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1. Introduction

1.1. Notation. Throughout the paper the following notation will be
used: p denotes a prime number. Except in Section 1.2, k is a finite ex-
tension of Qp. Additionally:

• Gk: the absolute Galois group of k
• c(%): the valuation of the Artin conductor of a continuous complex

representation % of Gk
• Uk: the group of units of a finite extension k/Qp
• U (s)

k : the group of units of a finite extension k/Qp of level ≥ s
• K = Qp(

√
d): a quadratic extension of Qp

• σ: the non-trivial automorphism of K/Qp
• χ: a complex character of K× vanishing on Q×p
• (·, ·): the local symbol in Qp
We allow ourselves the implicit use of local class field theory. Thus for

instance, a character χ as above may also be viewed as a character on GK .

1.2. Lifting projective Galois representations. Suppose that k is an alge-
braic number field with absolute Galois group Gk. In studying 2-dimensional
(irreducible) continuous complex representations of Gk the following ques-
tion is of interest (cf. [2], [7], [5]): Given a continuous projective representa-
tion

%0 : Gk → PGL2(C),

find the determinant and the Artin conductor of all lifts % : Gk → GL2(C).
Now, as any lift has the shape %⊗ φ with % any fixed lift and φ a character
of Gk, and as det(%⊗ φ) = det % · φ2, one might hope to accomplish this by
finding one particular lift % for which the following data can be determined:

(1) det %, and
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(2) the Artin conductor of % ⊗ φ for any character φ of Gk, solely from
the knowledge of the Artin conductor of φ.

We might then informally refer to such a lift % as a “good lift” of %0.
It is not at all clear whether good lifts exist generally, but at least in case
k has class number 1—and thus in particular if k = Q—one knows (cf.
again [2], [7], [5]) that the problem of finding a good lift can be reduced to
the following local problem: Consider the completion kp of k at a (finite)
prime p. Given a projective representation

%0,p : Gkp
→ PGL2(C)

find for some lift %p the following:

(1) the restriction of the determinant det %p to the inertia of Gkp
, i.e.

det %p|Ukp
when viewing det % as a character on k×p , and

(2) for any character φp of Gkp
, an algorithm computing the Artin con-

ductor of %p ⊗ φp solely from the Artin conductor of φp.

We might then also refer to such a lift %p as a “good lift” of %0,p.

Building upon and completing previous investigations [9], [2], [10] of this
local problem, in [5] we constructed good lifts under conditions of some gen-
erality, and in particular in all cases where kp is a p-adic field Qp. Perhaps
somewhat surprisingly the case of dihedral type projective representations,
i.e. projective representations whose (finite) image is isomorphic to a dihe-
dral group, turns out to be especially complicated to analyze. Let us then
briefly recall the precise shape of the problem in the (local) dihedral case.

1.3. Galois representations of dihedral type. For convenience, let us
change notation so that k is now a finite extension of some Qp. Suppose
that

%0 : Gk → PGL2(C)

is a continuous representation of dihedral type. If L/k is the extension cut
out by % then L contains a quadratic subextension K/k such that L/K is
cyclic (K is unique if [L : k] > 4). By the structure theory for ramification
groups in Gk we see that L/K is necessarily ramified unless possibly when
[L : k] = 4; in the latter case, however, there are 3 possible choices of K and
we can choose K so that L/K is ramified. We now recall the following facts
for which the reader is referred to [7] (or the introduction of [5]):

We have

(%0)|GK ∼
(
χ 0

0 1

)
,

with χ a ramified character of K× vanishing on k×. Conversely, if χ is such
a character there exists a projective representation %0 behaving in this way.
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Any lift % of %0 has the shape

% = IndkK(ψ)

where IndkK means induction from GK to Gk, and where ψ is a character of
K× (viewed as a character of GK) such that

ψ

(
σx

x

)
= χ(x) for x ∈ K×,

where σ denotes the non-trivial automorphism of K/k. For such a lift % one
has

det % = ω · (ψ|k×)

with ω the quadratic character of k× corresponding to K/k by local class
field theory, and the Artin conductor of %⊗φ for a character φ of k× viewed
as a character of Gk is

D(K/k) ·NK/k(P
c(ψ·(φ◦NK/k)))

with D(K/k) the discriminant, NK/k the norm map, P the prime ideal of
K, and c(ψ · (φ ◦NK/k)) the exponent of the conductor of ψ · (φ ◦NK/k) as
a character of K×.

