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Pierre Liardet (Marseille)

1. Introduction. Let q = −a+ i ∈ Z[i] for a positive integer a and

N = {0, 1, . . . , a2}.

Then every Gaussian integer z ∈ Z[i] can be uniquely represented as

z =
∑
j≥0

εj(z)qj

with εj(z) ∈ N . Formally we set εj(z) = 0 for all negative integers j < 0. It
will be convenient sometimes to use infinite or even doubly infinite sequences
(filled with zeros) for the representation of Gaussian integers. We denote the
length of the expansion by

lengthq(z) = max{j ∈ N0 : εj(z) 6= 0}+ 1

and lengthq(0) = 0. (We denote the positive integers by N and use N0 =
N∪{0} for the non-negative integers.) Throughout the paper we will use the
notation logb for the logarithm to base b. The following lemma was proved
in [13].

Lemma 1. There exists a positive constant c such that for all z ∈ Z[i],

| lengthq(z)− log|q| |z| | ≤ c.
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The fundamental domain of the base q representation on Z[i] is defined
by

Fq =
{ ∞∑

l=1

εl
ql

: εl ∈ N ∀l
}
.

This subset of C plays the same rôle for q-adic numeration as the unit
interval does for classical number systems on the integers (cf. [8, 9, 13]).
More generally, radix representations of elements of the ring of integers ZK
of a number field K can be considered. A base α ∈ ZK together with the
digit set D = {0, 1, . . . , |NK|Q(α)| − 1} is called a canonical number system
(cf. [17, 18]) if every ζ ∈ ZK has a representation of the form

ζ =
n∑
l=0

εlα
l

with εl ∈ D for 0 ≤ l ≤ n. The point 0 is an inner point of Fq. This follows
from the general fact that (α,D) is a canonical number system if and only if
the corresponding fundamental domain contains 0 as an inner point (cf. [1]).

Let F : NL+1 → R be any given function (for some L ≥ 0) with
F (0, . . . , 0) = 0. Furthermore, set

sF (z) =
∞∑

j=−L
F (εj(z), εj+1(z), . . . , εj+L(z)).

This means that we consider a weighted sum over all subsequent digital
patterns of length L + 1 of the digital expansion of z. The function sF
is called a block additive function of rank L + 1. This generalises the block
additive digital functions studied in [4] for digital expansions on the rational
integers. This definition readily extends to functions taking values in an
arbitrary abelian group A. We will use this in the general considerations in
Section 5.

For example, for L = 0 we obtain completely additive functions such as
those studied in [16, Section 5], for instance for F (ε) = ε we just have the
sum-of-digits function studied in [10, 13, 14], or if L = 1 and F (ε, η) = 1−δε,η
(δx,y denoting the Kronecker symbol) then sF (n) just counts the number of
times that a digit is different from the preceding one etc.

2. Overview of the results. Our main objective is to get information
on sums

(2.1) SN (x) =
∑
|z|2<N

xsF (z),

where x is a complex variable. It is clear that SN (x) encodes the distribution
of sF (z). For example, if we assume that sF (z) has only non-negative integer
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values then

SN (x) =
∑
k≥0

#{z ∈ Z[i] : |z|2 < N, sF (z) = k}xk.

More generally, let YN denote the random variable induced by the distribu-
tion of sF (z) for |z|2 < N , that is, the distribution function of YN is given
by

(2.2) P{YN ≤ y} =
1

SN (1)
#{|z|2 < N : sF (z) ≤ y}.

Then

(2.3) ExYN =
1

SN (1)

∑
|z|2<N

xsF (z) =
1

SN (1)
SN (x).

In particular, the moment generating function E eλYN and the characteristic
function E eitYN of YN can be expressed with the help of SN (x). (Note that
SN (1) = πN +O(N1/3).)

In what follows we will present three different methods to obtain asymp-
totic information for SN (x). In Section 3 we use a measure-theoretic ap-
proach to show that for real numbers x sufficiently close to 1 we have

(2.4) SN (x) = Φ(x, log|q|2 N)N log|q|2 λ(x)(1 +O(N−κ)),

where Φ(x, t) is a function that is analytic in x and periodic (with period 1)
and Hölder continuous in t, and λ(x) is the dominant eigenvalue of a certain
matrix A(x) defined in (3.1). This representation directly implies that the
random variable

XN =
YN − µ log|q|2 N√

σ2 log|q|2 N

with

µ =
λ′(1)
λ(1)

and σ2 =
λ′′(1)
λ(1)

+
λ′(1)
λ(1)

− λ′(1)2

λ(1)2

satisfies a central limit theorem and we have convergence of all moments.
More precisely, we get (uniformly in y)

1
πN

#
{
|z|2 < N : sF (z) ≤ µ log|q|2 N + y

√
σ2 log|q|2 N

}
=

1√
2π

y�

−∞
e−

1
2
u2
du+ o(1),

and (for every L ≥ 0)

1
πN

∑
|z|2<N

(sF (z)− µ log|q|2 N)L =
1√
2π

∞�

−∞
uLe−

1
2
u2
du+ o(1).
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The drawback of the method given in Section 3 is that it only works for
real numbers x. In Section 4 we present a method that is based on Dirichlet
series that extends (2.4) to a complex neighbourhood of x = 1. Further-
more, we provide upper bounds for SN (x) for complex x with modulus close
to 1. With the help of this extension we are able to provide more precise
distributional results. Besides the central limit theorem we also get a local
limit theorem, that is, asymptotic expansions for the numbers

#{z ∈ Z[i] : |z|2 < N, sF (z) = k}
if k is close to the mean µ log|q|2 N and if sF (z) is integer-valued. Further-
more, we obtain very precise asymptotic expansions of the moments.

Next we consider the sequence sF (z) taking values in a compact abelian
group A. Then the closure of the set {sF (z) : z ∈ Z[i]} is a subgroup of A
denoted by A(F ). The results on exponential sums obtained in Section 4
are used to prove uniform distribution of (sF (z))z∈Z[i] in the groups R/Z
and Z/MZ with respect to the Haar measure λA under natural conditions.
The method gives results on uniform distribution of the values of sF in large
circles, i.e.

lim
N→∞

1
πN

#{z ∈ Z[i] : |z|2 < N, sF (z) ∈ B} = λA(B)

for all B ⊆ A with λA(∂B) = 0.
In Section 5 we use an approach based on ergodic Z[i]-actions and skew

products to extend the distribution results for group-valued sF to well uni-
form distribution with respect to Følner sequences (Qn)n∈N, i.e.

lim
n→∞

1
#Qn

#{z ∈ Qn : sF (z + y) ∈ B} = λA(B)

uniformly in y ∈ Z[i]. This generalises the results on uniform distribution
of (sF (z))z∈Z[i] obtained in Section 4. On the other hand, methods from
ergodic theory do not allow one to obtain error terms, which come as a
natural by-product of the method used in Section 4.

3. A measure-theoretic method. In the following we use ideas de-
veloped in [11, 12]. The measure-theoretic approach to asymptotic questions
about digital functions gives a smooth proof for a real version of the asymp-
totic representation (2.4) for SN (x).

In order to formulate our results we have to introduce some notation.
For every block B = (η0, η1, . . . , ηL) ∈ NL+1 we set B′ = (η1, . . . , ηL) ∈

NL, that is, the block without the first digit, and η(B) = η0, the first digit
of B. Furthermore, set

gF (B) =
L∑
i=0

(F (0, . . . , 0, η0, η1, . . . , ηi)− F (0, . . . , 0, 0, η1, . . . , ηi)).

Note that gF (B) = 0 if η0 = 0.



Block additive functions on the Gaussian integers 303

By the definition of block additive function we directly get the following
property.

Lemma 2. For z ∈ Z[i] let B = B(z) = (ε0(z), . . . , εL(z)) be the block
of the first L+ 1 digits of the q-ary digital expansion of z. Then

sF (z) = gF (B) + sF (v),

where z = ε0(z) + qv.

Now define a matrix A(x) = (AB,C(x))B,C∈NL+1 by

(3.1) AB,C(x) =
{
xgF (B) if C = (B′, l) for some l ∈ N ,
0 otherwise.

Finally, let λ(x) be the dominant eigenvalue of the matrix A(x) that surely
exists if x is close to the positive real axis, in particular, if x is close to 1
(cf. Lemma 4). Note that λ(1) = |q|2.

Theorem 1. The following asymptotic relation holds uniformly for x in
some interval I containing 1:

(3.2)
∑
|z|2<N

xsF (z) = Φ(x, log|q|2 N)N log|q|2 λ(x)(1 +O(N−κ))

with some κ > 0, where Φ(x, t) is 1-periodic and Hölder continuous in t and
continuous in x.

Before we present the proof of Theorem 1 we derive some direct corol-
laries.

Corollary 1. Set

µ =
λ′(1)
λ(1)

and σ2 =
λ′′(1)
λ(1)

+ µ− µ2.

If σ2 > 0 then uniformly for real y,

(3.3)
1
πN

#
{
|z|2 < N : sF (z) ≤ µ log|q|2 N + y

√
σ2 log|q|2 N

}
=

1√
2π

y�

−∞
e−

1
2
u2
du+ o(1),

and for every L ≥ 0,

(3.4)
1
πN

∑
|z|2<N

(sF (z)− µ log|q|2 N)L =
1√
2π

∞�

−∞
uLe−

1
2
u2
du+ o(1).
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Furthermore, we have exponential tail estimates of the form

(3.5)
1
πN

#
{
|z|2 < N : |sF (z)− µ log|q|2 N | ≥ η

√
log|q|2 N

}
� min(e−cη, e−cη

2+O(η3/
√

logN))

for some constant c > 0.

