# An extension of Bourgain and Garaev's sum-product estimates 

by

## Chun-Yen Shen (Bloomington, IN)

0. Introduction. Let $\mathbb{F}_{p}$ be the finite field of a prime order $p$. From the work of Bourgain, Katz and Tao, with subsequent refinement by Bourgain, Glibichuk and Konyagin, it is known that one has the following sum-product result:

Theorem [BKT, BGK]. If $A$ is a subset of $\mathbb{F}_{p}$ with $|A|<p^{1-\delta}$, where $\delta>0$, then for some $\varepsilon>0$ one has the sum-product estimate

$$
|A+A|+|A A| \gtrsim|A|^{1+\varepsilon}
$$

Later many quantitative versions of sum-product estimates have been given ([G1]-[TV]). Garaev [G1] showed that in the most nontrivial range $|A|<p^{1 / 2}$, one has

$$
|A+A|+|A A| \gtrsim|A|^{15 / 14}
$$

which was slightly improved in [KS1] to

$$
|A+A|+|A A| \gtrsim|A|^{14 / 13} .
$$

Very recently, Bourgain and Garaev [BG] showed the following estimates:
Theorem [BG]. For any subset $A \subset \mathbb{F}_{p}$,

$$
E_{\times}(A, A)^{4} \lesssim\left(|A-A|+\frac{|A|^{3}}{p}\right)|A|^{5}|A-A|^{4}|2 A-2 A|,
$$

where $E_{\times}(A, B)$ is the multiplicative energy between sets $A$ and $B$, defined as

$$
E_{\times}(A, B)=\left|\left\{\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \in A^{2} \times B^{2}: a_{1} b_{1}=a_{2} b_{2}\right\}\right|
$$

Then by adopting the arguments of Katz and Shen [KS1], they derived the following result:

Corollary [BG]. For any subset $A \subset \mathbb{F}_{p}$, there exists a subset $A^{\prime} \subset A$ with $\left|A^{\prime}\right| \gtrsim|A|$ such that

$$
E_{\times}\left(A^{\prime}, A^{\prime}\right)^{4} \lesssim\left(|A-A|+\frac{|A|^{3}}{p}\right)|A|^{3}|A-A|^{7} .
$$

Since

$$
E_{\times}\left(A^{\prime}, A^{\prime}\right) \gtrsim \frac{|A|^{4}}{|A A|},
$$

the Corollary implies that if $|A|<p^{12 / 23}$, then

$$
\begin{equation*}
|A-A|+|A A| \gtrsim|A|^{13 / 12} . \tag{*}
\end{equation*}
$$

In this paper, we give a shorter and simpler proof of Bourgain and Garaev's variant of sum-product estimate and extend it to a more general setting, namely:

Theorem. Let $F: \mathbb{F}_{p} \times \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ be defined by $F(x, y)=x(g(x)+b y)$, where $b \in \mathbb{F}_{p}^{*}$ and $g: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ is any function. Then for any $A \subset \mathbb{F}_{p}$ with $|A|<p^{1 / 2}$,

$$
|A-A|+|F(A, A)| \gtrsim|A|^{13 / 12} .
$$

Taking $g=0, b=1$ we get the result ( $*$ ) of Bourgain and Garaev.
Acknowledgements. The author wishes to thank Nets Katz for many helpful discussions and pointing out the useful covering lemma (Lemma 1.3).

1. Preliminaries. For given quantities $X$ and $Y$ we use the notation

$$
X \lesssim Y \text { to mean } X \leq C Y
$$

where the constant $C$ is universal (i.e. independent of $p$ and $A$ ). The constant $C$ may vary from line to line. We also use

$$
X \lesssim Y \quad \text { to mean } \quad X \leq C(\log |A|)^{\alpha} Y,
$$

and $X \approx Y$ to mean $X \lesssim Y$ and $Y \lesssim X$, where $C$ and $\alpha$ may vary from line to line but are universal.