Accordingly, in the dihedral case the local problem mentioned in the
previous subsection amounts to the following: Given a (ramified) character
χ of K× vanishing on k×, find a character ψ of K× such that

(1) ψ
(
σx
x

)
= χ(x) for x ∈ K×,

(2) the restriction ψ|Uk is known, and
(3) for any character φ of k× the number c(ψ·(φ◦NK/k)) can be computed

solely from the knowledge of the conductor of φ.

As mentioned above, a solution to this problem was given in some gener-
ality in [5]. However, the solution was in terms of various data attached to χ.
One may wish for an additional level of explicitness for particular ground
fields k, more precisely for a classification of the possible χ’s, determination
of the required data attached to them, and explication of the solution of [5]
for each possible χ. For applications (to global Galois representations over
Q), this is particularly desirable in the cases where k is a field Qp, and is
precisely what we carry out in the next section. This first involves a detailed
analysis of units in quadratic extensions of a field Qp, where we can base
ourselves on [3]. The result is Proposition 1 below, classifying the possible
χ’s as above together with certain crucial data. Secondly, we have to apply
the results of [5] for each of these χ in order to produce explicit good lifts
in each case. The results are found in Theorem 1.

Finally, and again because of applications to global Galois representa-
tions over Q, one can also ask for a reformulation of these results in such a
way that they can be readily applied to a practical situation where one starts
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with a concrete polynomial whose splitting field is cut out by the projective
representation %0. One would then like to know how to apply the results of
the next section when given essentially only this polynomial. In principle,
this problem can be solved through the use of explicit local reciprocity maps.
In the final section we shall show, however, that for the special cases of %0’s
of type V4 or D4 one can give an answer on the basis of the results of the
next section and certain ad hoc arguments from the theory of embedding
problems. We have focused on the V4 and D4 cases because these are the
most difficult ones among those that one would encounter studying Galois
representations over Q of one the complicated types A4, A5, and S4 (in fact,
all other cases can be handled immediately using only the results of the next
section, but we will not show this in detail).

2. Good lifts

Proposition 1. Consider a quadratic extension K = Qp(
√
d) of Qp.

(1) The abelian group K×/Q×p is ∼= A0×A1×A2 where the isomorphism
class and (topological) generators ai for the Ai are given by the following
table:

p d A0 ∼= A1 ∼= A2 ∼= a0 a1 a2

2 −3 Z/Z3 Z/Z2 Z2 ε
√
d −1 + 2

√
d

2 3 1 Z/Z2 Z2 1
√
d 1−

√
d

2 −1 1 Z/Z4 Z2 1 1−
√
d −1 + 2

√
d

2 ≡ 2 (mod 4) 1 Z/Z2 Z2 1
√
d 1 +

√
d

6= 2 p - d 1 Z/Z(p+ 1) Zp 1 ζ 1 + p
√
d

6= 2, 3 p | d Z/Z2 1 Zp
√
d 1 1 +

√
d

3 3 Z/Z2 1 Z3
√
d 1 1 +

√
d

3 −3 Z/Z2 Z/Z3 Z3
√
d ε 1 + 3

√
d

where ε and ζ denote primitive roots of unity of order 3 and p2 − 1, respec-
tively.

(2) Suppose that χ is a character of K×/Q×p , and write χ = χ′χ′′ where
χ′ has order prime to p, whereas the order of χ′′ is a power of p. Then

c(χ) = max{c(χ′), c(χ′′)},

and c(χ′) = 1 except if p 6= 2, p | d, and χ′ is a character of A0 extended to
K×/Q×p , in which case c(χ′) = 0.

If χ has p-power order we may write χ = χ1χ2 with χi a character of
p-power order on Ai extended to K×/Q×p . Let the order of χi be psi , i = 1, 2.
Then c(χ) is given by the following table:
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p d c(χ)

2 −3
{

2s1 for s2 = 0
s2 + 2 for s2 ≥ 1

2 3





0 for s1 = 0, s2 ≤ 1
2 for s1 = 1, s2 = 2
4 for (s1 = 1, s2 ≤ 1) or (s1 = 0, s2 = 2)
2s2 for s2 ≥ 3

2 −1

{
0 for s1 ≤ 1, s2 = 0
2 for s1 = 2, s2 = 0
2s2 + 2 for s2 ≥ 1

2 ≡ 2 (mod 4) 2s2

6= 2 p - d
{

0 for s2 = 0
s2 + 1 for s2 ≥ 1

6= 2, 3 p | d 2s2

3 3 2s2

3 −3
{ 2s1 for s2 = 0

2s2 + 2 for s2 ≥ 1

Proof. The proof is based on the results of Halter-Koch who gave in [3]
an explicit set of (topological) generators of the 1-unit group of a quadratic
extension K = Qp(

√
d) of Qp, including their orders mod ps for any s (p the

maximal ideal of the ring of integers in K). We have to complement this by
discussing the full group K×, and in particular the shape of elements of Q×p
when written in terms of the generators chosen. We shall give details of this
discussion only in the cases p = 2 and d = 3. The discussion in the other
cases is similar but simpler.