Remark 1. The above result suggests that the distribution of sF (z) for
|z|2 < N can be approximated by a sum of (weakly dependent) random
variables. This is in fact a possible approach to this problem. Observe that
the constant µ can be explicitly calculated from

µ =
λ′(1)
λ(1)

=
1

|q|L+1

∑
B∈NL+1

sF (B).

Of course, this mean value corresponds to the contribution of one block of
length L + 1 in the digital expansion of z that has approximately log|q|2 N
digits. It is also possible to represent σ2 similarly, but this is much more
involved.

Proof of Corollary 1. Let YN denote the random variable that is induced
by the distribution of sF (z) for |z|2 < N given by (2.2). Then (by (2.3)) the
moment generating function of YN is given by

E etYN =
1

SN (1)
SN (et) =

1
π
Φ(et, log|q|2 N)N log|q|2 λ(et)−1(1 +O(N−η)).

Hence, by using the local expansion (recall that λ(1) = |q|2)

log λ(et) = log |q|2 + µt+
σ2

2
t2 +O(t3)

we directly see that the moment generating function of the normalised ran-
dom variable

ZN =
YN − µ log|q|2 N√

σ2 log|q|2 N

is given by

E etZN = e
−t(µ/σ)

√
log|q|2 NE e(t/

q
σ2 log|q|2 N)YN = e

1
2
t2+O(t3/

√
logN).

Of course, this directly translates to (3.3).
Furthermore, convergence of the moment generating function also implies

convergence of all moments, that is, we get (3.4). Finally, the tail estimates
(3.5) are a direct consequence of Chernov type inequalities.

The proof of Theorem 1 runs along the lines of [12, Sections 4 and 5]
and is organised in four steps.
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Step 1 defines a sequence of discrete measures, which are obtained by
suitably rescaling point masses xsF (z). Let δz denote the Dirac measure
supported at {z}. Then we define a family of measures (depending on n
and x) by setting

(3.6) µn,x =

∑
z∈Bn x

sF (z)δz/qn∑
z∈Bn x

sF (z)
,

where
Bn = {z ∈ Z[i] : length(z) ≤ n}.

Using the matrix A(x) introduced in (3.1), we can write the denominator
in (3.6) as

(xgF (B))B ·A(x)n · (δ0,C)TC ,

δ0,C denoting the Kronecker symbol, and T the transposition.
Step 2 uses characteristic functions to show that the sequence µn,x has

a weak limit. The fact that the values xsF (z) are formed from the digital
expansion of z can be used to express the Fourier transforms µ̂n,x of the
measures µn,x,

(3.7) µ̂n,x(t) =

∑
z∈Bn x

sF (z)e(<(tz/qn))∑
z∈Bn x

sF (z)
,

in terms of matrix products. Here t ∈ C and as usual e(·) = e2πi(·). We
define the matrix H(x, t) by setting

HB,C(x, t) = AB,C(x)e(<(tB0)).

This allows us to write

(3.8) µ̂n,x(t) =
v1(x, tq−n) ·H(x, t/qn−1) · · ·H(x, t/q) · v2

v1(x, 0) ·A(x)n · v2

with
v1(x, t) = (xsF (B)e(<(tB0)))B and v2 = (δ0,C)TC .

The matrices (1/λ(x))H(x, t) satisfy the conditions of [12, Lemma 5] (mu-
tatis mutandis) and therefore, the sequence of matrices

Pn(x, t) = λ(x)−nH(x, t/qn−1) · · ·H(x, t/q)

converges to a limit P(x, t) and

(3.9)
‖Pn(x, t)−Pn(x, 0)‖ � |t| for |t| ≤ 1,

‖Pn(x, t)−P(x, t)‖ � (1 + |t|)η(x)|q|−η(x)n for all t,

where

η(x) =
log λ(x)− log |λ1(x)|

log |q|+ log λ(x)− log |λ1(x)|
,
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with λ1(x) denoting the second largest eigenvalue of A(x). These relations
hold uniformly for x in compact subsets of (0,∞).

For |t| ≥ 1, (3.9) together with (3.8) implies

(3.10) |µ̂n,x(t)− µ̂x(t)| � |t|η(x)q−nη(x).
For |t| ≤ 1 and L > K > l we estimate using (3.8):

|µ̂K,x(t)− µ̂L,x(t)|

=
∣∣∣∣λ(x)K

v1(x, tq−K) ·PK−l(q−lt)Pl(t)v2

v1(x, 0) ·A(x)K · v2

− λ(x)L
v1(x, tq−L) ·PL−l(q−lt)Pl(t)v2

v1(x, 0) ·A(x)L · v2

∣∣∣∣
�
∣∣∣∣λ(x)K

v1(x, tq−K) ·PK−l(0)Pl(t)v2

v1(x, 0) ·A(x)K · v2

− λ(x)L
v1(x, tq−L) ·PL−l(0)Pl(t)v2

v1(x, 0) ·A(x)L · v2

∣∣∣∣+ |q|−l|t|

=
∣∣∣∣λ(x)K

v1(x, tq−K) ·PK−l(0)(Pl(t)−Pl(0))v2

v1(x, 0) ·A(x)K · v2

− λ(x)L
v1(x, tq−L) ·PL−l(0)(Pl(t)−Pl(0))v2

v1(x, 0) ·A(x)L · v2

∣∣∣∣+ |q|−l|t|

� |t|
((

λ1(x)
λ(x)

)K−l
+ |q|−l

)
� |t| |q|−η(x)K ,

where we have chosen l = dηKe. Letting L tend to infinity yields

(3.11) |µ̂n,x(t)− µ̂x(t)| � |t|q−nη(x)

for |t| ≤ 1. In particular, (3.10) and (3.11) establish the existence of a (weak)
limiting measure µx.

Remark 2. What we have proved up to now is enough to have the
asymptotic relation (3.2) without error term for all x > 0.

Step 3 establishes estimates for the measure dimension of µx, which will
be needed in Step 4. We define the matrices Iε by setting

(Iε)B,C =
{
δB,C if the block B starts with the digit ε,
0 otherwise.

Clearly I0 + I1 + · · ·+ Ia2 is the identity matrix. Furthermore, we have

µx

(
ε1
q

+
ε2
q2

+ · · ·+ εk
qk

+ q−kF
)

= lim
n→∞

v1(x, 0) · Iε1A(x)Iε2A(x) · · · IεkA(x)A(x)n−k · v2

v1(x, 0) ·A(x)n · v2
.
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The limit can be computed by the Perron–Frobenius theorem and equals

λ(x)−kv1(x, 0) · Iε1A(x)Iε2A(x) · · · Iεkv(x),

where v(x) denotes the (Perron–Frobenius) eigenvector of A(x) associated
to the eigenvalue λ(x) normalised so that

v1(x, 0) · v(x) = 1.

Now we define

ξ(x) = max
ε

max
B

(A(x)Iεv)B
(v(x))B

(this is always finite, since all coordinates of v(x) are strictly positive).
Clearly, ξ(x) < λ(x) and ξ(1) = 1. By definition of ξ(x) we have the com-
ponentwise inequality

A(x)Iεv(x) ≤ ξ(x)v(x),

from which we conclude that

v1(x, 0) · Iε1A(x)Iε2A(x) · · · Iεkv(x) ≤ ξ(x)kv1(x, 0) · v(x) = ξ(x)k

and

(3.12) µx

(
ε1
q

+
ε2
q2

+ · · ·+ εk
qk

+ q−kF
)
�
(
ξ(x)
λ(x)

)k
.

Since (q, {0, . . . , a2}) is a canonical number system, every ball B(z, r)
can be covered by an absolutely bounded number of sets of the form

ε1
q

+
ε2
q2

+ · · ·+ εk
qk

+ q−kF

for k = b− log|q| rc and r < 1. This together with (3.12) implies

(3.13) µx(B(z, r))� rβ(x)

with

β(x) =
log λ(x)− log ξ(x)

log |q|
.

Notice that β(1) = 2, which is no surprise, since µ1 is Lebesgue measure
restricted to F .

Furthermore, we need at most O(|q|2n) times the area of the annulus
B(0, r + ε + |q|−n) \ B(0, r − |q|−n) copies of q−nF to cover the annulus
B(0, r + ε) \B(0, r). This together with (3.12) implies

µx(B(0, r + ε) \B(0, r))� |q|−nβ(x)|q|2n(2r + ε)(ε+ |q|−n)

for all n. Setting n = −dlog|q| εe gives

(3.14) µx(B(0, r + ε) \B(0, r))� (r + ε)εβ(x)−1.

This gives a reasonable estimate if β(x) > 1 or equivalently log ξ(x) <
log λ(x)−log |q|. Since this inequality is satisfied for x = 1 and β(x) depends
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continuously on x, there exists an interval I around x = 1 such that β(x) ≥
β0 > 1 for some β0 < 2.

Step 4 uses the estimates for the measure dimension of µx and a suitable
version of the Berry–Esseen inequality to provide bounds for |µn,x(B(0, r))−
µx(B(0, r))|. Since µn,x(B(0, r)) can be easily related to the sum occurring
in (3.2), this gives the error term in (3.2).

We recall the following result obtained in [12]. The statement uses the
notation c(φ) = (cosφ, sinφ)T .

Proposition 1 ([12, Proposition 1]). Let ν1 and ν2 be two probability
measures in R2 with their Fourier transforms defined by

ν̂k(t) =
�

R2

e(〈x, t〉) dνk(x).

