, for x%lﬂ = 92T (Ym),
T(Tmi1) (Tm+1($m+1)>3 _ 1
(T )7C) x; Yin

m—+1
and there exists v € F3 such that

Tm—i—l(xm—i-l) _ g
3”7271-1-1 Ym
But 72, = 1. It now suffices to apply @m+41 = 72,1 (@m+1) to get v = 0.
This completes the proof. =

EXAMPLE. Let us take Doy = Qs, the local field of 3-adic numbers. Then
Co = Q3(j) where j := e27/3, For yy = 4 + 64, we have

3= gaZO/DO(él—i—Gj) =284+ 6.

But, following [13, p. 219, Prop. 9], there exists a unique cubic root of 28 in
Q3; we denote it by v/28. Then we can take C; = Cp(x1) with

z1 = (44 65)"/
(any fixed cubic root of 4 + 65). Furthermore,

3 . 3 3 3
4 V2 V2
(Tl(gl)> -2 :< 8') @<3”€F3 mi(21) = j* 8-@'
xy (44 67) 4465 4+ 67

But 72 = 1 and 71(V/28) = v/28 (since v/28 € Q3). Therefore v = 0; and by
our last assertion (3.4), the extension D;/Dy is cyclic of degree 3 with

Dy = Do(ay + (1)) = Qs ((4 +65)'° + ﬁy (4+ 6j>2/3>-

Is it possible now to apply the Theorem one step further? Indeed, we
can by using its first point (1), as we deduce from the Hilbert—Artin—Tate
symbol [1, p. 163, Thm. 9], for the wild place 1 —j, that (4+635,7)1—; = 1;
whence, there exists £ € C1 with norm N¢, /¢, (§) = j. To compute such a &,
we observe, for the valuation ord(;_j), that

11— 65 .
ord(;_j (1 " 213 ) =ord(_;(=9+9j) =5> 3.
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Therefore, following [13, loc. cit.] or [14] with defect theory (generalized in
[12]), there exists # € Q3(j) with 83 = (11 — 65)/(2 + 35). This allows us to
take
¢ 241
(I =F)z(0+ 1)

We have just proved that there exists a field Dy > D; inducing a cyclic
extension Dy /Dy of degree 9.

To build such a field, it now suffices to apply the Theorem for m = 1.
Clearly

a=¢ oy =a101(§07 (€
where o1 is the generator of the cyclic group Gal(C7/Cp) defined by

o(z1) .
et Ney ey (§)-
This gives
jr1(2 4 jo1)(2 + j2x1)?

T A=A )0+ jan) (0 + )2

The extension C (y1 ) /Qs(j) is cyclic of degree 9, but C’l(yl/ ) is not Galois
over Q3. To get such a field, we have to take the Galois average of 7;:

gt /p, (1) = i1 (7h)
(cf. Cor. (3.2)), where:
e classes are mod CIX (for instance, 4 + 65 = z3 )
e Gal(Ci/D;) = {173} (i = 0,1), mile, = o, TO(J) j°
(in particular, for = m + nj, m,n € Qs, 71(0) = 79(#) = m + nj?). Since
m1(21) = V28 22/ (4 + 67), we get
@) = /28 12(8 + 125 4 j2/28 23)(8 4 127 + j¥/2822)?

P (44 65)70(0) + 2 V2823) (4 + 6)mo(0) + j V2B 42
Finally, following (3.4) in the Corollary (or the Theorem), for any z2 (in an
algebraic closure of Q3 containing C1 = Qs(7, (4 + 6])1/3)) such that
V28 21(2 + j221)(0 + jz1)

(2 +]1‘1)(9 +7 xl)
L B+12 45 /28 22)((4 + 65)70(0) + j /28 23)
(8 + 125 + jV/282%)((4 + 65)70(0) + j2V/28 22)

3 =7n(m) =

the field
Dy = Dy (zo 4 23 /y1)

induces a cyclic extension Do/Q3 of degree 9.
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