So, suppose that p = 2 and d = 3. As a prime element of K we choose
π := 1−

√
d. According to [3], as a basis for U (1)

K as a Z2-module, one may
choose

−1, η11 :=
√
d, η13 := −1 + 2

√
d,

where we have used the notation of [3]. Thus, any element of K× has a
unique representation of the form

(∗) ±πnηu11η
v
13

with n ∈ Z and u, v ∈ Z2.
Let us consider the action of the non-trivial automorphism σ on such

representations. First, we have

ση11 = −η11, ση13 = −η2a
11η
−1
13 ,

with a 2-adic integer a; the last expression is found by noting that the norm
of η13, which is −11, has a representation of the form −3a in Q2 (and that
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3 = η2
11). As the norm of π is −2 we have

σπ = ξπ

where ξ := −2π−2 is a unit of norm 1. For the expansion of ξ,

ξ = (−1)αηβ
′

11η
β
13,

we necessarily have β′ = −aβ, and β a 2-adic unit; here, the first claim
follows from the fact that ξ has norm 1, whereas the second is verified by
actually computing the beginning of the 2-adic expansion of β ∈ Z2.

We can now compute that an element (∗) belongs to Q2 if and only if

αn+ u+ v ≡ 0 (mod 2), −aβn+ 2av = 0, βn− 2v = 0.

As β is a unit, the integer n must then be even and v = βn/2; thus, the
conditions are equivalent to

n ≡ 0 (mod 2), u+ v ≡ 0 (mod 2), v = βn/2.

We see that elements of Q×2 have unique representations of the form

±(π2η11η
β
13)mη2b

11

with m ∈ Z, b ∈ Z2. That the structure of K×/Q×2 is as stated (with
a1 = η11, a2 = π) now follows readily.

Suppose then that χ is a continuous complex character of K×/Q×2 . The
first statements of (2) are trivial to check, so we have only to verify the
entries of the table in (2).

Assume that χ is of 2-power order and write χ = χ1χ2 as in the last part
of the statement of (2). If we use the information in [3] on the orders of the
units η11 and η13 mod ps, s ≥ 0, we deduce that

c(χ) = 0⇔ χ(η11) = χ(η13) = 1,

and
c(χ) ≤ 2s+ 2⇔ χ(η13)2s = 1,

for s ≥ 0. We have used the fact that χ vanishes on Q×2 . As

χ(η13)−β = χ1(a1)χ2(a2)2

with a 2-adic unit β, we deduce (since χ(a1) is of order ≤ 2) that

c(χ) = 0 ⇔ χ(a1) = χ(a2)2 = 1 ⇔ s1 = 0, s2 ≤ 1,

c(χ) ≤ 2 ⇔ χ(a1)χ(a2)2 = 1 ⇔ (s1 = 0, s2 ≤ 1) or (s1 = 1, s2 = 2),

c(χ) ≤ 4 ⇔ χ(a2)4 = 1 ⇔ s2 ≤ 2,

c(χ) ≤ 2s ⇔ s2 ≤ s,
for s ≥ 2. If we note that c(χ) is necessarily even in the present case, the
formulas for c(χ) result immediately.
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Theorem 1. Suppose that %0 : GQp → PGL2(C) is a continuous repre-
sentation of dihedral type. Let K = Qp(

√
d) be a quadratic extension such

that the fixed field of Ker %0 is ramified and cyclic over K. Then (%0)|GK has
the shape

(%0)|GK ∼
(
χ 0
0 1

)
,

with χ a ramified character of K× vanishing on Q×p . In each case define χi
as the restriction of χ to the 〈ai〉, i = 1, 2, of Proposition 1. Define also
c := c(χ) according to the recipe of the proposition. Suppose that δ is any
continuous complex character of UQp satisfying the following requirements:
δ is trivial on roots of unity of odd order , and in addition:

• If p = 2:

p d δ(−1) δ(5)

2 −3 χ1(a1) χ2(a2)

2 3 −χ1(a1)
{
χ1(a1)χ2(a2)2 if c ≥ 4
1 otherwise

2 −1 −χ1(a1)2
{
χ2(a2) if c ≥ 4
1 otherwise

2 2,−6 χ1(a1) −1

2 −2, 6 −χ1(a1) −1

• If p 6= 2: δ is trivial on 1-units, and

p d δ(−1)

6= 2 p - d χ1(a1)(p+1)/2

6= 2 p | d (−1)(p−1)/2χ(a0)

Then there exists a lift % : GQp → GL2(C) of %0 with the following properties.