Suppose that

(3.15) ν2(B(0, r + ε) \B(0, r))� εθ

for some 0 < θ < 1 and all r ≥ 0. Then for all r ≥ 0 and T > 0,

(3.16) |ν1(B(0, r))− ν2(B(0, r))|

�
T�

0

2π�

0

Kr(t, T )|ν̂1(tc(φ))− ν̂2(tc(φ))|t dφ dt+ T−2θ/(θ+2),

where the kernel function Kr(t, T ) satisfies

Kr(t, T )� 1
T 2

+ min
(
r2,

r1/2

t3/2

)
.

The implied constant in (3.16) depends only on the implied constant in
(3.15).

Inserting (3.10) and (3.11) into (3.16) with θ = β(x)− 1 yields

(3.17) |µn,x(B(0, r))− µx(B(0, r))|

�
1�

0

Kr(t, T )t|q|−η(x)nt dt+
T�

1

Kr(t, T )tη(x)|q|−η(x)nt dt+ T
−2

β(x)−1
β(x)+1 .

Using the bounds for Kr(t, T ) and setting

log T =
η(x)

η(x) + 1
2 + 2β(x)−1

β(x)+1

n log |q|

yields
|µn,x(B(0, r))− µx(B(0, r))| � |q|−2κ(x)n
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uniformly in r with

κ(x) =
η(x)(β(x)− 1)

(η(x) + 1/2)(β(x) + 1) + 2β(x)− 2
.

Choosing κ to be the minimum attained by κ(x) on a compact interval I,
where β(x) ≥ β0 > 1 for some β0 < 2, gives

(3.18) |µn,x(B(0, r))− µx(B(0, r))| � |q|−2κn

for all x ∈ I.
Now, by definition of µk,x, we have∑

|z|2<N

xsF (z) = v1(x, 0) ·A(x)k · v2 · µk,x(B(0, |q|−k
√
N))

for k = blog|q|2 Nc + M and some integer constant M > 0, which is cho-
sen so that B(0, |q|1−M ) ⊂ F . Inserting (3.18) and v1(x, 0) · A(x)k · v2 =
C(x)λ(x)k +O(λ1(x)k) yields∑
|z|2<N

xsF (z) = C(x)λ(x)kµx(B(0, |q|−k
√
N))+O(λ1(x)k)+O(λ(x)k|q|−2κk)

= N
log|q|2 λ(x)

C(x)λ(x){log|q|2 N}+Mµx(B(0, q{log|q|2 N}−M ))(1 +O(N−κ)).

We observe that the measure µx satisfies the self-similarity relation

µx(B(0, |q|r)) = λ(x)µx(B(0, r))

for r sufficiently small. Setting

Φ(x, t) = C(x)λ(x)t+Mµx(B(0, qt−M )) for t < 1

and noting that (3.13) implies the Hölder continuity of Φ as a function of t
completes the proof of Theorem 1.

Remark 3. For complex values of x this method breaks down, because
the weak limits µx have infinite total variation and are therefore not complex
measures.

4. A Dirichlet series method. The goal of this section is to generalise
Theorem 1 to complex x. The proof relies on Dirichlet series and Mellin–
Perron techniques.

Theorem 2. There exists a complex neighbourhood of x = 1 (that is,
|x− 1| ≤ δ for some δ > 0) such that uniformly

(4.1)
∑
|z|2<N

xsF (z) = Φ(x, log|q|2 N)N log|q|2 λ(x)(1 +O(N−κ))

with some κ > 0, where Φ(x, t) is analytic in x and 1-periodic and Hölder
continuous in t.
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Furthermore, if F is integer-valued with the property that

(4.2) d = gcd{gF (B) : B ∈ NL+1} = 1,

then uniformly for |x− 1| ≥ δ and |<(x)− 1| ≤ δ2,

(4.3)
∑
|z|2<N

xsF (z) � N
log|q|2 λ(|x|)−κ

with some κ > 0 and some δ2 with 0 < δ2 < δ.

Remark 4. We will also show that Φ(x, t) has an explicit representation
(see (4.21)). For example, for the sum-of-digits function sq(z) we have

Φ(x, t) =
X−t

1−X−1

a2∑
l=1

xlX
bt−log|q|2 l

2c

+
X−t

1−X−1

a2∑
l=1

xl
∑
z 6=0

xsq(z)(Xbt−log|q|2 |qz+l|
2c −Xbt−log|q|2 |qz|

2c),

where X abbreviates

X =
x|q|

2 − 1
x− 1

.

The asymptotic representations (4.1) and (4.3) can be used in various
ways (cf. also [5] and [6]). We directly derive asymptotic expansions for mo-
ments (Corollary 2) and a refinement of the central limit theorem stated
in Corollary 1, further a local limit theorem (Corollary 3), uniform distri-
bution in residue classes (Corollary 4) and uniform distribution modulo 1
(Corollary 5).

Corollary 2. For every integer r ≥ 1 we have
1
πN

∑
|z|2<N

sF (z)r = µr(log|q|2 N)r(4.4)

+
r−1∑
l=0

Gr,l(log|q|2 N)(log|q|2 N)l +O(N−κ),

where the functions Gr,l(t) (0 ≤ l < r) are continuous and 1-periodic.

Proof. Since (4.1) is uniform in a neighbourhood of 1 and Φ(x, t) is
analytic in x one can take derivatives at x = 1 of arbitrary order by using
the formula

G(r)(1) =
r!

2πi

�

|x−1|=δ/2

G(x)
(x− 1)r+1

dx.

Furthermore, note that Φ(1, t) = π. Hence, the asymptotic leading term is
given by (λ′(1)/λ(1))r(log|q|2 N)r and has no periodic fluctuations.
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Note that if we combine Corollaries 1 and 2 then we also get error terms
for the central moments of the form

1
πN

∑
|z|2<N

(sF (z)− µ log|q|2 N)L =
1√
2π

∞�

−∞
uLe−

1
2
u2
du+O(N−κ),

for every integer L ≥ 0. Furthermore, if we use the characteristic function
E eitYN = SN (eit)/SN (1) instead of the moment generating function E etYN ,
that is, if we set x = eit in Theorem 2, combined with Berry–Esseen tech-
niques we also get a central limit theorem with error terms:

1
πN

#
{
|z|2 < N : sF (z) ≤ µ log|q|2 N + y

√
σ2 log|q|2 N

}
=

1√
2π

y�

−∞
e−

1
2
u2
du+O((logN)−1/2).

Corollary 3. Suppose that F is integer-valued and that (4.2) holds.
Set

µ(x) =
xλ′(x)
λ(x)

and σ2(x) =
x2λ′′(x)
λ(x)

+ µ(x)− µ(x)2.

Furthermore, for k ∈ K(N) = Z∩ [µ(1− δ2) log|q|2 N,µ(1 + δ2) log|q|2 N ] we
define xk,N by µ(xk,N ) = k/log|q|2 N , where δ and δ2 are from Theorem 2.
Then uniformly for k ∈ K(N),

(4.5) #{z ∈ Z[i] : |z|2 < N, sF (z) = k}

=
Φ(xk,N , log|q|2 N)√
2πσ2(xk,N ) log|q|2 N

N
log|q|2 λ(xk,N )

x−kk,N

(
1 +O

(
1

logN

))
.

Furthermore, if |k − µ log|q|2 N | ≤ C
√

log|q|2 N (for some C > 0) then also

(4.6) #{z ∈ Z[i] : |z|2 < N, sF (z) = k}

=
πN√

2πσ2 log|q|2 N
exp
(
−

(k − µ log|q|2 N)2

2σ2 log|q|2 N

)(
1 +O

(
1√

logN

))
.

Note that µ = µ(1) and σ2 = σ2(1).

Proof. We apply (4.1) and (4.3) and use Cauchy’s formula:

#{z ∈ Z[i] : |z|2 < N, sF (z) = k} =
1

2πi

�

|x|=xk,N

( ∑
|z|2<N

xsF (z)
)
x−k−1 dx,

where xk,N is the saddle point of the asymptotic leading term of the inte-
grand:

N
log|q|2 λ(x)

x−k = e
log λ(x)·log|q|2 N−k log x

.
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We do not work out the details of standard saddle point techniques. We just
refer to [6], where problems of almost the same kind have been discussed.

Corollary 4. Suppose that F is integer-valued and that (4.2) holds.
Then for every integer M ≥ 1 and all m ∈ {0, 1, . . . ,M − 1} we have

1
πN

#{|z|2 < N : sF (z) ≡ m mod M} =
1
M

+O(N−η)

for some η > 0.

Remark 5. Alternatively to condition (4.2) we can assume that sF at-
tains a value that is relatively prime to M . Then the same assertion holds
(cf. Corollary 8).

Proof of Corollary 4. We use (4.3) for all Mth roots of unity x = e2πim/M

and apply simple discrete Fourier techniques.

Corollary 5. Let sF be a block-additive function which attains one ir-
rational value. Then the sequence (sF (z))z∈Z[i] is uniformly distributed mod-
ulo 1.

Remark 6. Note that Corollary 5 in particular applies to sequences of
the kind (αsF (z))z∈Z[i] if sF is integer-valued and α is irrational.

Proof of Corollary 5. We only have to prove that there exists a block
B of length L+ 1 such that gF (B) is irrational. For this purpose we find a
z0 ∈ Z[i] with sF (z0) irrational and with base q representation of minimal
length. Then by Lemma 2 we write z0 = ε0+qv and gF (B) = sF (z0)−sF (v).
Since the base q representation of v has one digit less than the representation
of z0, sF (v) is rational, and therefore gF (B) is irrational.