We present some preliminary lemmas; the first two are proved in $[\mathrm{KS1}]$.
Lemma 1.1. Let $A_{1} \subset \mathbb{F}_{p}$ with $1<\left|A_{1}\right|<p^{1 / 2}$. Then for any elements $a_{1}, a_{2}, b_{1}, b_{2}$ so that

$$
\frac{b_{1}-b_{2}}{a_{1}-a_{2}}-1 \notin \frac{A_{1}-A_{1}}{A_{1}-A_{1}},
$$

we have, for any $A^{\prime} \subset A_{1}$ with $\left|A^{\prime}\right| \gtrsim\left|A_{1}\right|$,

$$
\left|\left(a_{1}-a_{2}\right) A^{\prime}-\left(a_{1}-a_{2}\right) A^{\prime}+\left(b_{1}-b_{2}\right) A^{\prime}\right| \gtrsim\left|A_{1}\right|^{2} .
$$

In particular, such $a_{1}, a_{2}, b_{1}, b_{2}$ exist unless $\left(A_{1}-A_{1}\right) /\left(A_{1}-A_{1}\right)=\mathbb{F}_{p}$. In case $\left(A_{1}-A_{1}\right) /\left(A_{1}-A_{1}\right)=\mathbb{F}_{p}$, we may find $a_{1}, a_{2}, b_{1}, b_{2} \in A_{1}$ so that

$$
\left|\left(a_{1}-a_{2}\right) A_{1}+\left(b_{1}-b_{2}\right) A_{1}\right| \gtrsim\left|A_{1}\right|^{2} .
$$

Lemma 1.2. Let $X, B_{1}, \ldots, B_{k}$ be any subsets of $\mathbb{F}_{p}$. Then there exists $X^{\prime} \subset X$ with $\left|X^{\prime}\right|>\frac{1}{2}|X|$ so that

$$
\left|X^{\prime}+B_{1}+\cdots+B_{k}\right| \lesssim \frac{\left|X+B_{1}\right| \cdots\left|X+B_{k}\right|}{|X|^{k-1}} .
$$

Lemma 1.3. Let $C$ and $D$ be sets with $|D| \gtrsim|C| / K$ and with $|C-D| \leq$ $K|C|$. Then there is $C^{\prime} \subset C$ with $\left|C^{\prime}\right| \geq \frac{9}{10}|C|$ so that $C^{\prime}$ can be covered by $\sim K^{2}$ translates of $-D$. Similarly, there is $C^{\prime \prime} \subset C$ with $\left|C^{\prime \prime}\right| \geq \frac{9}{10}|C|$ so that $C^{\prime \prime}$ can be covered by $\sim K^{2}$ translates of $D$.

Proof. To prove the first half of the statement, it suffices to show that we can find one translate of $-D$ whose intersection with $C$ is of size at least $|C| / K^{2}$. Once we find such a translate, we remove the intersection and then iterate. We stop when the size of the remaining part of $C$ is less than $|C| / 10$. To prove the second half of the statement we have to show there is a translate of $D$ whose intersection with $C$ is of size at least $|C| / K^{2}$.

First, by the Cauchy-Schwarz inequality, we have

$$
\left|\left(c, d, c^{\prime}, d^{\prime}\right) \in C \times D \times C \times D: c-d=c^{\prime}-d^{\prime}\right| \geq \frac{|C|^{2}|D|^{2}}{|C-D|}
$$

which implies that

$$
\left|\left(c, d, c^{\prime}, d^{\prime}\right) \in C \times D \times C \times D: c-d=c^{\prime}-d^{\prime}\right| \geq \frac{|C||D|^{2}}{K} .
$$

The quantity on the left hand side is equal to

$$
\sum_{c \in C} \sum_{d^{\prime} \in D}\left|(c-D) \cap\left(C-d^{\prime}\right)\right| .
$$

Thus we can find $c \in C$ and $d^{\prime} \in D$ so that

$$
\left|(c-D) \cap\left(C-d^{\prime}\right)\right| \geq \frac{|D|}{K} \gtrsim \frac{|C|}{K^{2}} .
$$

Hence, $\left|\left(c+d^{\prime}-D\right) \cap C\right| \gtrsim|C| / K^{2}$, which is just what we wanted to prove.
To prove the second half of the statement we start with the inequality

$$
\sum_{d \in D} \sum_{c \in C}|(d+C) \cap(D+c)| \geq \frac{|C||D|^{2}}{K^{2}} .
$$

