On differential independence of the Riemann zeta function and the Euler gamma function

by

BAO QIN LI (Miami, FL) and ZHUAN YE (DeKalb, IL)

It is well-known ([2] and [4]) that Γ , as well as ζ , is not a solution of any algebraic differential equation with coefficients in \mathbb{C} . In other words, if $P(u_0, u_1, \ldots, u_m)$ is any polynomial in u_0, u_1, \ldots, u_m over \mathbb{C} , and

$$P(\Gamma, \Gamma', \dots, \Gamma^{(m)})(z) \equiv 0 \text{ or } P(\zeta, \zeta', \dots, \zeta^{(m)})(z) \equiv 0,$$

for all $z \in \mathbb{C}$, then the polynomial P is identically zero. This answers Hilbert's conjecture [1] in his 18th problem. For a detailed discussion of this subject and other related topics, we refer the reader to [5].

Let $h(z) = \zeta(\sin(2\pi z))$. Recently, Markus [3] proved that if

$$P(h, h', \dots, h^{(m)}; \Gamma, \Gamma', \dots, \Gamma^{(n)})(z) \equiv 0 \quad \text{for } z \in \mathbb{C},$$

then the polynomial $P(u_0, u_1, \ldots, u_m; v_0, v_1, \ldots, v_n)$ is identically zero. Thus, in the terminology of differential algebraic theory, Γ and h are differentially independent over \mathbb{C} (hence, over $\mathbb{C}(z)$). Furthermore, Markus [3] conjectured that if

$$P(\zeta,\zeta',\ldots,\zeta^{(m)};\Gamma,\Gamma',\ldots,\Gamma^{(n)})(z) \equiv 0 \quad \text{for } z \in \mathbb{C},$$

then the polynomial $P(u_0, u_1, \ldots, u_m; v_0, v_1, \ldots, v_n)$ is identically zero, i.e. Γ and ζ are differentially independent. In this short note, we prove that ζ and Γ cannot satisfy a class of algebraic differential equations.

Let $P(u_0, u_1, \ldots, u_m; v_0, v_1, \ldots, v_n)$ be any polynomial with coefficients in \mathbb{C} . For a non-negative integer μ , we let

$$\Lambda = \Lambda(\mu) = \{(\lambda_0, \lambda_1, \dots, \lambda_{\mu}) : \lambda_j \text{ is a non-negative integer} \\ \text{and } 0 \le j \le \mu < \infty\}$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 33B15; Secondary 12H05, 30D35, 34M15.

Key words and phrases: the Riemann zeta-function, the Euler gamma-function, algebraic differential equation.

be a finite index set. Define

$$|\lambda| = \sum_{j=0}^{\mu} \lambda_j \quad \text{and} \quad \Lambda_k = \{\lambda \in \Lambda : |\lambda| = k\};$$
$$|\lambda|_* = \sum_{j=0}^{\mu} j\lambda_j \quad \text{and} \quad \Lambda_k^* = \{\lambda \in \Lambda : |\lambda|_* = k\}.$$

Thus, there is a non-negative integer N such that

$$P(u_0, u_1, \dots, u_m; v_0, v_1, \dots, v_n) = \sum_{j=0}^N \sum_{\lambda \in \Lambda_j} a_\lambda(u_0, \dots, u_m) v_0^{\lambda_0} v_1^{\lambda_1} \cdots v_n^{\lambda_n},$$

where $a_{\lambda}(u_0, u_1, \ldots, u_m)$ is a polynomial in u_0, u_1, \ldots, u_m with coefficients in \mathbb{C} . Set, for $j = 0, 1, \ldots, N$,

$$P_j(u_0, u_1, \dots, u_m; v_0, v_1, \dots, v_n) = \sum_{\lambda \in \Lambda_j} a_\lambda(u_0, \dots, u_m) v_0^{\lambda_0} v_1^{\lambda_1} \cdots v_n^{\lambda_n}.$$

For simplicity, we write $P(u_0, u_1, \ldots, u_m; v_0, v_1, \ldots, v_n)$ as P(u; v) if it does not cause confusion, and similarly for $P_j(u; v)$. Further, we write

