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An algorithmic construction of cyclic p-extensions of fields,
with characteristic different from p,
not containing the pth roots of unity

by

Richard Massy (Valenciennes)

Since the nineteenth century, when Kummer theory was first developed,
we know how to build the cyclic p-extensions of fields E/F containing suffi-
ciently many roots of unity, more precisely when F contains the pnth roots
where pn = [E : F ] is the degree of E/F (cf. [6, p. 289]). In 1989, Karpilovsky
[5, p. 389] set the problem of finding an explicit description of all cyclic p-
extensions. In 2002, the author [7] gave an algorithmic construction of any
cyclic p-extension of fields with characteristic different from p, containing
only the pth roots of unity. The next and final step is to eliminate any prim-
itive pth root of unity in the extension. This is what is done in the theorem
stated below. The method uses the notion of a Galois average introduced
in [8] (see also [4]). As a corollary for p = 3, we exhibit an algorithmic
computable primitive element for any cyclic 3-extension.

Here, the notations of [7] have been changed to be more algorithmic and
functional in the cyclotomic descent (so, in this aesthetic sense also, this
paper is an improvement of [7]).

To state the theorem we have to recall briefly the definition of a p-Galois
average [8, Sect. 2]. Let p be a prime number and F be a field of characteristic
not p. Denote by E/F a finite Galois extension where the top field E contains
the group µp of pth roots of unity. Let Gp be the characteristic subgroup of
G := Gal(E/F ) generated by all the p-Sylow subgroups of G (with Gp = 1
whenever p - |G|). A p-Galois average of E/F is an endomorphism of the
(Fp := Z/pZ)-vector space

(E×/E×p)Gp = {x ∈ E×/E×p | ∀γ ∈ Gp γ(x) = x}.
Precisely, for each ϕ ∈ Hom(G/Gp,F×p ), the p-Galois average of E/F for ϕ,
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which we denote gaϕE/F , is defined by

gaϕE/F : (E×/E×p)Gp → (E×/E×p)Gp , x 7→
( ∏
γ∈G/Gp

γ(x)ϕ(γ−1)
)d−1

,

where d is the order of G/Gp and d−1 its inverse in F×p .
Theorem. Let p be an odd prime number. Let D0 be a field , of character-

istic different from p, not containing the pth roots of unity : D0 ∩ µp = {1}.
Let Dm/D0 be a cyclic p-extension of degree pm (m ∈ N \ {0}). For each
n ∈ {0, . . . ,m}, denote by Dn the subfield of Dm with degree [Dn : D0] = pn,
and Cn its pth cyclotomic translation: Cn = Dn(µp).

(1) Let ζp be a primitive pth root of unity. There exists a field Dm+1 ⊃ Dm

such that Dm+1/D0 is a cyclic p-extension of degree pm+1 if and only if there
exists an element ξ ∈ Cm with norm ζp over C0: NCm/C0

(ξ) = ζp.
(2) Assume that in (1) the field Dm+1 exists. Then:

(2.1) A primitive element xm+1 of Cm+1 :=Dm+1(µp) over Cm is given by

xpm+1 = c0(m+1)ym

where, in succession for each n ∈ {0, . . . ,m}, a primitive element xn+1 of
Cn+1 over Cn is given by

xpn+1 = c0(n+1)yn.

All of this with the following definitions:

• c02, . . . , c0(n+1), . . . , c0(m+1) are fixed elements of C×0 ;
• y0 ∈ C×0 /C

×p
0 ;

• for all n ∈ {1, . . . ,m},

yn := xn

p−1∏
i=1

σip
n−1

n (zin), zn :=
pn−1−1∏
j=0

σjn(NCm/Cn
(ξ));

• σn is the generator of the cyclic group Gal(Cn/C0) defined by
σn(xn)
xn

= NCm/Cn−1
(ξ), ∀n ∈ {2, . . . ,m}, σn|Cn−1

= σn−1.

(2.2) The trace over Dm+1 of xm+1 in (2.1) provides a primitive element
of Dm+1 over Dm:

Dm+1 = Dm(TrDm+1/Dm
(xm+1)).

(3) Conversely , assume that there exists an element ξ ∈ Cm with norm
NCm/C0

(ξ) = ζp (cf. (1)). As in (2), the datum of the cyclic p-extension
Dm/D0 allows us to define algorithmically the elements

y0, y1, . . . , ym−1, x1, . . . , xm, σ1, . . . , σm.

