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On differential independence of the Riemann zeta function
and the Euler gamma function
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It is well-known ([2] and [4]) that Γ , as well as ζ, is not a solution of
any algebraic differential equation with coefficients in C. In other words, if
P (u0, u1, . . . , um) is any polynomial in u0, u1, . . . , um over C, and

P (Γ, Γ ′, . . . , Γ (m))(z) ≡ 0 or P (ζ, ζ ′, . . . , ζ(m))(z) ≡ 0,

for all z ∈ C, then the polynomial P is identically zero. This answers
Hilbert’s conjecture [1] in his 18th problem. For a detailed discussion of
this subject and other related topics, we refer the reader to [5].

Let h(z) = ζ(sin(2πz)). Recently, Markus [3] proved that if

P (h, h′, . . . , h(m);Γ, Γ ′, . . . , Γ (n))(z) ≡ 0 for z ∈ C,

then the polynomial P (u0, u1, . . . , um; v0, v1, . . . , vn) is identically zero.
Thus, in the terminology of differential algebraic theory, Γ and h are dif-
ferentially independent over C (hence, over C(z)). Furthermore, Markus [3]
conjectured that if

P (ζ, ζ ′, . . . , ζ(m);Γ, Γ ′, . . . , Γ (n))(z) ≡ 0 for z ∈ C,

then the polynomial P (u0, u1, . . . , um; v0, v1, . . . , vn) is identically zero, i.e.
Γ and ζ are differentially independent. In this short note, we prove that ζ
and Γ cannot satisfy a class of algebraic differential equations.

Let P (u0, u1, . . . , um; v0, v1, . . . , vn) be any polynomial with coefficients
in C. For a non-negative integer µ, we let

Λ = Λ(µ) = {(λ0, λ1, . . . , λµ) : λj is a non-negative integer
and 0 ≤ j ≤ µ <∞}
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be a finite index set. Define

|λ| =
µ∑
j=0

λj and Λk = {λ ∈ Λ : |λ| = k};

|λ|∗ =
µ∑
j=0

jλj and Λ∗k = {λ ∈ Λ : |λ|∗ = k}.

Thus, there is a non-negative integer N such that

P (u0, u1, . . . , um; v0, v1, . . . , vn) =
N∑
j=0

∑
λ∈Λj

aλ(u0, . . . , um)vλ0
0 vλ1

1 · · · v
λn
n ,

where aλ(u0, u1, . . . , um) is a polynomial in u0, u1, . . . , um with coefficients
in C. Set, for j = 0, 1, . . . , N ,

Pj(u0, u1, . . . , um; v0, v1, . . . , vn) =
∑
λ∈Λj

aλ(u0, . . . , um)vλ0
0 vλ1

1 · · · v
λn
n .

For simplicity, we write P (u0, u1, . . . , um; v0, v1, . . . , vn) as P (u; v) if it does
not cause confusion, and similarly for Pj(u; v). Further, we write

(1) Pj(u; v) =
Mj∑
p=0

∑
λ∈Λj∩Λ∗p

aλ(u0, . . . , um)vλ0
0 vλ1

1 · · · v
λn
n ,

where Mj is a non-negative integer and, in the same manner,

(2) Pj,p(u; v) =
∑

λ∈Λj∩Λ∗p

aλ(u0, . . . , um)vλ0
0 vλ1

1 · · · v
λn
n .

Consequently, we obtain

(3)

Pj(u; v) =
Mj∑
p=0

Pj,p(u; v),

P (u; v) =
N∑
j=0

Pj(u; v) =
N∑
j=0

Mj∑
p=0

Pj,p(u; v).

Theorem. Let P (u; v) be a non-trivial polynomial defined as in (3). If∑
λ∈Λj∩Λ∗p

aλ(u0, . . . , um) 6≡ 0 whenever Pj,p(u; v) 6≡ 0,

for all possible j’s and p’s, then

P (ζ, ζ ′, . . . , ζ(m);Γ, Γ ′, . . . , Γ (n))(z) 6≡ 0.

To prove our theorem, we need the following celebrated theorem.
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Lemma (Voronin, [7]). For any 1/2 < σ < 1, the curve (ζ(σ + it),
ζ ′(σ + it), . . . , ζ(m)(σ + it)), −∞ < t <∞, is everywhere dense in Cm+1.

Proof of Theorem. IfN=0, then P (u; v) is a polynomial in u0, u1, . . . , um
only; denote it by P0(u). If P0(u) = P0,0(u) 6= 0 at a point w∗ = (w0, w1,
. . . , wm) ∈ Cm+1, then there is a neighborhood U of w∗ such that P0(u) 6= 0
for u ∈ U ⊂ Cm+1. By Voronin’s lemma, there is a sequence of positive real
numbers tq such that

(ζ, ζ ′, . . . , ζ(m))(3/4 + itq) ∈ U
for all large q. Therefore,

P0(ζ, ζ ′, . . . , ζ(m))(3/4 + itq) 6= 0

for all large q and the theorem is proved in this case.
We now assume that N in (3) is greater than zero. Since P (u; v) is non-

trivial, we can assume that Pj0(u; v) is the first one that is not identically
zero in the sequence

P0(u; v), P1(u; v), . . . , PN (u; v),

and that Pj0,p0(u; v) is the first one that is not identically zero in the sequence

Pj0,Mj0
(u; v), Pj0,Mj0

−1(u; v), . . . , Pj0,0(u; v).