Choosing xgF (B) = e(hgF (B)) for h ∈ Z \ {0} gives a matrix A(x)
with eigenvalues strictly less than |q|2. By Weyl’s criterion this implies the
assertion.

We now turn to the proof of Theorem 2. For this purpose we will consider
the Dirichlet series

GB(x, s) =
∑

z∈Z[i]\{0}, (ε0(z),...,εL(z))=B

xsF (z)

|z|2s

for B ∈ NL+1. It is easy to see that these series are well defined in a certain
range. Set A1 = maxB∈NL+1 F (B) and A2 = minB∈NL+1 F (B). Then we
have A2 log|q|2 |z| − O(1) ≤ sF (z) ≤ A2 log|q|2 |z| + O(1). Hence, if |x| ≥ 1
then GB(x, s) is surely absolutely convergent for <(s) > 1 + 1

2A1 log|q|2 |x|.
Similarly, if |x| ≤ 1 then GB(x, s) is absolutely convergent for <(s) > 1 −
1
2A2 log|q|2(1/|x|).

Next we provide a representation for GB(x, s) that can be used for ana-
lytic continuation.
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Lemma 3. Define the vectors G(x, s) = (GB(x, s))B∈NL+1 and H(x, s)
= (HB(x, s))B∈NL+1 , where

HB(x, s)=



0 if η(B) = 0,

xsF (η0)

|η0|2s
+
xgF (B)

|q|2s
∑

v∈Z[i]\{0}
(ε0(v),...,εL−1(v))=(0,...,0)

xsF (v)

(
1

|v + η0/q|2s
− 1
|v|2s

)

if η0 = η(B) 6= 0 and B′ = (0, . . . , 0),

xgF (B)

|q|2s
∑

v∈Z[i]\{0}
(ε0(v),...,εL−1(v))=B′

xsF (v)

(
1

|v + η0/q|2s
− 1
|v|2s

)

if η0 = η(B) 6= 0 and B′ 6= (0, . . . , 0).

Then HB(x, s) is absolutely convergent for <(s) > 1
2 + 1

2A1 log|q|2 |x| if
|x| ≥ 1 and for <(s) > 1

2 −
1
2A2 log|q|2(1/|x|) if |x| ≤ 1. More precisely ,

in that range

(4.7) H(x, σ + it)�

{
(1 + |t|)2(1−σ)+A1 log|q|2 |x| if |x| ≥ 1,
(1 + |t|)2(1−σ)−A2 log|q|2 (1/|x|) if |x| ≤ 1,

and a meromorphic continuation of G(x, s) = (GB(x, s))B∈NL+1 is given by

(4.8) G(x, s) =
(
I− 1
|q|2s

A(x)
)−1

H(x, s),

where A(x) is defined in (3.1).

Proof. We use the substitution z = η0 + qv. If ε0(z) = η0 = 0 we have
sF (z) = sF (q) and consequently

GB(x, s) =
1
|q|2s

∑
v∈Z[i]\{0}, (ε0(v),...,εL(v))=B′

xsF (v)

|v|2s
=

1
|q|2s

a2∑
l=0

G(B′,l)(x, s).

Similarly, if η0 > 0 and B′ = (0, . . . , 0) we get

GB(x, s) =
xsF (η0)

|η0|2s
+
xgF (B)

|q|2s
∑

v∈Z[i]\{0}, (ε0(v),...,εL−1(v))=(0,...,0)

xsF (v)

|v + η0/q|2s

=
xgF (B)

|q|2s
∑

v∈Z[i]\{0}, (ε0(v),...,εL−1(v))=(0,...,0)

xsF (v)

|v|2s
+HB(x, s)

=
xgF (B)

|q|2s
a2∑
l=0

G(0,...,0,l)(x, s) +HB(x, s).

Finally, if η0 > 0 and B′ 6= (0, . . . , 0) then the case v = 0 cannot appear and
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we also get

GB(x, s) =
xgF (B)

|q|2s
∑

v∈Z[i]\{0}, (ε0(v),...,εL−1(v))=B′

xsF (v)

|v + η0/q|2s

=
xgF (B)

|q|2s
a2∑
l=0

G(B′,l)(x, s) +HB(x, s).

Now with A(x) = (AB,C(x))B,C∈NL+1 this directly translates to

G(x, s) =
1
|q|2s

A(x)G(x, s) + H(x, s),

which implies (4.8).
Set s = σ + it. Since

| |v + l/η0|2s − |v|2s| � |v|2σ min
(

1,
1 + |t|
|v|

)
it easily follows that HB(x, s) is absolutely convergent for <(s) > 1

2 +
1
2A1 log|q|2 |x| if |x| ≥ 1 and for <(s) > 1

2 −
1
2A2 log|q|2(1/|x|) if |x| ≤ 1,

and that H(x, s) is bounded by (4.7).

If we set an =
∑
|z|2=n x

sF (z) then G(s, x) =
∑

n≥1 ann
−s and Mellin–

Perron’s formula gives (for non-integral N)

(4.9)
∑
n<N

an =
∑

06=|z|2<N

xsq(z) =
1

2πi
lim
T→∞

c+iT�

c−iT
G(x, s)

N s

s
ds

for any sufficiently large c such that the line <(s) = c is contained in the
half-plane of convergence of G(x, s).

We will first use this representation to get upper bounds for the sum∑
06=|z|2<N x

sq(z). For this purpose we have to know something on the dom-
inant eigenvalue λ(x) of A(x).

Lemma 4. If x is sufficiently close to the positive real axis then λ(x) is
a simple eigenvalue of A(x) and all other eigenvalues have smaller modulus.
Furthermore, if F is integer-valued such that (4.2) holds and if x 6= 0 is not
a positive real number then all eigenvalues β of A(x) satisfy

(4.10) |β| < λ(|x|).
Proof. Suppose first that x is a positive real number. Then it easily

follows that A(x) is a primitive irreducible non-negative matrix. We just
have to observe that for every pair of blocks B,C ∈ NL+1 there exists
a Gaussian integer z such that both B and C occur in the q-ary digital
expansion of z. Hence, all elements of A(x)L+1 are positive and consequently
by [22, Theorem 2.1, p. 49], A(x) is primitive and irreducible. Thus, λ(x) > 0
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is simple and all other eigenvalues have smaller modulus. By continuity, this
property remains true if x is sufficiently close to the positive real axis.

Next, suppose that x = |x|eiϕ with 0 < ϕ < 2π. Since |xgF (B)| = |x|gF (B),
[22, Theorem 2.1, p. 36] implies that all eigenvalues β of A(x) satisfy
|β| ≤ λ(|x|). Furthermore, the equality |β| = λ(|x|) holds if and only
if there exists a complex number µ with |µ| = 1 and a diagonal matrix
D = diag(µB)B∈NL+1

with complex numbers µB of modulus |µB| = 1 such
that

A(x) = λDA(|x|)D−1.

Without loss of generality we may assume that µ0···0 = 1.
We now show that in this case µ = 1 and µB = 1 for all B ∈ NL+1, resp.

A(x) = A(|x|). First observe that A0···0, 0···0(x) = 1 (for all x). Thus, µ = 1.
Furthermore, observe that AB,C(x) = AB,C(|x|) 6= 0 implies µB = µC .
Obviously, we have AB,C(x) = AB,C(|x|) 6= 0 if C = (B′, l) (for some l) and
ηB = 0. Thus, if B = (η1, . . . , ηL) is any block in NL+1 then we can consider
the sequence of blocks

B0 = (0, . . . , 0), B1 = (0, . . . , 0, η1), B2 = (0, . . . , 0, η1, η2), . . . , BL = B

and conclude inductively that

1 = µB0 = µB1 = · · · = µB.

However, if (4.2) holds then for every 0 < ϕ < 2π there exists B ∈ NL+1

with eiϕgF (B) 6= 1, and thus xgF (B) 6= |x|gF (B). Consequently, all eigenvalues
β of A(|x|eiϕ) are strictly bounded by |β| < λ(|x|).

Next note that the inverse matrix (I− uA(x))−1 can be written as

(I− uA(x))−1 =
1

det(I− uA(x))
(PBC(u, x))B,C∈NL+1

with polynomials PBC(u, x) having degree in u smaller than D := |NL+1| =
|q|2L+2. As above let λ(x) be the dominating eigenvalue of A(x) and λ2(x),
. . . , λD(x) the remaining ones (where we assume that x is sufficiently close
to the real axis and that all roots are simple). Then by the partial fraction
decomposition we have

(4.11)
PBC(u, x)

det(I− uA(x))
=

CBC(x)
1− uλ(x)

+
D∑
j=2

Cj,BC(x)
1− uλj(x)

for certain (analytic) functions CBC(x) and Cj,BC(x). This also shows that
G(x, s) can be represented as

(4.12) G(x, s) =
K(x, s)

1− 1
|q|2sλ(x)

+
D∑
j=2

Kj(x, s)
1− 1

|q|2sλj(x)
,
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where K(x, s) and Kj(x, s) are linear combinations of the functions HB(x, s)
with coefficients that are analytic in x (cf. also (4.20)).

This shows that (4.8) provides an analytic continuation of G(s, x) to the
range <(s) > log|q|2 |λ(x)| if x is sufficiently close to 1, say |x − 1| ≤ δ.
Furthermore, if |x − 1| ≥ δ and |<(x) − 1| ≤ δ2 then Lemma 4 shows that
all eigenvalues β of A(x) satisfy |β| ≤ λ(|x|)− η′ for some η′. Consequently,
for all x in that range the function G(x, s) is analytic in the half-plane
<(s) > log|q|2(λ(|x|)− η′).