(3.1) (Cm(y1/p
m )/C0) is a cyclic p-extension of degree pm+1.
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(3.2) Let η ∈ Hom(Gal(C0/D0),F×p ) be the “cyclotomic homomorphism”
defined by

∀τ ∈ Gal(C0/D0) ∀ζ ∈ µp τ(ζ) = ζη(τ).

For any element xm+1 (in an algebraic closure of D0 containing Cm) such
that

xpm+1 = gaηCm/D0
(ym),

the following properties hold for the field Cm+1 := Cm(xm+1):

• Cm+1/C0 is a cyclic p-extension of degree pm+1;
• Cm+1/D0 is a Galois extension;
• Gal(Cm+1/C0) admits a unique complement , say Tm+1, in

Gal(Cm+1/D0);
• Gal(Cm+1/D0) splits into the direct product

Gal(Cm+1/D0) = Gal(Cm+1/C0)× Tm+1.

(3.3) Let Dm+1 be the fixed field of Tm+1 in Cm+1: Dm+1 := C
Tm+1

m+1 .
Necessarily Dm+1 contains Dm, and Dm+1/D0 is a cyclic p-extension of
degree pm+1.

(3.4) Finally , a primitive element of Dm+1 over Dm is the following :

Dm+1 = Dm

( ∑
τ∈Tm+1

τ(xm+1)
)

where xm+1 is any element in (3.2).

Proof. (1) Cf. [8, Prop. 7.3].
(2) (2.1) Since C1/C0 is a Kummer extension of degree p, the element y0

exists. From y0, we deduce x1 by xp1 = y0 and σ1 such that

σ1(x1)/x1 = ζp = NCm/C0
(ξ).

From x1 and σ1, we define

y1 := x1

p−1∏
i=1

σi1(z
i
1), z1 := NCm/C1

(ξ).

Then we deduce x2, σ2, and so on until we find xn and σn. Assume now that
yn is defined as in the statement of the Theorem. We have

σn(yn)
yn

= NCm/Cn−1
(ξ)

p−1∏
i=1

σip
n−1

n

((
σn(zn)
zn

)i)
where

σn(zn)
zn

=
σp

n−1

n (NCm/Cn
(ξ))

NCm/Cn
(ξ)

.
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Then, by a straightforward calculation, we get

σn(yn)
yn

= (NCm/Cn
(ξ))p.

At this point, instead of the proof of [7], it is more convenient to use

Lemma. Let L/K be a cyclic p-extension with µp ⊂ K, and 〈σ〉 =
Gal(L/K). Let M/L be a cyclic extension of degree p. For M/K to be a
cyclic extension, it is necessary and sufficient that for any x ∈ L such that
M = L( p

√
x), there exists λ ∈ L for which

σ(x)/x = λp

with the norm NL/K(λ) 6= 1.

Proof. Standard fact from Galois theory (see [9, p. 15]).

Here, since NCn/C0
(NCm/Cn

(ξ)) = NCm/C0
(ξ) = ζp 6= 1, the Lemma

ensures that Cn(y
1/p
n )/C0 is a cyclic extension (of degree pn+1). But so is

Cn+1/C0 (by translation of Dn+1/D0). Let us write Cn+1 = Cn(a
1/p
n ) with

an ∈ Cn. By the Lemma again, there exist λn ∈ Cn and i ∈ F×p for which

σn(an)/an = λpn, NCn/C0
(λnNCm/Cn

(ξ)−i) = 1.

Then we apply the Hilbert Theorem 90: there exist bn ∈ C×n , and conse-
quently a0 ∈ C×0 , such that

an = a0b
p
ny

i
n.

To complete the proof of (2.1), it suffices to choose i′ ∈ N with ii′ = 1 +
qp (q ∈ N); indeed, for

xn+1 := b−i
′

n y−qn ai
′/p
n , c0n := ai

′
0 ∈ C×0 ,

we have Cn+1 = Cn(xn+1) and xpn+1 = c0nyn.
(2.2) Standard fact from number theory: in our situation see [11, Thm.

3.2(2)] or more generally [2, p. 245, Thm. 5.3.5(2)].
(3) (3.1) By the same calculation as in (2.1), we get

σm(zm)/zm = σp
m−1

m (ξ)/ξ, σm(ym) = ξpym.

