An extension of Bourgain and Garaev's sum-product estimates

by

CHUN-YEN SHEN (Bloomington, IN)

0. Introduction. Let \mathbb{F}_p be the finite field of a prime order p. From the work of Bourgain, Katz and Tao, with subsequent refinement by Bourgain, Glibichuk and Konyagin, it is known that one has the following sum-product result:

THEOREM [BKT, BGK]. If A is a subset of \mathbb{F}_p with $|A| < p^{1-\delta}$, where $\delta > 0$, then for some $\varepsilon > 0$ one has the sum-product estimate

$$|A + A| + |AA| \gtrsim |A|^{1+\varepsilon}.$$

Later many quantitative versions of sum-product estimates have been given ([G1]–[TV]). Garaev [G1] showed that in the most nontrivial range $|A| < p^{1/2}$, one has

$$|A + A| + |AA| \gtrsim |A|^{15/14},$$

which was slightly improved in [KS1] to

$$|A + A| + |AA| \gtrsim |A|^{14/13}.$$

Very recently, Bourgain and Garaev [BG] showed the following estimates:

THEOREM [BG]. For any subset $A \subset \mathbb{F}_p$,

$$E_{\times}(A,A)^4 \lessapprox \left(|A-A| + \frac{|A|^3}{p} \right) |A|^5 |A-A|^4 |2A-2A|,$$

where $E_{\times}(A, B)$ is the multiplicative energy between sets A and B, defined as

 $E_{\times}(A,B) = |\{(a_1,a_2,b_1,b_2) \in A^2 \times B^2 : a_1b_1 = a_2b_2\}|.$

Then by adopting the arguments of Katz and Shen [KS1], they derived the following result:

²⁰⁰⁰ Mathematics Subject Classification: Primary 11B75; Secondary 12E20.

Key words and phrases: sum-product estimates, expanding maps.

C.-Y. Shen

COROLLARY [BG]. For any subset $A \subset \mathbb{F}_p$, there exists a subset $A' \subset A$ with $|A'| \gtrsim |A|$ such that

$$E_{\times}(A',A')^4 \lessapprox \left(|A-A| + \frac{|A|^3}{p} \right) |A|^3 |A-A|^7.$$

Since

$$E_{\times}(A',A') \gtrsim \frac{|A|^4}{|AA|},$$

the Corollary implies that if $|A| < p^{12/23}$, then

(*)
$$|A - A| + |AA| \gtrsim |A|^{13/12}$$
.

In this paper, we give a shorter and simpler proof of Bourgain and Garaev's variant of sum-product estimate and extend it to a more general setting, namely:

THEOREM. Let $F : \mathbb{F}_p \times \mathbb{F}_p \to \mathbb{F}_p$ be defined by F(x, y) = x(g(x) + by), where $b \in \mathbb{F}_p^*$ and $g : \mathbb{F}_p \to \mathbb{F}_p$ is any function. Then for any $A \subset \mathbb{F}_p$ with $|A| < p^{1/2}$,

$$|A - A| + |F(A, A)| \gtrsim |A|^{13/12}$$

Taking g = 0, b = 1 we get the result (*) of Bourgain and Garaev.

Acknowledgements. The author wishes to thank Nets Katz for many helpful discussions and pointing out the useful covering lemma (Lemma 1.3).

1. Preliminaries. For given quantities X and Y we use the notation

 $X \lesssim Y$ to mean $X \leq CY$,

where the constant C is universal (i.e. independent of p and A). The constant C may vary from line to line. We also use

 $X \lessapprox Y$ to mean $X \le C(\log |A|)^{\alpha}Y$,

and $X \approx Y$ to mean $X \leq Y$ and $Y \leq X$, where C and α may vary from line to line but are universal.

We present some preliminary lemmas; the first two are proved in [KS1].

LEMMA 1.1. Let $A_1 \subset \mathbb{F}_p$ with $1 < |A_1| < p^{1/2}$. Then for any elements a_1, a_2, b_1, b_2 so that

$$\frac{b_1 - b_2}{a_1 - a_2} - 1 \notin \frac{A_1 - A_1}{A_1 - A_1},$$

we have, for any $A' \subset A_1$ with $|A'| \gtrsim |A_1|$,

$$|(a_1 - a_2)A' - (a_1 - a_2)A' + (b_1 - b_2)A'| \gtrsim |A_1|^2.$$

352

In particular, such a_1, a_2, b_1, b_2 exist unless $(A_1 - A_1)/(A_1 - A_1) = \mathbb{F}_p$. In case $(A_1 - A_1)/(A_1 - A_1) = \mathbb{F}_p$, we may find $a_1, a_2, b_1, b_2 \in A_1$ so that $|(a_1 - a_2)A_1 + (b_1 - b_2)A_1| \ge |A_1|^2$.