With this knowledge we are now ready to prove the second part of The-
orem 2. The argument is close to that of [14].

Lemma 5. Suppose that F is integer-valued and that (4.2) holds. Then
there exist δ, κ > 0 such that

(4.13)
∑
|z|2<N

xsF (z) � N
log|q|2 λ(|x|)−κ

uniformly for |x− 1| ≥ δ and |<(x)− 1| ≤ δ2.

Proof. Our starting point is formula (4.9). Observe that the integral
there is not absolutely convergent. However, a slight variation of the Mellin–
Perron formula gives

(4.14) S
(2)
N (x) =

∑
06=|z|2<N

xsq(z)
(

1− |z|
2

N

)
=

1
2πi

c+i∞�

c−i∞
G(x, s)

N s

s(s+ 1)
ds

with an integral that will be absolutely convergent in the range of interest.
Suppose now that |x−1| ≥ δ and |<(x)−1| ≤ δ2. Then we already know

that G(x, s) is analytic for <(s) > log|q|2(λ(|x|)− η′) and that

|G(x, s)| � (1 + |t|)2(1−σ)+η′′

if σ = <(s) ≥ log|q|2(λ(|x|)− η′/2) > log|q|2 λ(|x|)− η′′′. It follows that

S
(2)
N (x)� N

log|q|2 λ(|x|)−η′′′
.

It is now easy to derive proper upper bounds for

SN (x) =
∑

06=|z|2<N

xsq(z).

Observe that for every factor % > 1 we have

SN (x) =
%S

(2)
%N (x)− S(2)

N (x)

%− 1
+

1
%− 1

∑
N≤|z|2<%N

xsF (z)

(
1− |z|

2

N

)
.

Set c = log|q|2 λ(|x|)−η′′′. By adjusting δ2 we can assume that c < 1. Finally,
with

% = 1 +N−(1−c)/2
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it follows that

SN (x)� N (1+c)/2N
max(A1 log|q|2 (1+δ2),A2 log|q|2 (1−δ2))

.

Since δ2 can be chosen arbitrarily small it finally follows that

SN (x)� N
log|q|2 λ(|x|)−η

for some η > 0.

In order to prove the asymptotic expansion (4.1) for complex x (close
to 1) we will use the following properties (see also [2, p. 243]).

Lemma 6. Suppose that a and c are positive real numbers. Then∣∣∣∣ 1
2πi

c+iT�

c−iT
as
ds

s
− 1
∣∣∣∣ ≤ ac

πT log a
(a > 1),(4.15)

∣∣∣∣ 1
2πi

c+iT�

c−iT
as
ds

s

∣∣∣∣ ≤ ac

πT log(1/a)
(0 < a < 1),(4.16)

∣∣∣∣ 1
2πi

c+iT�

c−iT
as
ds

s
− 1

2

∣∣∣∣ ≤ C

T
(a = 1).(4.17)

Proof. Suppose first that a > 1. By considering the contour integral of
the function F (s) = as/s around the rectangle with vertices −A − iT, c −
iT, c+ iT,−A+ iT and passing A to infinity one directly gets the represen-
tation

1
2πi

c+iT�

c−iT
as
ds

s
= Res(as/s; s = 0)

+
1

2πi

c�

−∞

ax+iT

x+ iT
dx+

1
2πi

c�

−∞

ax−iT

x− iT
dx.

Since ∣∣∣∣ 1
2πi

c�

−∞

ax±iT

x± iT
dx

∣∣∣∣ ≤ ac

πT log a

we directly obtain the bound in the case a > 1.
The case 0 < a < 1 can be handled in the same way. Finally, in the case

a = 1 the integral can be explicitly calculated (and estimated).

For the formulation of the next lemma we use Iverson’s notation JpK
which is 1 if p is a true proposition and 0 otherwise.

Lemma 7. Suppose that l is a positive real number , λ a non-zero complex
number , c a real number with c > log|q|2 |λ|. Then for all real N > l2,
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(4.18)
1

2πi
lim
T→∞

c+iT�

c−iT

1
l2s

1− 1
|q|2sλ

N s

s
ds

=
λ
blog|q|2 (N/l2)c+1 − 1

λ− 1
− 1

2
λ
blog|q|2 (N/l2)cJlog|q|2(N/l2) ∈ ZK.

Furthermore, if c > max{1, log|q|2 |λ|} and x is sufficiently close to 1 then
for every set of S of Gaussian integers with 0 6∈ S and all irrational numbers
N > 1,

(4.19)
1

2πi
lim
T→∞

c+iT�

c−iT

∑
z∈S x

sF (z)
(

1
|qz+l|2s −

1
|qz|2s

)
1− 1

|q|2sλ

N s

s
ds

=
1

1− λ−1

∑
z∈S

xsF (z)(λblog|q|2 (N/|qz+l|2)c − λblog|q|2 (N/|qz|2)c)

− 1
2

∑
z∈S

xsF (z)λ
blog|q|2 (N/|qz+l|2)cJlog|q|2(N/|qz + l|2) ∈ ZK

+
1
2

∑
z∈S

xsF (z)λ
blog|q|2 (N/|qz|2)cJlog|q|2(N/|qz|2) ∈ ZK +O(1).

Proof. By assumption we have |λ/|q|2s| < 1. Thus, by using a geometric
series expansion and Lemma 6, for all N > 1 such that log|q|2(N/l2) is not
an integer we get

1
2πi

c+iT�

c−iT

1
l2s

1− 1
|q|2sλ

N s

s
ds =

∑
k≥0

λk
1

2πi

c+iT�

c−iT

(
N

|q|2kl2

)sds
s

=
∑

k≤log|q|2 (N/l2)

λk +O
(

1
T

∑
k≥0

|λ|k
(

N
|q|2kl2

)c∣∣log
(

N
|q|2kl2

)∣∣
)

=
λ
blog|q|2 (N/l2)c+1 − 1

λ− 1
+O

(
1
T

(N/l2)c

1− 1
|q|2c |λ|

)
.

If log|q|2(N/l2) is an integer, we can proceed similarly. Of course, this implies
(4.18).

Next assume that neither log|q|2(N/|qz + l|2) nor log|q|2(N/|qz|2) are
integers for all z ∈ S. Hence, if N > |qz + l|2 then

1
2πi

c+iT�

c−iT

1
|qz+l|2s

1− 1
|q|2sλ

N s

s
ds

=
λ
blog|q|2 (N/|qz+l|2)c+1 − 1

λ− 1
+O

(
1
T

∑
k≥0

|λ|k
(

N
|q|2k|qz+l|2

)c∣∣log
(

N
|q|2k|qz+l|2

)∣∣
)
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and if N < |qz + l|2 then we just have

1
2πi

c+iT�

c−iT

1
|qz+l|2s

1− 1
|q|2sλ

N s

s
ds = O

(
1
T

∑
k≥0

|λ|k
(

N
|q|2k|qz+l|2

)c∣∣log
(

N
|q|2k|qz+l|2

)∣∣
)
.

Furthermore, for given N there are only finitely many pairs (k, z) with∣∣∣∣ N

|q|2k|qz + l|2
− 1
∣∣∣∣ < 1

2
.

Hence, the series ∑
z∈S

∑
k≥0

|λ|k
(

N
|q|2k|qz+l|2

)c∣∣log
(

N
|q|2k|qz+l|2

)∣∣
is convergent if x is sufficiently close to 1. Consequently, we get

1
2πi

lim
T→∞

c+iT�

c−iT

∑
z∈S x

sF (z)
(

1
|qz+l|2s −

1
|qz|2s

)
1− 1

|q|2sλ

N s

s
ds

=
1

1− λ−1

∑
z∈S, |z|2<N

xsF (z)(λblog|q|2 (N/|qz+l|2)c − λblog|q|2 (N/|qz|2)c) +O(1).

Finally, since |qz + l|2 = |qz|2(1 +O(1/|z|)) it follows that for x sufficiently
close to 1 we have∑

z∈S, |z|2≥N

xsF (z)(λblog|q|2 (N/|qz+l|2)c − λblog|q|2 (N/|qz|2)c) = O(1).

This proves (4.19) if neither log|q|2(N/|qz + l|2) nor log|q|2(N/|qz|2) are in-
tegers. It is, however, easy to adapt the above calculation in the general
case.

We now come back to the representation (4.12) for G(s, x). We already
mentioned that K(s, x) and Kj(s, x) are linear combinations of the functions
HB(x, y) with coefficients that are analytic in x. We make this explicit for
K(s, x) in the following form:

(4.20) K(s, x) =
a2∑
l=1

c′l(x)
l2s

+
a2∑
l=1

∑
B′∈LL

c′′l,B′(x)
∑

z∈Z[i]\{0}
(ε0(z),...,εL−1(z))=B′

xsF (z)

(
1

|qz + l|2s
− 1
|qz|2s

)
.