(1) The restriction (det %)|UQp is δ.
(2) If φ : GQp → C× is a character of conductor pγ , then the valuation

of the Artin conductor c(%⊗ φ) of %⊗ φ is given as follows:

p d c(%⊗ φ)

2 −3 2 max{c, γ}
2 −1, 3

{
c+ 3 for γ ≤ 2
max{c+ 3, 2γ + 2} for γ ≥ 3

2 ±2,±6
{
c+ 5 for γ ≤ 3
max{c+ 5, 2γ + 2} for γ ≥ 4

6= 2 p - d 2 max{c, γ}

6= 2 p | d
{
c+ 1 for γ ≤ 1

max{c+ 1, 2γ + 2} for γ ≥ 2
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Proof. The proof is based on Theorem 1 of [5]. As recalled in 1.3, any lift
% of %0 has the shape IndK/Qp(ψ) where ψ is a character on K× satisfying

(]) ψ

(
σx

x

)
= χ(x), x ∈ K×.

For such a lift % the determinant det %, when viewed as a character of Q×p ,
is given by

(]]) det % = ω · (ψ|Q×p )

with ω the character Q×p → {±1} corresponding to the extension K/Qp via
class field theory.

Theorem 1 of [5] is an existence statement: What is proved—under con-
ditions more general than the above setting—is the existence of a character
ψ as in (]) with the following special properties: If % := IndK/Qp(ψ) then
the Artin conductor of any twist %⊗ φ of % by a character φ of GQp can be
explicitly given. Also, the restriction of ψ to the units UQp of Qp is described
so that also (det %)|UQp can be analyzed via (]]). We shall now apply and
further explicate these results for the various cases listed in Proposition 1.

So, we let ψ be a character on K× whose existence is assured by Theo-
rem 1 of [5]. Put % := IndK/Qp(ψ). If φ is a character on GQp of conductor
pγ , then the number c(% ⊗ φ) is given as follows: Define the non-negative
integer t to be 0 if K/Qp is unramified, and otherwise let t be the break in
the ramification filtration of G := Gal(K/Qp):

G = G0 = . . . = Gt 6= Gt+1 = 0.

In the latter case the discriminant of K/Qp is pt+1 as K/Qp is then totally
ramified and cyclic of prime order 2 (cf. [8, V, §3]). According to Theorem 1
of [5] we then have, denoting by NK/Qp(·) the norm map,

c(%⊗ φ) =

{
2 max{c, γ} if K/Qp is unramified,

t+ 1 + max{c+ t, c(φ ◦NK/Qp)} if K/Qp is ramified;

in the latter case,

c(φ ◦NK/Qp) =

{
2γ − t+ 1 if γ ≥ t+ 2,

≤ t+ 1 if γ ≤ t+ 1,

whence

c(%⊗ φ) =

{
c+ 2t+ 1 if γ ≤ t+ 1,

max{c+ 2t+ 1, 2γ + 2} if γ ≥ t+ 2.

Computing the number t in the various cases we arrive at the stated table
for c(%⊗ φ).



Galois representations of dihedral type 51

Let us now turn to a discussion of (det %)|UQp . Let U ′Qp be the group of
units generated by 5 if p = 2, and otherwise let it denote the full group of
1-units of Qp. The statement of Theorem 1 of [5] specializes to the following:
For any choice of complex characters ψ2 on U ′Qp and ψ1 on the group µ2∞(Qp)
of roots of unity of 2-power order in Qp satisfying certain requirements to
be explained below, there is a character ψ on K× satisfying all of the above,
trivial on roots of unity of odd order, and satisfying in addition

ψ|µ2∞(Qp) = ψ1, ψ|U ′Qp = ψ2.

The requirement on the character ψ2 is first that it be trivial if p 6= 2,
or if p = 2 but t ≥ 2. In the remaining cases, i.e. p = 2 and d ∈ {−1,±3},
we may choose for ψ2 any character satisfying the following:

Suppose that p = 2, d = −3; let ε be the 3rd root of unity (−1 +
√
d)/2.

If c = c(χ) ≤ 2, we know from Proposition 1 that χ2 is trivial. In that case
we require ψ2 to be trivial. Otherwise the requirement is

ψ2(5)2c−3
= χ(1 + ε · 2c−1),

which we claim is satisfied if we require

ψ2(5) = χ2(a2)

where a2 := −1 + 2
√
d as in Proposition 1. This follows once we note by

easy induction on j that

a−2j
2 (1 + ε · 2j+2) ∈ U (j+3)

K

so that the requirement on ψ2 is

ψ2(5)2c−3
= χ(1 + ε · 2c−1) = χ2(a2)2c−3

.