(1)
$$P_j(u;v) = \sum_{p=0}^{M_j} \sum_{\lambda \in \Lambda_j \cap \Lambda_p^*} a_\lambda(u_0,\ldots,u_m) v_0^{\lambda_0} v_1^{\lambda_1} \cdots v_n^{\lambda_n},$$

where M_j is a non-negative integer and, in the same manner,

(2)
$$P_{j,p}(u;v) = \sum_{\lambda \in \Lambda_j \cap \Lambda_p^*} a_\lambda(u_0,\ldots,u_m) v_0^{\lambda_0} v_1^{\lambda_1} \cdots v_n^{\lambda_n}.$$

Consequently, we obtain

(3)

$$P_{j}(u;v) = \sum_{p=0}^{M_{j}} P_{j,p}(u;v),$$

$$P(u;v) = \sum_{j=0}^{N} P_{j}(u;v) = \sum_{j=0}^{N} \sum_{p=0}^{M_{j}} P_{j,p}(u;v).$$

THEOREM. Let P(u; v) be a non-trivial polynomial defined as in (3). If

$$\sum_{\lambda \in A_j \cap A_p^*} a_\lambda(u_0, \dots, u_m) \neq 0 \quad whenever \quad P_{j,p}(u; v) \neq 0.$$

for all possible j's and p's, then

$$P(\zeta, \zeta', \dots, \zeta^{(m)}; \Gamma, \Gamma', \dots, \Gamma^{(n)})(z) \neq 0.$$

To prove our theorem, we need the following celebrated theorem.

334

LEMMA (Voronin, [7]). For any $1/2 < \sigma < 1$, the curve $(\zeta(\sigma + it), \zeta'(\sigma + it), \ldots, \zeta^{(m)}(\sigma + it)), -\infty < t < \infty$, is everywhere dense in \mathbb{C}^{m+1} .

Proof of Theorem. If N = 0, then P(u; v) is a polynomial in u_0, u_1, \ldots, u_m only; denote it by $P_0(u)$. If $P_0(u) = P_{0,0}(u) \neq 0$ at a point $w_* = (w_0, w_1, \ldots, w_m) \in \mathbb{C}^{m+1}$, then there is a neighborhood U of w_* such that $P_0(u) \neq 0$ for $u \in U \subset \mathbb{C}^{m+1}$. By Voronin's lemma, there is a sequence of positive real numbers t_q such that

$$(\zeta, \zeta', \dots, \zeta^{(m)})(3/4 + it_q) \in U$$

for all large q. Therefore,

$$P_0(\zeta,\zeta',\ldots,\zeta^{(m)})(3/4+it_q)\neq 0$$

for all large q and the theorem is proved in this case.

We now assume that N in (3) is greater than zero. Since P(u; v) is nontrivial, we can assume that $P_{j_0}(u; v)$ is the first one that is not identically zero in the sequence

$$P_0(u; v), P_1(u; v), \dots, P_N(u; v),$$

and that $P_{j_0,p_0}(u;v)$ is the first one that is not identically zero in the sequence

$$P_{j_0,M_{j_0}}(u;v), P_{j_0,M_{j_0}-1}(u;v), \dots, P_{j_0,0}(u;v).$$

Without loss of generality, we may assume that $c = j_0$ and $d = M_{j_0}$ for simplicity. It is clear from (3) that

$$P(\zeta,\zeta',\ldots,\zeta^{(m)};\Gamma,\Gamma',\ldots,\Gamma^{(n)})(z) \neq 0$$

if and only if

(4)
$$\frac{P(\zeta,\zeta',\ldots,\zeta^{(m)};\Gamma,\Gamma',\ldots,\Gamma^{(n)})(z)}{\Gamma^{N}(z)}$$
$$=\sum_{j=0}^{N}\frac{1}{\Gamma^{N-j}(z)}\sum_{p=0}^{M_{j}}P_{j,p}(\zeta,\zeta',\ldots,\zeta^{(m)};1,\Gamma'/\Gamma,\ldots,\Gamma^{(n)}/\Gamma)(z)$$
$$=\sum_{j=0}^{N}\frac{1}{\Gamma^{N-j}(z)}P_{j}(\zeta,\zeta',\ldots,\zeta^{(m)};1,\Gamma'/\Gamma,\ldots,\Gamma^{(n)}/\Gamma)(z) \neq 0.$$