Proceeding as above, we find $c \in C$ and $d \in D$ such that

$$
|(c-d+D) \cap C| \gtrsim|C| / K^{2}
$$

and the result follows.
2. Proof of the Theorem. We start with $|A-A| \leq K|A|$ and $|F(A, A)|$ $\leq K|A|$. By using Plünnecke's inequality, we can find $A^{\prime} \subset A$ with $\left|A^{\prime}\right| \gtrsim|A|$ so that

$$
\left|A^{\prime}-A^{\prime}-A^{\prime}-A^{\prime}\right| \lesssim K^{3}|A|
$$

First, by the Cauchy-Schwarz inequality, we have

$$
\sum_{a \in A^{\prime}} \sum_{a^{\prime} \in A^{\prime}}\left|a\left(g(a)+b A^{\prime}\right) \cap a^{\prime}\left(g\left(a^{\prime}\right)+b A^{\prime}\right)\right| \gtrsim \frac{\left|A^{\prime}\right|^{3}}{K}
$$

Therefore, following Garaev's arguments [G1], we can find $A^{\prime \prime} \subset A^{\prime}$ and $a_{0} \in A^{\prime}$ so that

$$
\left|A^{\prime \prime}\right| \gtrsim K^{-\beta}\left|A^{\prime}\right|
$$

for some $\beta \geq 0$, and for every $a \in A^{\prime \prime}$ we have

$$
\left|a\left(g(a)+b A^{\prime}\right) \cap a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)\right| \gtrsim K^{\beta-1}|A|
$$

As in the argument of Garaev, the worst case is $\beta=0$, so let us assume this for simplicity. Now there are two cases.

In the first case, we have

$$
\frac{A^{\prime \prime}-A^{\prime \prime}}{A^{\prime \prime}-A^{\prime \prime}}=\mathbb{F}_{p}
$$

If so, applying Lemma 1.1, we can find $a_{1}, a_{2}, b_{1}, b_{2} \in A^{\prime \prime}$ so that

$$
\begin{aligned}
\left|A^{\prime \prime}\right|^{2} \lesssim & \left|\left(a_{1}-a_{2}\right) A^{\prime \prime}+\left(b_{1}-b_{2}\right) A^{\prime \prime}\right| \leq\left|a_{1} A^{\prime \prime}-a_{2} A^{\prime \prime}+b_{1} A^{\prime \prime}-b_{2} A^{\prime \prime}\right| \\
= & \mid a_{1} g\left(a_{1}\right)+a_{1} b A^{\prime \prime}-a_{2} g\left(a_{2}\right)-a_{2} b A^{\prime \prime} \\
& +b_{1} g\left(b_{1}\right)+b_{1} b A^{\prime \prime}-b_{2} g\left(b_{2}\right)-b_{2} b A^{\prime \prime} \mid \\
= & \mid a_{1}\left(g\left(a_{1}\right)+b A^{\prime \prime}\right)-a_{2}\left(g\left(a_{2}\right)+b A^{\prime \prime}\right) \\
& +b_{1}\left(g\left(b_{1}\right)+b A^{\prime \prime}\right)-b_{2}\left(g\left(b_{2}\right)+b A^{\prime \prime}\right) \mid .
\end{aligned}
$$

Now we apply Lemma 1.3 to find $A^{\prime \prime \prime}$ whose size is at least $6 / 10$ that of $A^{\prime \prime}$ so $a_{1}\left(g\left(a_{1}\right)+b A^{\prime \prime \prime}\right), a_{2}\left(g\left(a_{2}\right)+b A^{\prime \prime \prime}\right), b_{1}\left(g\left(b_{1}\right)+b A^{\prime \prime \prime}\right)$, and $b_{2}\left(g\left(b_{2}\right)+b A^{\prime \prime \prime}\right)$ can be covered by $\sim K^{2}$ translates of $a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)$, $a_{0}\left(g\left(a_{0}\right)+b A^{\prime \prime \prime}\right)$, $-a_{0}\left(g\left(a_{0}\right)+b A^{\prime \prime \prime}\right)$ and $a_{0}\left(g\left(a_{0}\right)+b A^{\prime \prime \prime}\right)$ respectively. But then

$$
a_{1}\left(g\left(a_{1}\right)+b A^{\prime \prime \prime}\right)-a_{2}\left(g\left(a_{2}\right)+b A^{\prime \prime \prime}\right)+b_{1}\left(g\left(b_{1}\right)+b A^{\prime \prime \prime}\right)-b_{2}\left(g\left(b_{2}\right)+b A^{\prime \prime \prime}\right)
$$

can be covered by $\sim K^{8}$ translates of

$$
a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)-a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)-a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)-a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)
$$