Hence, for N > 1 we obtain
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1
2πi

lim
T→∞

c+iT�

c−iT

K(x, s)
1− 1

|q|2sλ(x)
N s

s
ds =

1
1− λ(x)−1

a2∑
l=1

c′l(x)λ(x)blog|q|2
N
l2
c

+
a2∑
l=1

∑
B′∈LL

c′′l,B′(x)

1− λ(x)−1

∑
z 6=0

xsF (z)
(
λ(x)

blog|q|2
N

|qz+l|2
c − λ(x)

blog|q|2
N
|qz|2

c)

− 1
2

a2∑
l=1

c′l(x)λ(x)blog|q|2
N
l2
c
s

log|q|2
N

l2
∈ Z

{

− 1
2

a2∑
l=1

∑
B′∈LL

c′′l,B′(x)
∑
z 6=0

xsF (z)λ(x)
blog|q|2

N
|qz+l|2

c
s

log|q|2
N

|qz + l|2
∈ Z

{

+
1
2

a2∑
l=1

∑
B′∈LL

c′′l,B′(x)
∑
z 6=0

xsF (z)λ(x)
blog|q|2

N
|qz|2

c
s

log|q|2
N

|qz|2
∈ Z

{
+O(1),

where the O(1)-term is uniform for N > 1 and for x in a complex neighbour-
hood of x = 1. Note that the correction terms vanish if N is, for example,
irrational. Actually, we will prove in Lemma 8 that these correction terms
can always be neglected since they sum up to zero in all cases.

Furthermore, note that the right hand side of this representation is of or-
der O(N log|q|2 <(λ(x))). Thus, if we do corresponding calculations for Kj(x, s)
and λj(x) we also get

1
2πi

lim
T→∞

c+iT�

c−iT

Kj(x, s)
1− 1

|q|2sλj(x)
N s

s
ds = O(N log|q|2 <(λj(x))).

Hence, setting

(4.21) Φ(x, t) =
λ(x)−t

1− λ(x)−1

a2∑
l=1

c′l(x)λ(x)bt−log|q|2 l
2c

+
a2∑
l=1

∑
B′∈LL

λ(x)−tc′′l,B′(x)

1− λ(x)−1

∑
z 6=0

xsF (z)(λ(x)t−blog|q|2 |qz+l|
2c−λ(x)bt−log|q|2 |qz|

2c)

and

(4.22) Φ(x, t) = −λ(x)−t

2

a2∑
l=1

c′l(x)λ(x)bt−log|q|2 l
2cJt− log|q|2 l

2 ∈ ZK

− λ(x)−t

2

a2∑
l=1

∑
B′∈LL

c′′l,B′(x)
∑
z 6=0

xsF (z)λ(x)bt−log|q|2 |qz+l|
2cJt−log|q|2 |qz+l|2 ∈ ZK

+
λ(x)−t

2

a2∑
l=1

∑
B′∈LL

c′′l,B′(x)
∑
z 6=0

xsF (z)λ(x)bt−log|q|2 |qz|
2cJt− log|q|2 |qz|2 ∈ ZK
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we end up with the representation

SN (x) = (Φ(x, log|q|2 N) + Φ(x, log|q|2 N))(4.23)

×N log|q|2 λ(x)(1 +O(N−κ)),

where κ > 0 is just the minimal difference between <(λ(x)) and <(λj(x))
(j ≥ 2) when x varies in a sufficiently small neighbourhood of x = 1. By
definition it is clear that Φ(x, t) = Φ(x, t+ 1), Φ(x, t) = Φ(x, t+ 1) and that
Φ(x, t) and Φ(x, t) represent analytic functions in x if t is fixed. However,
Φ(x, log|q|2 N) = 0 if N is irrational. Thus, it is natural to expect that

Φ(x, t) = 0 for all t which is in fact true. The next lemma provides this fact
and also the continuity of Φ(x, t), thus completing the proof of Theorem 2.

Lemma 8. The function Φ(x, t) is Hölder continuous in t and analytic
for x in a complex neighbourhood of x = 1. Furthermore, Φ(x, t) = 0 for all t.

Remark 7. In particular this shows that Φ(x, t) from Theorem 1 equals
Φ(x, t) for real x.

Proof of Lemma 8. First assume that x is real. By considering N =
|q|2(n+t) for n = 0, 1, 2, . . . it follows from Theorem 1 and (4.23) that Φ(x, t)=
Φ(x, t) +Φ(x, t). Furthermore, we have Φ(x, t) = 0 if t is not of the form t =
log|q|2 m− k for some positive integers m and k. (This occurs, for example,
if t = log|q|2 T for some irrational number T .) Since the numbers t with this
property are dense in [0, 1) it follows that Φ(x, t) is continuous in t if and
only if Φ(x, t) = 0 for all t. This observation can also be deduced from the
inequality (4.24) below which is also true for complex x. Hence, continuity
of the mapping t 7→ Φ(x, t) follows from Φ(x, t) = 0 even if x is a complex
number.

We now suppose that t ∈ [0, 1) is of the form t = log|q|2 m− k for some
positive integers m and k where we assume that k is chosen to be minimal.
If s 6= t is also of that form, that is, s = log|q|2 n − j ∈ [0, 1) for positive
integers n and j, then (for a properly chosen constant c > 0) we have

|s− t| ≥ c| |q|2s − |q|2t| ≥ 1
|q|2(k+j)

.

In particular,
|q|2j ≥ c 1

|q|2k|s− t|
.

Observe that only terms of the form λ(x)−j contribute to Φ(x, s); notice
that for these values of t we have n = |qz + l|2 for some z ∈ Z[i] and
l ∈ {0, . . . , a2}. Thus, if we fix some ε > 0 there exists δ > 0 such that

|Φ(x, s)| < ε for all s with |s− t| < δ.
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Next observe that if t = log|q|2 m− k then for 0 < θ < 1,

λ(x)b(t+θ)−log|q|2 l
2c − λ(x)b(t−θ)−log|q|2 l

2c

1− 1/λ(x)
=
λ−k − λ−k−1

1− 1/λ(x)

= λ−k = λ(x)bt−log|q|2 l
2c
.

Thus, by a similar reasoning we also get

(4.24)
∣∣∣∣Φ(x, t+ θ)− Φ(x, t− θ) +

1
2
Φ(x, t)

∣∣∣∣ < ε

if 0 < θ < δ. Furthermore, by continuity of Φ(x, t) = Φ(x, t) + Φ(x, t),

|Φ(x, t+ θ)− Φ(x, t− θ)|

= |Φ(x, t+ θ) + Φ(x, t+ θ)− Φ(x, t− θ) + Φ(x, t− θ)| < ε

in that range. Consequently,

|Φ(x, t)| ≤ 2|Φ(x, t+ θ)− Φ(x, t− θ)|+ 2ε
≤ 2|Φ(x, t+ θ)− Φ(x, t− θ)|+ 6ε < 7ε.

Since ε > 0 can be chosen arbitrarily small it follows that Φ(x, t) = 0.
Thus, we have shown that Φ(x, t) = 0 for all t if x is a real number close

to 1. Since Φ(x, t) is an analytic function in x we also obtain Φ(x, t) = 0
for complex x close to 1. As mentioned above, this implies that Φ(x, t) is
continuous in t even if x is a complex number close to 1.

Similarly we show that Φ(x, t) is Hölder continuous in t. Here we just
have to use a quantified version of (4.24). We leave the details to the reader.

5. A method based on ergodic Z[i]-actions and skew products.
In this section we will consider block additive functions sF taking values
in an abelian group A, hence F : AL+1 → A. The neutral element will be
denoted by 0A. We assume that A is compact metrisable, equipped with
its Haar measure λA, and we introduce the metrisable compact space Ω :=
AZ[i]. The shift Z[i]-action Σ : ζ 7→ Σζ on Ω is defined by setting, for all
ω : z 7→ ωz and all ζ ∈ Z[i],

(Σζ(ω))z := ωζ+z .

For any ω ∈ Ω, consider its orbit closure Kω which is the topological closure
of its orbit

Oω := {Σζ(ω) : ζ ∈ Z[i]}

under the shift. Clearly Kω is a compact subspace of Ω and Σζ(Kω) = Kω

for all ζ ∈ Z[i]. The restriction of Σζ on Kω, still denoted by Σζ , is a
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homeomorphism of Kω, defining the shift Z[i]-action Σ : ζ 7→ Σζ on Kω. By
definition, the couple Kω := (Σ,Kω) is the flow associated to ω.

The function sF can be viewed as an element of the compact space
Ω := AZ[i]. For short we write K(F ) (resp. K(F )) for KsF (resp. KsF ) and
we set I(F ) := {sF (z) : z ∈ Z[i]}.

Lemma 9. Assume that A is a compact metrisable group. Then the clo-
sure A(F ) of the set I(F ) is a subgroup of A.

Proof. It is clear that the neutral element 0A of A belongs to I(F ) so
that, due to compactness, it is enough to prove that a+ a′ ∈ A(F ) for any
a and a′ in A(F ). Let U be any neighbourhood of 0A and let V be another
neighbourhood of 0A such that V + V ⊂ U . By assumption there exist
Gaussian integers z and z′ such that sF (z) − a ∈ V and sF (z′) − a′ ∈ V .
Setting z′′ = z + qlengthq(z)+L+1z′ one gets sF (z′′) − (a + a′) = sF (z) − a +
sF (z′)−a′ ∈ V +V . Hence sF (z′′)−(a+a′) ∈ U , proving that a+a′ ∈ A[F ].

In the next theorem we make use of the following simple result:

Lemma 10. For any neighbourhood V of 0A in A there exists a finite
set B = B(V ) of Z[i] such that for all r ∈ Z[i] there exists b ∈ B such that
sF (r + b) ∈ V .

Proof. We may assume that V = −V otherwise replace V by V ∩ (−V ).
Since I(F ) is dense in A(F ) and A(F ) is compact there exists an integer
N = N(V ) such that

A(F ) ⊆
⋃

z, lengthq(z)≤N

sF (z) + V.