LEMMA 1.2. Let X, B_1, \ldots, B_k be any subsets of \mathbb{F}_p . Then there exists $X' \subset X$ with $|X'| > \frac{1}{2}|X|$ so that

$$|X' + B_1 + \dots + B_k| \lesssim \frac{|X + B_1| \cdots |X + B_k|}{|X|^{k-1}}$$

LEMMA 1.3. Let C and D be sets with $|D| \gtrsim |C|/K$ and with $|C-D| \leq K|C|$. Then there is $C' \subset C$ with $|C'| \geq \frac{9}{10}|C|$ so that C' can be covered by $\sim K^2$ translates of -D. Similarly, there is $C'' \subset C$ with $|C''| \geq \frac{9}{10}|C|$ so that C'' can be covered by $\sim K^2$ translates of D.

Proof. To prove the first half of the statement, it suffices to show that we can find one translate of -D whose intersection with C is of size at least $|C|/K^2$. Once we find such a translate, we remove the intersection and then iterate. We stop when the size of the remaining part of C is less than |C|/10. To prove the second half of the statement we have to show there is a translate of D whose intersection with C is of size at least $|C|/K^2$.

First, by the Cauchy–Schwarz inequality, we have

$$|(c, d, c', d') \in C \times D \times C \times D : c - d = c' - d'| \ge \frac{|C|^2 |D|^2}{|C - D|},$$

which implies that

$$|(c,d,c',d') \in C \times D \times C \times D : c-d = c'-d'| \ge \frac{|C||D|^2}{K}.$$

The quantity on the left hand side is equal to

$$\sum_{c \in C} \sum_{d' \in D} |(c - D) \cap (C - d')|.$$

Thus we can find $c \in C$ and $d' \in D$ so that

$$|(c-D) \cap (C-d')| \ge \frac{|D|}{K} \gtrsim \frac{|C|}{K^2}.$$

Hence, $|(c+d'-D) \cap C| \gtrsim |C|/K^2$, which is just what we wanted to prove.

To prove the second half of the statement we start with the inequality

$$\sum_{d \in D} \sum_{c \in C} |(d+C) \cap (D+c)| \ge \frac{|C| \, |D|^2}{K^2}$$

Proceeding as above, we find $c \in C$ and $d \in D$ such that

$$|(c-d+D) \cap C| \gtrsim |C|/K^2$$

and the result follows. \blacksquare

2. Proof of the Theorem. We start with $|A-A| \leq K|A|$ and $|F(A, A)| \leq K|A|$. By using Plünnecke's inequality, we can find $A' \subset A$ with $|A'| \gtrsim |A|$ so that

$$|A' - A' - A' - A'| \lesssim K^3 |A|.$$

First, by the Cauchy–Schwarz inequality, we have

$$\sum_{a \in A'} \sum_{a' \in A'} |a(g(a) + bA') \cap a'(g(a') + bA')| \gtrsim \frac{|A'|^3}{K}.$$

Therefore, following Garaev's arguments [G1], we can find $A'' \subset A'$ and $a_0 \in A'$ so that

$$|A''| \gtrsim K^{-\beta} |A'|$$

for some $\beta \geq 0$, and for every $a \in A''$ we have

$$|a(g(a) + bA') \cap a_0(g(a_0) + bA')| \gtrsim K^{\beta - 1} |A|.$$

As in the argument of Garaev, the worst case is $\beta = 0$, so let us assume this for simplicity. Now there are two cases.

In the first case, we have

$$\frac{A''-A''}{A''-A''} = \mathbb{F}_p.$$

If so, applying Lemma 1.1, we can find $a_1, a_2, b_1, b_2 \in A''$ so that

$$\begin{split} |A''|^2 &\lesssim |(a_1 - a_2)A'' + (b_1 - b_2)A''| \leq |a_1A'' - a_2A'' + b_1A'' - b_2A''| \\ &= |a_1g(a_1) + a_1bA'' - a_2g(a_2) - a_2bA'' \\ &+ b_1g(b_1) + b_1bA'' - b_2g(b_2) - b_2bA''| \\ &= |a_1(g(a_1) + bA'') - a_2(g(a_2) + bA'') \\ &+ b_1(g(b_1) + bA'') - b_2(g(b_2) + bA'')|. \end{split}$$