Since

$$
\begin{array}{r}
\left|a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)-a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)-a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)-a_{0}\left(g\left(a_{0}\right)+b A^{\prime}\right)\right| \\
=\left|A^{\prime}-A^{\prime}-A^{\prime}-A^{\prime}\right| \lesssim K^{3}|A|
\end{array}
$$

by the definition of $A^{\prime}$, we thus get

$$
\left|a_{1} A^{\prime \prime \prime}-a_{2} A^{\prime \prime \prime}+a_{3} A^{\prime \prime \prime}-a_{4} A^{\prime \prime \prime}\right| \lesssim K^{11}|A|
$$

## Therefore

$$
\left|A^{\prime}\right|^{2} \lesssim K^{11}|A|
$$

which implies that $K \gtrsim|A|^{1 / 11} \gtrsim|A|^{1 / 12}$, so that we have more than we need in this case.

Thus we are left with the case that

$$
\frac{A^{\prime \prime}-A^{\prime \prime}}{A^{\prime \prime}-A^{\prime \prime}} \neq \mathbb{F}_{p}
$$

Applying Lemma 1.1, we can find $a_{1}, a_{2}, b_{1}, b_{2} \in A^{\prime \prime}$ such that

$$
\frac{b_{1}-b_{2}}{a_{1}-a_{2}}-1 \notin \frac{A^{\prime \prime}-A^{\prime \prime}}{A^{\prime \prime}-A^{\prime \prime}}
$$

Then we have

$$
\left|A^{\prime \prime}\right|^{2} \lesssim\left|\left(a_{1}-a_{2}\right) A^{\prime \prime}-\left(a_{1}-a_{2}\right) A^{\prime \prime}+\left(b_{1}-b_{2}\right) A^{\prime \prime}\right|
$$

Now by applying Lemma 1.2, we get

$$
\left|A^{\prime \prime}\right|^{2} \lesssim \frac{|A-A|}{|A|}\left|\left(a_{1}-a_{2}\right) A^{\prime \prime}+\left(b_{1}-b_{2}\right) A^{\prime \prime}\right|
$$

Applying the same argument as above leads to

$$
\left|A^{\prime}\right|^{2} \lesssim K^{12}|A|
$$

which implies that $K \gtrsim|A|^{1 / 12}$.
Remark. Based on the same arguments, in the paper $[\mathrm{S}]$ the author also showed that if $|A|<p^{1 / 2}$, then one has

$$
|A+A|+|A A| \gtrsim|A|^{13 / 12}
$$

## References

[BG] J. Bourgain and M. Garaev, On a variant of sum-product estimates and explicit exponential sum bounds in prime fields, Math. Proc. Cambridge Philos. Soc., to appear.
[BGK] J. Bourgain, A. Glibichuk and S. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. 73 (2006), 380-398.
[BKT] J. Bourgain, N. Katz and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27-57.
[G1] M. Z. Garaev, An explicit sum-product estimate in $\mathbb{F}_{p}$, Int. Math. Res. Notices 2007, no. 11.
[G2] -, The sum-product estimate for large subsets of prime fields, Proc. Amer. Math. Soc. 136 (2008), 2735-2739.
[G3] -, A quantified version of Bourgain's sum-product estimate in $\mathbb{F}_{p}$ for subsets of incomparable sizes, Electron. J. Combin. 15 (2008), no. 1, res. paper 58.
[HIS] D. Hart, A. Iosevich and J. Solymosi, Sum-product estimates in finite fields via Kloosterman sums, Int. Math. Res. Notices 2007, no. 5.
[KS1] N. H. Katz and C.-Y. Shen, A slight improvement to Garaev's sum product estimate, Proc. Amer. Math. Soc. 136 (2008), 2499-2504.
[KS2] -, —, Garaev's inequality in finite fields not of prime order, Online J. Anal. Comb. 3 (2008), paper 3.
[S] C.-Y. Shen, On the sum product estimates and two variables expanders, submitted.
[TV] T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006.

Department of Mathematics
Indiana University
Rawles Hall
831 East Third St.
Bloomington, IN 47405, U.S.A.
E-mail: shenc@indiana.edu

Received on 29.4.2008
and in revised form on 23.7.2008