Now we estimate the term $P_{c,d}(\zeta, \zeta', \ldots, \zeta^{(m)}; 1, \Gamma'/\Gamma, \ldots, \Gamma^{(n)}/\Gamma)(z)$. It is known (e.g. [6, p. 151]) that

$$\log \Gamma(z) = (z - 1/2) \log z - z + \frac{1}{2} \log(2\pi) + \int_{0}^{\infty} \frac{[u] - u + 1/2}{u + z} \, du.$$

It follows that there is a $\delta > 0$ such that

 $\Gamma'(z) = (1 + o(1))\Gamma(z)\log z$

uniformly for all $z \in \mathbb{C} \setminus \{z : |\arg z - \pi| \leq \delta\}$, where o(1) stands for a

quantity that goes to zero as $|z| \to \infty$. Similarly, for any positive integer q, there exists a $\delta > 0$ such that

$$\Gamma^{(q)}(z) = (1 + o(1))(\log z)^q \Gamma(z)$$

uniformly for all $z \in \mathbb{C} \setminus \{z : |\arg z - \pi| \leq \delta\}$. Thus, from (2) we find that

(5)
$$P_{c,d}(\zeta,\zeta',\ldots,\zeta^{(m)};1,\Gamma'/\Gamma,\ldots,\Gamma^{(n)}/\Gamma)(z) = (\log z)^d \sum_{\lambda \in \Lambda_c \cap \Lambda_d^*} a_\lambda(\zeta,\zeta',\ldots,\zeta^{(m)})(z)(1+o(1))^{\lambda_1}\cdots(1+o(1))^{\lambda_n}$$

uniformly for all $z \in \mathbb{C} \setminus \{z : |\arg z - \pi| \le \delta\}.$

Since $\sum_{\lambda \in \Lambda_c \cap \Lambda_d^*} a_\lambda(u_0, \ldots, u_m)$ is not identically zero, there are a $\delta_0 > 0$ and a bounded neighborhood U of $w_* = (w_0, w_1, \ldots, w_m)$ such that

$$\left|\sum_{\lambda \in \Lambda_c \cap \Lambda_d^*} a_\lambda(u_0, \dots, u_m)\right| \ge \delta_0 \quad \text{ for } u = (u_0, u_1, \dots, u_m) \in U \subset \mathbb{C}^{m+1}.$$

By Voronin's lemma, there is a sequence $\{t_q\}_{q=1}^{\infty}$ of positive real numbers converging to ∞ such that

$$(\zeta(3/4+it_q),\zeta'(3/4+it_q),\ldots,\zeta^{(m)}(3/4+it_q)) \in U$$

for all $q = 1, 2, \ldots$. It follows from (5) that there are an $\varepsilon_0 > 0$ and q_0 such that, for $z_q = 3/4 + it_q$,

$$|P_{c,d}(\zeta,\zeta',\ldots,\zeta^{(m)};1,\Gamma'/\Gamma,\ldots,\Gamma^{(n)}/\Gamma)(z_q)| \ge \varepsilon_0 |\log z_q|^d$$

for all large $q \ge q_0$. If d = 0, then (1) gives

$$|P_c(\zeta, \zeta', \dots, \zeta^{(m)}; 1, \Gamma'/\Gamma, \dots, \Gamma^{(n)}/\Gamma)(z_q)|$$

= $|P_{c,0}(\zeta, \zeta', \dots, \zeta^{(m)}; 1, \Gamma'/\Gamma, \dots, \Gamma^{(n)}/\Gamma)(z_q)| \ge \varepsilon_0$

for all large q. If $d \ge 1$, then noting that $\zeta^{(p)}(z_q)$ is bounded for any p and all large q, we see from (1) that

$$\begin{aligned} |P_c(\zeta,\zeta',\ldots,\zeta^{(m)};1,\Gamma'/\Gamma,\ldots,\Gamma^{(n)}/\Gamma)(z_q)| \\ &\geq \varepsilon_0 |\log z_q|^d - C |\log z_q|^{d-1} \to \infty \quad \text{as } q \to \infty, \end{aligned}$$