Then it suffices to apply the Lemma.
(3.2) A direct application of [8, Thm. 5.4(1.2)].
(3.3) Here we fill a gap in the proof of [8, Thm. 5.4(2.1)]. Indeed, why does

Dm+1 necessarily have to containDm? We have the Galois parallelogram [10]

[D0, C0, Cm+1, Dm+1].
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By construction, the following restriction homomorphisms exist:

rCm+1,C0 : Gal(Cm+1/D0)→ Gal(C0/D0),
rCm+1,Cm : Gal(Cm+1/D0)→ Gal(Cm/D0),
rCm,C0 : Gal(Cm/D0)→ Gal(C0/D0),

and clearly
rCm+1,C0 = rCm,C0 ◦ rCm+1,Cm .

From [D0, C0, Cm+1, Dm+1], we deduce |Tm+1| = [C0 : D0] | p− 1, and

|Tm+1| = |rCm+1,C0(Tm+1)| = |rCm,C0(rCm+1,Cm(Tm+1))|
≤ |rCm+1,Cm(Tm+1)| ≤ |Tm+1|;

then
|rCm+1,Cm(Tm+1)| = |Tm+1| | p− 1.

Since [Cm : C0] = pn, we get

rCm+1,Cm(Tm+1) ∩Gal(Cm/C0) = 1.

Consequently, the image rCm+1,Cm(Tm+1) is a complement of Gal(Cm/C0)
into Gal(Cm/D0). But so is Gal(Cm/Dm) which is a normal subgroup. Then
necessarily, by the Hauptsatz of Zassenhaus [3, p. 127, 18.2],

rCm+1,Cm(Tm+1) = Gal(Cm/Dm);

and so

Dm = CGal(Cm/Dm)
m = C

rCm+1,Cm (Tm+1)
m ≤ CTm+1

m+1 = Dm+1.

To conclude the proof, it now suffices to apply point (2) of Theorem 5.4
in [8].

Corollary. When p = 3, the conclusion of the Theorem holds for :

(3.2) x3
m+1 = NCm/Dm

(ym) ym;
(3.4) Dm+1 = Dm(xm+1 + x2

m+1/ym).

Proof. Indeed, in the definition of the Galois average gaηCm/D0
, we have

G3 = Gal(Cm/C0), whence G/G3 = Gal(C0/D0) and d = 2 so d−1 = 2
(into F×3 ). Let us write Gal(C0/D0) =: {1, τ0} where η(τ0) = 2. The Galois
parallelogram [D0, C0, Cm, Dm] implies that Gal(Cm/Dm) =: {1, τm} with
τm = τ0. Therefore,

gaηCm/D0
(ym) = (ymτm(ym)2)2 = y2

mτm(ym) = NCm/Dm
(ym) ym.

Now, for any element xm+1 such that

x3
m+1 = NCm/Dm

(ym)ym,

let Cm+1 := Cm(xm+1) and Dm+1 := C
Tm+1

m+1 where Tm+1 is the unique com-
plement of Gal(Cm+1/C0) into Gal(Cm+1/D0) (cf. Thm. (3.2)). Following
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[8, Thm. 5.4(2.1)], we have the Galois parallelograms

[D0, C0, Cm+1, Dm+1], [Dm, Cm, Cm+1, Dm+1].

For Gal(Cm+1/Dm+1) =: {1, τm+1}, we then have

τm+1 = τm+1|Cm
= τm.

Moreover, following [8, Prop. 2.5(4)],

x3
m+1 ∈ Im(gaηCm/D0

) = Norη(Cm/D0),

with η(τm) = η(τm) = η(τ0) = 2. Indeed, for x3
m+1 = y2

mτm(ym),

τm(x3
m+1)

(x3
m+1)η(τm)

=
(
τm+1(xm+1)

x2
m+1

)3

=
1
y3
m

and there exists ν ∈ F3 such that
τm+1(xm+1)

x2
m+1

=
ζν3
ym

.

But τ2
m+1 = 1. It now suffices to apply xm+1 = τ2

m+1(xm+1) to get ν = 0.
This completes the proof.