Without loss of generality, we may assume that c = j0 and d = Mj0 for
simplicity. It is clear from (3) that

P (ζ, ζ ′, . . . , ζ(m);Γ, Γ ′, . . . , Γ (n))(z) 6≡ 0

if and only if

(4)
P (ζ, ζ ′, . . . , ζ(m);Γ, Γ ′, . . . , Γ (n))(z)

ΓN (z)

=
N∑
j=0

1
ΓN−j(z)

Mj∑
p=0

Pj,p(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(z)

=
N∑
j=0

1
ΓN−j(z)

Pj(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(z) 6≡ 0.

Now we estimate the term Pc,d(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(z). It
is known (e.g. [6, p. 151]) that

logΓ (z) = (z − 1/2) log z − z +
1
2

log(2π) +
∞�

0

[u]− u+ 1/2
u+ z

du.

It follows that there is a δ > 0 such that

Γ ′(z) = (1 + o(1))Γ (z) log z

uniformly for all z ∈ C \ {z : |arg z − π| ≤ δ}, where o(1) stands for a
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quantity that goes to zero as |z| → ∞. Similarly, for any positive integer q,
there exists a δ > 0 such that

Γ (q)(z) = (1 + o(1))(log z)qΓ (z)

uniformly for all z ∈ C \ {z : |arg z − π| ≤ δ}. Thus, from (2) we find that

(5) Pc,d(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(z)

= (log z)d
∑

λ∈Λc∩Λ∗d

aλ(ζ, ζ ′, . . . , ζ(m))(z)(1 + o(1))λ1 · · · (1 + o(1))λn

uniformly for all z ∈ C \ {z : |arg z − π| ≤ δ}.

Since
∑

λ∈Λc∩Λ∗d
aλ(u0, . . . , um) is not identically zero, there are a δ0 > 0

and a bounded neighborhood U of w∗ = (w0, w1, . . . , wm) such that∣∣∣ ∑
λ∈Λc∩Λ∗d

aλ(u0, . . . , um)
∣∣∣ ≥ δ0 for u = (u0, u1, . . . , um) ∈ U ⊂ Cm+1.

By Voronin’s lemma, there is a sequance {tq}∞q=1 of positive real numbers
converging to ∞ such that

(ζ(3/4 + itq), ζ ′(3/4 + itq), . . . , ζ(m)(3/4 + itq)) ∈ U
for all q = 1, 2, . . . . It follows from (5) that there are an ε0 > 0 and q0 such
that, for zq = 3/4 + itq,

|Pc,d(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(zq)| ≥ ε0|log zq|d

for all large q ≥ q0. If d = 0, then (1) gives

|Pc(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(zq)|
= |Pc,0(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(zq)| ≥ ε0

for all large q. If d ≥ 1, then noting that ζ(p)(zq) is bounded for any p and
all large q, we see from (1) that

|Pc(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(zq)|
≥ ε0|log zq|d − C|log zq|d−1 →∞ as q →∞,

where C is an absolute positive constant. Therefore, for any d ≥ 0,

(6) |Pc(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(zq)| ≥ ε0,
and, for any d < p ≤ N ,

(7) |Pp(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(zq)| ≤ C|log zq|Mp

for all large q. It is also known that (e.g. [6, p. 151]),

|Γ (3/4 + iy)| ∼ e−π|y|/2|y|1/4
√

2π

as y →∞. If c < N , we deduce from (4), (6) and (7) that



Differential independence 337∣∣∣∣P (ζ, ζ ′, . . . , ζ(m);Γ, Γ ′, . . . , Γ (n))(zq)
ΓN (zq)

∣∣∣∣
=
∣∣∣∣ N∑
j=c

1
ΓN−j(zq)

Pj(ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(zq)
∣∣∣∣

≥ ε0
(

eπtq/2

t
1/4
q

√
2π

)N−c
− C|log zq|MN

(
eπtq/2

t
1/4
q

)N−c−1

→∞

as q →∞, which completes the proof of the theorem in this case. If c = N ,
then

P (ζ, ζ ′, . . . , ζ(m);Γ, Γ ′, . . . , Γ (n))(zq)

= ΓN (zq)PN (ζ, ζ ′, . . . , ζ(m); 1, Γ ′/Γ, . . . , Γ (n)/Γ )(zq) 6= 0

for all large q, where we choose zq as in (6). Thus, the theorem is proved in
this case. Therefore, we have completely proved the theorem.

Corollary. If a non-trivial polynomial has the form P (u0, u1, . . . ,
um; v0, v1), then

P (ζ, ζ ′, . . . , ζ(m);Γ, Γ ′)(z) 6≡ 0.

Proof. For all possible j’s and p’s, the set Λj ∩ Λ∗p only contains one
element. So, the assumption in the theorem is satisfied. The corollary is
proved.
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