Given any Gaussian integer r, we use the q-adic expansion of r to write the
decomposition r = r′ + qN+L+1t with lengthq(r′) ≤ N + L + 1 and choose
r′′ with lengthq(r′′) ≤ N such that −sF (t) ∈ V + sF (r′′). With b = −r′+ r′′

we get
sF (r + b) = sF (r′′ + qN+L+1t) = sF (r′′) + sF (t) ∈ V.

In addition, from Lemma 1,

length(b) ≤ c+
log(|r′|+ |r′′|)

log |q|
≤ c+

log 2 + log |q|(c+N + L+ 1)
log |q|

≤ c′ +N + L+ 1.

The proof ends by taking B := {z ∈ Z[i] : lengthq(z) ≤ c′ +N + L+ 1}.

We are ready to prove the main result on the topological structure of
K(F ).
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Theorem 3. The flow K(F ) is minimal , that is, if M is a non-empty
compact subspace of K(F ) such that Σζ(M) ⊂ M for all ζ ∈ Z[i] then
M = K(F ).

Proof. Since K(F ) is the orbit closure of sF , it is enough to prove that
sF is uniformly recurrent (see [7, Section 4]). To this end we have to show
that for any neighbourhood W of 0Ω, the neutral element of Ω, the set
S(W ) := {u ∈ Z[i] : Σu(sF )− sF ∈ W} is syndetic, that is, there is a finite
set E such that Z[i] = S(W )+E. We may restrict ourselves to fundamental
neighbourhoods of the form

W (M,U) =
⋂

lengthq(z)≤M

{ω ∈ Ω : ωz ∈ U}

where U is any neighbourhood of 0A. Choose a neighbourhood V of 0A such
that V + V ⊂ U and a finite subset B = B(V ) of Z[i] as in Lemma 10
and let h = max{lengthq(b) : b ∈ B}. Fix any Gaussian integer z and
decompose it as z = z′+qM+L+1r with lengthq(z′) ≤M+L+1. By Lemma 1,
length(−z′) ≤ 2c+M+L+1 and there exists r′ ∈ B such that sF (r+r′) ∈ V .
Now set ζ = −z′+qM+L+1r′. By construction z+ζ = qM+L+1(r+r′), which
implies sF (z + ζ + t) − sF (t) ∈ V for all Gaussian integers t of length at
most M . This means that z + ζ ∈ S(W ) with

lengthq(ζ) ≤ c+
log(|z′|+ |r′| |q|M+L+1)

log |q|
≤ c′′ +M + L+ 1 + h

where c′′ is an absolute constant. Therefore ζ belongs to a finite subset of
Z[i] and consequently S(W ) is syndetic.

Now we introduce tools from ergodic theory to prove rather general dis-
tribution results on block-additive functions. We will use ideas discussed in
more detail in [14] and refer to that paper for a detailed exposition of the
method.

The general idea of the approach motivated by ergodic theory is to build a
dynamical system (X,T, µ) from the underlying digital expansion. The space
X is then a suitably chosen compactification of Z[i], the action T : Z[i] →
Aut(X) is simply addition by elements of Z[i]. Since the compactification
X carries a natural group structure in our case, µ is chosen as the Haar
measure on this group. Since no non-trivial block additive function can be
extended to a continuous or even measurable function on X (see Remark 9
below), we use a trick developed by T. Kamae [15], which overcomes this
problem by constructing a suitable cocycle (we will introduce this notion
below). The fact that the additive function has no extension to X is then
reflected by the non-triviality of the cocycle.
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Consider the infinite product space

Kq = {0, 1, . . . , a2}N0

and embed Z[i] by q-adic digital expansion

ι : Z[i]→ Kq, z 7→ (ε0(z), ε1(z), . . . , εL(z), 0, 0, . . .).

Then it was proved in [14] that addition in Z[i] can be extended continuously
to Kq. By this construction Kq inherits a group structure by

Kq = proj lim
n→∞

Z[i]/qnZ[i].

The corresponding Haar measure µ is the infinite product measure of uni-
form distribution on the digits. The cylinder set of base (x0, . . . , xn) ∈
{0, . . . , a2}n+1 is given by

[x0, . . . , xn] := x0 + x1q + · · ·+ xnq
n + qn+1Kq

= {z ∈ Kq : ε0(z) = x0, . . . , εn(z) = xn}.
The Haar measure of such sets is given by µ([x0, . . . , xn]) = |q|−n−1. The
Gaussian integers Z[i] act on Kq by addition

T : Z[i]→ Aut(Kq), z 7→ (x 7→ x+ z).

This continuous action is uniquely ergodic.

Definition 1. A sequence (Qn)n∈N of finite subsets of Z[i] is called a
Følner sequence if it has the following properties:

(1) Qn ⊂ Qn+1 for all n;
(2) There exists a constant K such that #(Qn−Qn) ≤ K#Qn for all n;

(3) lim
n→∞

#(Qn M (g +Qn))
#Qn

= 0 for all g ∈ Z[i].

(M denotes symmetric difference.)

Classical examples of such sequences are the sequence of balls of radius√
n, Qn = {z ∈ Z[i] : |z|2 < n}, or the squares Qn = {z ∈ Z[i] : |<(z)| < n,
|=(z)| < n}. Another example more connected to digital expansions is the
“discrete q-adic dragons” Qn = {z ∈ Z[i] : lengthq(z) ≤ n}.

We recall that a point x ∈ X is called (T, µ)-generic (or simply generic,
if the underlying action is clear) if

(5.1) ∀f ∈ C(X) : lim
n→∞

1
#Qn

∑
z∈Qn

f ◦ Tz(x) =
�

X

f dµ

for a Følner sequence (Qn)n∈N. By Tempel’man’s ergodic theorem (cf. [19,
Chapter 6, Theorem 4.4]) µ-almost all points are generic. Clearly, for a
uniquely ergodic continuous action every point is generic, and even more:
the convergence in (5.1) is uniform in x.
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For uniquely ergodic non-continuous actions we need additional condi-
tions, which will be developed below, to have the same conclusion. To this
end we introduce the following definition.

Definition 2. Let X be a compact metrisable space and T : Z[i] ×X
→ X a Borel measurable Z[i]-action. A subset A ⊂ X is called uniformly
T -negligible if

∀ε > 0 ∃g ∈ C(X), g ≥ 1A : lim sup
n→∞

∥∥∥∥ 1
#Qn

∑
z∈Qn

g ◦ Tz
∥∥∥∥
∞
< ε

for a Følner sequence (Qn)n∈N.

Definition 3. Let X be a compact metrisable space and T : Z[i] ×X
→ X a Borel measurable Z[i]-action. The action T is called uniformly quasi-
continuous if for every z ∈ Z[i] the set of discontinuity points of Tz is
uniformly T -negligible.

Remark 8. If T is uniformly quasi-continuous and µ is a T -invariant
Borel probability measure on X, then T is µ-continuous.

The following theorem is an adapted version of [21, Annexe, Théorème].
The proof is slightly simplified by the fact that the action is invertible.

Theorem 4. Let T be a uniformly quasi-continuous Z[i]-action on the
compact metric space X and assume that T is uniquely ergodic with invariant
measure λ. Then for any λ-continuous function f we have

(5.2) lim
n→∞

1
#Qn

∑
z∈Qn

f ◦ Tz(x) =
�

X

f dλ

uniformly in x.

Proof. LetRλ denote the Banach space of real-valued λ-continuous func-
tions on X equipped with the uniform norm and let

E = 〈{g − g ◦ Tz : g ∈ Rλ, z ∈ Z[i]}〉.

Then λ defines a linear form on Rλ with ker(λ) ⊆ E. We will show that we
have equality in fact.

Let L : Rλ → R be a continuous linear form with E ⊆ ker(L) and
L(1) = 1. For f ≥ 0 define

|L|(f) = sup{L(g) : g ∈ Rλ, |g| ≤ f}.

Then |L| can be extended to a continuous positive linear form on Rλ. Thus
|L| determines a measure ` on X.

We will now prove that |L| and therefore ` is T -invariant. By definition
we have, for f ≥ 0,
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|L|(f ◦ Tz) = sup{L(g) : g ∈ Rλ, |g| ≤ f ◦ Tz}
≥ sup{L(g ◦ Tz) : g ◦ Tz ∈ Rλ, |g ◦ Tz| ≤ f ◦ Tz} ≥ |L|(f),

where we have used L(g) = L(g ◦ Tz) since E ⊆ ker(L). Applying the same
inequality to f ◦ T−z shows the T -invariance.

By unique ergodicity we have ` = λ. On the other hand, |L| − L is also
a T -invariant positive linear form. Thus we have |L| − L = aλ with a ≥ 0.
Hence L = (1− a)λ and as L(1) = 1 we get a = 0, and we have E = ker(L)
by the Hahn–Banach theorem.

Summing up, for every f ∈ Rλ and every ε > 0 there exist k ∈ N,
g1, . . . , gk ∈ Rλ, and z1, . . . , zk ∈ Z[i] such that∥∥∥f − λ(f)−

k∑
m=1

(gm − gm ◦ Tzm)
∥∥∥
∞
< ε.

Applying the ergodic means to this inequality and using (3) Definition 1
finishes the proof.

We recall the definition of a cocycle:

Definition 4. Let (X,T, µ) be a Z[i]-action on X and A an abelian
group. A T -cocycle (or simply a cocycle, if the underlying action T is fixed)
is a Borel map a : Z[i]×X → A such that

(i) a(g + h, x) = a(g, Thx) + a(h, x) µ-a.e.,
(ii) µ(

⋃
g∈Z[i]({x : Tgx = x} ∩ {x : a(g, x) 6= 0A})) = 0.