Example. Let us take D0 = Q3, the local field of 3-adic numbers. Then
C0 = Q3(j) where j := e2iπ/3. For y0 = 4 + 6j, we have

x3
1 = gaηC0/D0

(4 + 6j) = 28 4 + 6j.

But, following [13, p. 219, Prop. 9], there exists a unique cubic root of 28 in
Q3; we denote it by 3

√
28. Then we can take C1 = C0(x1) with

x1 = (4 + 6j)1/3

(any fixed cubic root of 4 + 6j). Furthermore,(
τ1(x1)
x2

1

)3

=
τ0(4 + 6j)
(4 + 6j)2

=
( 3
√

28
4 + 6j

)3

⇔
(
∃ν ∈ F3 τ1(x1) = jν

3
√

28
4 + 6j

x2
1

)
.

But τ2
1 = 1 and τ1( 3

√
28) = 3

√
28 (since 3

√
28 ∈ Q3). Therefore ν = 0; and by

our last assertion (3.4), the extension D1/D0 is cyclic of degree 3 with

D1 = D0(x1 + τ1(x1)) = Q3

(
(4 + 6j)1/3 +

3
√

28
4 + 6j

(4 + 6j)2/3
)
.

Is it possible now to apply the Theorem one step further? Indeed, we
can by using its first point (1), as we deduce from the Hilbert–Artin–Tate
symbol [1, p. 163, Thm. 9], for the wild place 1− j, that 〈4+6j, j〉(1−j) = 1;
whence, there exists ξ ∈ C1 with norm NC1/C0

(ξ) = j. To compute such a ξ,
we observe, for the valuation ord(1−j), that

ord(1−j)

(
1− 11− 6j

2 + 3j

)
= ord(1−j)(−9 + 9j) = 5 > 3.
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Therefore, following [13, loc. cit.] or [14] with defect theory (generalized in
[12]), there exists θ ∈ Q3(j) with θ3 = (11− 6j)/(2 + 3j). This allows us to
take

ξ :=
2 + x1

(1− j)x1(θ + x1)
.

We have just proved that there exists a field D2 > D1 inducing a cyclic
extension D2/D0 of degree 9.

To build such a field, it now suffices to apply the Theorem for m = 1.
Clearly

z1 = ξ, y1 = x1σ1(ξ)σ2
1(ξ

2)

where σ1 is the generator of the cyclic group Gal(C1/C0) defined by
σ1(x1)
x1

= j = NC1/C0
(ξ).

This gives

y1 =
jx1(2 + jx1)(2 + j2x1)2

(1− j)3(4 + 6j)(θ + jx1)(θ + j2x1)2
.

The extension C1(y
1/3
1 )/Q3(j) is cyclic of degree 9, but C1(y

1/3
1 ) is not Galois

over Q3. To get such a field, we have to take the Galois average of y1:

gaηC1/D0
(y1) = y2

1τ1(y1)

(cf. Cor. (3.2)), where:

• classes are mod C×3
1 (for instance, 4 + 6j = x3

1 = 1);
• Gal(Ci/Di) = {1, τi} (i = 0, 1), τ1|C0 = τ0, τ0(j) = j2

(in particular, for θ = m + nj, m, n ∈ Q3, τ1(θ) = τ0(θ) = m + nj2). Since
τ1(x1) = 3

√
28x2

1/(4 + 6j), we get

τ1(y1) =
j2 3
√

28x2
1(8 + 12j + j2 3

√
28x2

1)(8 + 12j + j 3
√

28x2
1)2

((4 + 6j)τ0(θ) + j2 3
√

28x2
1)((4 + 6j)τ0(θ) + j 3

√
28x2

1)2
.

Finally, following (3.4) in the Corollary (or the Theorem), for any x2 (in an
algebraic closure of Q3 containing C1 = Q3(j, (4 + 6j)1/3)) such that

x3
2 = y2

1τ1(y1) =
j 3
√

28x1(2 + j2x1)(θ + jx1)
(2 + jx1)(θ + j2x1)

× (8 + 12j + j2 3
√

28x2
1)((4 + 6j)τ0(θ) + j 3

√
28x2

1)
(8 + 12j + j 3

√
28x2

1)((4 + 6j)τ0(θ) + j2 3
√

28x2
1)
,

the field
D2 = D1(x2 + x2

2/y1)

induces a cyclic extension D2/Q3 of degree 9.
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