where C is an absolute positive constant. Therefore, for any $d \ge 0$,

(6)
$$|P_c(\zeta,\zeta',\ldots,\zeta^{(m)};1,\Gamma'/\Gamma,\ldots,\Gamma^{(n)}/\Gamma)(z_q)| \ge \varepsilon_0,$$

and, for any d ,

(7)
$$|P_p(\zeta,\zeta',\ldots,\zeta^{(m)};1,\Gamma'/\Gamma,\ldots,\Gamma^{(n)}/\Gamma)(z_q)| \le C |\log z_q|^{M_p}$$

for all large q. It is also known that (e.g. [6, p. 151]),

$$|\Gamma(3/4 + iy)| \sim e^{-\pi|y|/2} |y|^{1/4} \sqrt{2\pi}$$

as $y \to \infty$. If c < N, we deduce from (4), (6) and (7) that

$$\left|\frac{P(\zeta,\zeta',\ldots,\zeta^{(m)};\Gamma,\Gamma',\ldots,\Gamma^{(n)})(z_q)}{\Gamma^N(z_q)}\right|$$
$$=\left|\sum_{j=c}^N \frac{1}{\Gamma^{N-j}(z_q)} P_j(\zeta,\zeta',\ldots,\zeta^{(m)};1,\Gamma'/\Gamma,\ldots,\Gamma^{(n)}/\Gamma)(z_q)\right|$$
$$\geq \varepsilon_0 \left(\frac{e^{\pi t_q/2}}{t_q^{1/4}\sqrt{2\pi}}\right)^{N-c} - C|\log z_q|^{M_N} \left(\frac{e^{\pi t_q/2}}{t_q^{1/4}}\right)^{N-c-1} \to \infty$$

as $q \to \infty$, which completes the proof of the theorem in this case. If c = N, then

$$P(\zeta, \zeta', \dots, \zeta^{(m)}; \Gamma, \Gamma', \dots, \Gamma^{(n)})(z_q)$$

= $\Gamma^N(z_q) P_N(\zeta, \zeta', \dots, \zeta^{(m)}; 1, \Gamma'/\Gamma, \dots, \Gamma^{(n)}/\Gamma)(z_q) \neq 0$

for all large q, where we choose z_q as in (6). Thus, the theorem is proved in this case. Therefore, we have completely proved the theorem.

COROLLARY. If a non-trivial polynomial has the form $P(u_0, u_1, \ldots, u_m; v_0, v_1)$, then

$$P(\zeta, \zeta', \dots, \zeta^{(m)}; \Gamma, \Gamma')(z) \neq 0.$$

Proof. For all possible j's and p's, the set $\Lambda_j \cap \Lambda_p^*$ only contains one element. So, the assumption in the theorem is satisfied. The corollary is proved.

References

- [1] D. Hilbert, *Die Hilbertschen Probleme*, Geest & Portig, Leipzig, 1979.
- [2] O. Hölder, Über die Eigenschaft der Γ-Funktion, keiner algebraischen Differentialgleichung zu genügen, Math. Ann. 28 (1887), 1–13.
- [3] L. Markus, Differential independence of Γ and ζ, J. Dynam. Differential Equations 19 (2007), 133–154.
- [4] A. Ostrowski, Über Dirichlet Reihen und algebraische Differentialgleichungen, Math. Z. 8 (1920), 241–298.
- [5] J. Steuding, Value Distribution of L-Functions, Lecture Notes in Math. 1877, Springer, New York, 2007.
- [6] E. Titchmarsh, The Theory of Functions, Oxford Univ. Press, 1964.
- S. Voronin, On the distribution of nonzero values of Riemann's ζ-function, Trudy Mat. Inst. Steklov. 128 (1972), 131–150.

Department of Mathematics	Department of Mathematical Sciences
Florida International University	Northern Illinois University
Miami, FL 33199, U.S.A.	DeKalb, IL 60115, U.S.A.
E-mail: libaoqin@fiu.edu	E-mail: ye@math.niu.edu

Received on 25.3.2008 and in revised form on 21.7.2008

(5673)