If we assume that T is aperiodic, i.e. µ({x : ∃g 6= 0, Tgx = x}) = 0, then
condition (ii) is always satisfied.

A cocycle a is called a coboundary if there exists a Borel map f : X → A
such that

∀x ∈ X, g ∈ Z[i] : a(g, x) = f(Tgx)− f(x).

The skew product (X ×A, T a, µ⊗ λA) corresponding to the cocycle a is
given by

(5.3) T a : Z[i]→ Aut(X ×A), z 7→ ((x, b) 7→ (x+ z, b+ a(z, x))).

Definition 5. An element α ∈ A is said to be an essential value of the
cocycle a if for every neighbourhood N(α) of α in A and for every B ∈ B(X)
(Borel sets) with µ(B) > 0,

(5.4) µ
( ⋃
g∈Z[i]

(B ∩ T−1
g (B) ∩ {x : a(g, x) ∈ N(α)})

)
> 0.

Let
E(a) = {α ∈ A : α is an essential value of a}.
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This definition does not require ergodicity of T . We have the following
proposition.

Proposition 2 (cf. [23]). Let a : Z[i] ×X → A be a cocycle. Then the
following properties hold :

(1) If b : Z[i]×X → A is a coboundary then E(a+ b) = E(a).
(2) E(a) is a closed subgroup of A.
(3) a is a coboundary ⇔ E(a) = {0A}.
Let I be the set of T a-invariant elements in B⊗BA and put

I(a) = {β ∈ A : µ⊗ hA(τβB M B) = 0 for every B ∈ I}
where τβ : X ×A→ X ×A is given by

τβ(x, α) = (x, α+ β).

The set of essential values is directly related to the ergodicity of the skew
product action T a by the following theorem of K. Schmidt.

Theorem 5 ([23, Theorem 5.2]). Let T be an ergodic action on (X,B, µ)
which is assumed to be non-atomic. Then for any cocycle a : G×X → A,

E(a) = I(a).

Corollary 6. If T is ergodic, then

T a is ergodic ⇔ E(a) = A.

The cocycle suitable for our purposes is defined as

(5.5) aF (z, x) =

{
lim
w→x
w∈Z[i]

(sF (w + z)− sF (w)) if the limit exists,

0 otherwise.
The limit exists if the carry propagation in the addition x + z terminates
after finitely many steps. It was proved in [14] that for almost all x ∈ Kq the
addition x+ z produces only finitely many carries. Thus aF (z, x) is defined
for µ-almost all x. Furthermore, since aF (z, ·) is constant on cylinder sets
defined by the different possible carries in the addition x + z (cf. [14]),
aF is also µ-continuous. Moreover, the set of discontinuity points of aF (z, ·)
is closed, hence it is also uniformly T -negligible by the unique ergodicity
of the continuous action T . Thus we have proved

Lemma 11. The skew product action T aF given by (5.3) is uniformly
quasi-continuous.

We naturally define

V (aF ) = {aF (z, x) : x ∈ Kq, z ∈ Z[i]},
the closed subgroup consisting of the values of aF . Recalling the definition
of the group A(F ) = {sF (z) : z ∈ Z[i]}, we readily have
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Proposition 3. The groups generated by the values of sF and aF are
equal :

V (aF ) = A(F ) = {sF (z) : z ∈ Z[i]} .

Proposition 4. Let sF be a block additive function on Z[i] and aF be
the corresponding cocycle on Kq. Then the set of essential values of aF equals
the closed subgroup A(F ) of A generated by the values of sF :

E(aF ) = A(F ).

Proof. We need the following lemma which is the analog of [3, Lemma 12]
but in the case of cocycles for a Z[i]-action.

Lemma 12. Let α ∈ A and assume that for any neighbourhood V = V (α)
of α in A there exists a constant κ > 0 such that for every non-empty
cylinder set C of Kq there exists ζ ∈ Z[i] such that

µ(C ∩ Tζ(C) ∩ {x ∈ Kq : aF (ζ, x) ∈ V }) ≥ κµ(C).

Then α ∈ E(aF ).

Proof of Lemma 12. Set for short W (V, ζ) := {x ∈ Kq : aF (ζ, x) ∈ V }.
If B is a Borel subset of Kq, then due to the regularity of the Haar measure,
for any ε > 0 (and ε < 1), there exists a non-empty cylinder set C such that
µ(B ∩ C) ≥ (1− ε)µ(C), hence µ(C \ (B ∩ C)) ≤ εµ(C), leading to

µ(B ∩ Tζ(B) ∩W (V, ζ)) ≥ µ((B ∩ C) ∩ Tζ(B ∩ C) ∩W (V, ζ))
≥ µ(C ∩ Tζ(C) ∩W (V, ζ))− 2εµ(C).

Choose ζ such that µ(C ∩Tζ(C)∩W (V, ζ)) ≥ κµ(C) and ε < κ/2. Then we
get µ(B ∩ Tζ(B) ∩W (V, ζ)) > 0. Hence ζ ∈ E(aF ) as expected.

Going back to the proof of Proposition 4, it is enough to prove that
aF (y, z0) ∈ E(aF ) for all y, z0 ∈ Z[i], where y = (y0, y1, . . . , yt)q. Let C be
any non-empty cylinder set, say

C = [ε0, ε1, . . . , εk].

Set ζ = qk+L+3z0 and consider

C0 = [ε0, ε1, . . . , εk, 0, . . . , 0︸ ︷︷ ︸
L+2

, y0, y1, . . . , yt, 0, . . . , 0︸ ︷︷ ︸
M

]

with M = 4 + max(0, lengthq(z0) − t). One has µ(C0) = κµ(C) with κ =
1/|q|M+t+L+2. The M digits 0 at the end ensure that there is no carry
propagation beyond the k+L+ t+M + 4 fixed digits. This means that for
any x ∈ C0,

aF (ζ, x) = aF (z0, y) and C0 ⊂ C ∩ T−1
ζ (C).
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This implies that for any neighbourhood V of aF (z0, y),

µ(C ∩ T−1
ζ (C) ∩W (V, ζ)) ≥ κµ(C),

and Lemma 12 gives aF (z0, y) ∈ E(aF ).

Remark 9. By considering both Proposition 3 and Proposition 2(3) one
sees that if sF can be extended to a measurable map on Kq, then the cocycle
aF is a coboundary, hence sF is trivial, i.e., sF (z) = 0A for all z ∈ Z[i].

Putting together Proposition 4, Corollary 6, and Lemma 11 we obtain

Proposition 5. Let sF be a block additive function taking its values in
the compact abelian metrisable group A, let aF be the corresponding cocycle
defined by (5.5), and assume that A(F ) = A. Then the skew product T aF
is uniquely ergodic and more precisely , for all µ ⊗ λA-continuous maps f :
X ×A→ C,

lim
n→∞

1
#Qn

∑
z∈Qn

f ◦ T aFz (x, g) =
�

X×A
f d(µ⊗ λA)

uniformly in (x, g) ∈ Kq.

Corollary 7. Let sF be a real-valued block additive function which
attains an irrational value. Then (sF (z))z∈Z[i] is well uniformly distributed
modulo 1 with respect to any Følner sequence (Qn)n∈N, i.e.

lim
n→∞

1
#Qn

#{z ∈ Qn : {sF (z + y)} ∈ I} = λ(I)

for every interval I ⊂ [0, 1] ({·} denotes the fractional part), uniformly in
y ∈ Z[i].

Proof. The assumption that sF attains an irrational value clearly implies
that V (aF (mod 1)) = R/Z. By Weyl’s criterion (cf. [20]) the assertion is
equivalent to

∀k ∈ Z \ {0} : lim
n→∞

1
#Qn

∑
z∈Qn

e(ksF (z + y)) = 0

uniformly in y ∈ Z[i]. The points (y, 0) are uniformly generic for T aF by
Proposition 5. Now, by definition of T aF we have

T aFz (y, 0) = (y + z, aF (z, y))
= (y + z, sF (y + z)− sF (y)) (mod 1).

Genericity of (y, 0) implies

lim
n→∞

1
#Qn

∣∣∣ ∑
z∈Qn

χ0 ⊗ ek(T aFz (y, 0))
∣∣∣ = lim

n→∞

1
#Qn

∣∣∣ ∑
z∈Qn

e(ksF (y + z))
∣∣∣ = 0,
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where χ0 denotes the trivial character of Kq and ek(·) = e(k·). The conver-
gence is uniform in y ∈ Z[i].

Corollary 8. Let sF be an integer-valued block additive function. Then
for any integer M ≥ 2 for which there exists a value sF (z) that is coprime to
M the sequence (sF (z))z∈Z[i] is well uniformly distributed in residue classes
modulo M with respect to any Følner sequence (Qn)n∈N, i.e.

lim
n→∞

1
#Qn

#{z ∈ Qn : sF (z + y) ≡ m (mod M)} =
1
M

for m ∈ {0, 1, . . . ,M − 1}, uniformly in y ∈ Z[i].

Proof. After observing that V (aF (mod M)) = Z/MZ, the proof runs
along the same lines as the proof of Corollary 7.

References

[1] S. Akiyama and J. M. Thuswaldner, Topological properties of two-dimensional num-
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[18] B. Kovács and A. Pethő, Canonical systems in the ring of integers, Publ. Math.
Debrecen 30 (1983), 39–45.

[19] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[20] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley-Inter-

science, New York, 1974.
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