Now we apply Lemma 1.3 to find A''' whose size is at least 6/10 that of A'' so $a_1(g(a_1) + bA''')$, $a_2(g(a_2) + bA''')$, $b_1(g(b_1) + bA''')$, and $b_2(g(b_2) + bA''')$ can be covered by $\sim K^2$ translates of $a_0(g(a_0) + bA')$, $a_0(g(a_0) + bA''')$, $-a_0(g(a_0) + bA''')$ and $a_0(g(a_0) + bA''')$ respectively. But then

$$a_1(g(a_1) + bA''') - a_2(g(a_2) + bA''') + b_1(g(b_1) + bA''') - b_2(g(b_2) + bA''')$$

can be covered by $\sim K^8$ translates of

 $a_0(g(a_0) + bA') - a_0(g(a_0) + bA') - a_0(g(a_0) + bA') - a_0(g(a_0) + bA').$ Since

$$|a_0(g(a_0) + bA') - a_0(g(a_0) + bA') - a_0(g(a_0) + bA') - a_0(g(a_0) + bA')| = |A' - A' - A' - A'| \lesssim K^3 |A|$$

by the definition of A', we thus get

$$|a_1 A''' - a_2 A''' + a_3 A''' - a_4 A'''| \lesssim K^{11} |A|.$$

Therefore

$$|A'|^2 \lesssim K^{11}|A|,$$

which implies that $K \gtrsim |A|^{1/11} \gtrsim |A|^{1/12}$, so that we have more than we need in this case.

Thus we are left with the case that

$$\frac{A''-A''}{A''-A''} \neq \mathbb{F}_p.$$

Applying Lemma 1.1, we can find $a_1, a_2, b_1, b_2 \in A''$ such that

$$\frac{b_1 - b_2}{a_1 - a_2} - 1 \notin \frac{A'' - A''}{A'' - A''}.$$

Then we have

$$|A''|^2 \lesssim |(a_1 - a_2)A'' - (a_1 - a_2)A'' + (b_1 - b_2)A''|.$$

Now by applying Lemma 1.2, we get

$$|A''|^2 \lesssim \frac{|A-A|}{|A|} |(a_1 - a_2)A'' + (b_1 - b_2)A''|.$$

Applying the same argument as above leads to

$$|A'|^2 \lesssim K^{12}|A|,$$

which implies that $K \gtrsim |A|^{1/12}$.

REMARK. Based on the same arguments, in the paper [S] the author also showed that if $|A| < p^{1/2}$, then one has

$$|A + A| + |AA| \gtrsim |A|^{13/12}.$$

References

- [BG] J. Bourgain and M. Garaev, On a variant of sum-product estimates and explicit exponential sum bounds in prime fields, Math. Proc. Cambridge Philos. Soc., to appear.
- [BGK] J. Bourgain, A. Glibichuk and S. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. 73 (2006), 380–398.
- [BKT] J. Bourgain, N. Katz and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27–57.
- [G1] M. Z. Garaev, An explicit sum-product estimate in \mathbb{F}_p , Int. Math. Res. Notices 2007, no. 11.
- [G2] —, The sum-product estimate for large subsets of prime fields, Proc. Amer. Math. Soc. 136 (2008), 2735–2739.
- [G3] —, A quantified version of Bourgain's sum-product estimate in \mathbb{F}_p for subsets of incomparable sizes, Electron. J. Combin. 15 (2008), no. 1, res. paper 58.
- [HIS] D. Hart, A. Iosevich and J. Solymosi, Sum-product estimates in finite fields via Kloosterman sums, Int. Math. Res. Notices 2007, no. 5.

C.-Y. Shen

- [KS1] N. H. Katz and C.-Y. Shen, A slight improvement to Garaev's sum product estimate, Proc. Amer. Math. Soc. 136 (2008), 2499–2504.
- [KS2] —, —, Garaev's inequality in finite fields not of prime order, Online J. Anal. Comb. 3 (2008), paper 3.
- [S] C.-Y. Shen, On the sum product estimates and two variables expanders, submitted.
- [TV] T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006.

Department of Mathematics Indiana University Rawles Hall 831 East Third St. Bloomington, IN 47405, U.S.A. E-mail: shenc@indiana.edu

> Received on 29.4.2008 and in revised form on 23.7.2008

(5697)