Suppose then that p = 2 and d ∈ {−1, 3}. In both cases we choose
π := 1 −

√
d as a prime element for K. Notice that c(χ) is now necessarily

an even number, as K/Q2 is ramified. If c = c(χ) < 4 we require ψ2 to be
trivial. So, assume c ≥ 4. Then the requirement is

ψ2(5)2c/2−2
= χ(1 + πc−1).

Now, consider the unit η := −1 + 2
√
d and note by induction on j that

η−2j (1 + π2j+3) ∈ U (2j+4)
K ,

which shows that our requirement is

ψ2(5)2c/2−2
= χ(η)2c/2−2

.

As the number χ(η)2c/2−2
= χ(1 + πc−1) is necessarily −1, our requirement

is satisfied whenever ψ2 is chosen so that

ψ2(5) = χ(η)β

with a 2-adic unit β.
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If d = −1 we have a2 = η, and we may choose for ψ2 any character with
ψ2(5) = χ(a2) = χ2(a2).

If on the other hand d = 3 we have a2 = π, and as noted in the proof of
Proposition 1 we have

π2 ≡ a−1
1 ηβ mod Q×2

for a certain 2-adic unit β. Hence, we may choose for ψ2 any character
satisfying

ψ2(5) = χ1(a1)χ2(a2)2.

We can now immediately verify the stated values of δ(5) in the various
cases.

Let us now turn to a discussion of the character ψ1. We first notice that
the proof of Theorem 1 of [5] reveals that we can choose for ψ1 the restriction
ψ̃1|Q×p where ψ̃1 is any character on the group µ2∞(K) of roots of unity of
2-power order in K satisfying

ψ̃1(y) = χ(x) whenever y =
σx

x
∈ (K×)σ−1 ∩ µ2∞(K).

Also, it is shown in that proof that

(K×)σ−1 ∩ µ2∞(K) =
{ 〈
√
−1〉 if K = Qp(

√
−1),

〈−1〉 otherwise.

So, if K 6= Qp(
√
−1) we have ψ1 = ψ̃1, for which the requirement is

ψ̃1(−1) = χ(
√
d),

as −1 = σ
√
d√
d

.

If on the other hand K = Qp(
√
−1) we have µ2∞(Qp) = {±1}. We note

that
√
−1 = σ(1−√−1)

1−√−1
and so we choose for ψ̃1 any character satisfying

ψ̃1(
√
−1) = χ(1−

√
−1). Then ψ1 is determined by the requirement

ψ1(−1) = ψ̃1(−1) = ψ̃2
1(
√
−1) = χ((1−

√
−1)2) = χ(−2

√
−1) = χ(

√
d).

It is now a trivial matter to verify the stated values for δ(−1); notice
that in case p 6= 2, p - d for ζ a primitive (p2 − 1)st root of unity, we have

√
d ≡ ζ(p+1)/2 mod Q×p

(as these elements both satisfy the equation σx = −x).
This finishes the proof of the theorem.

3. Further explication in special cases. The results of the previous
section give a general explicit classification of dihedral type projective rep-
resentations %0 : GQp → PGL2(C) together with information on their lifts
to linear representations which is sufficiently explicit for the purposes de-
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scribed in the introduction. However, one may wish for an even more explicit
description, one that would allow the immediate construction of algorithms
computing the relevant lifting data more or less directly from a polynomial
over Qp whose splitting field is cut out by %0. Such an additional level of
explicitness is in principle achievable through the use of explicit reciprocity
laws in local class field theory; these would allow the explicit description of
the character χ of Proposition 1 and Theorem 1 directly from a polynomial
as above.

In this final section we shall however give an alternative answer in two
central and especially problematic cases, namely where the Galois group of
the extension cut out by %0 is isomorphic to either V4 or D4. Understanding
these cases is important in connection with the problem of lifting global
representations of S4-type over Q, a problem much studied in the literature.
The local cases (in particular the D4 case) are difficult for p = 2 mainly
because there are many different such representations.

Our additional explication of the lifting theory in these cases is based on
the results of the previous section. One essential new point is a reinterpreta-
tion of the character ψ1 occurring in the proof of Theorem 1, which will lead
to another way of computing this character “directly” from the extension
L/Qp cut out by %0.

In this section we shall use the following additional notation: L/Qp is
an extension with G := Gal(L/Qp) dihedral of order 4 or 8, i.e. G ∼= V4 or
G ∼= D4. We let K = Qp(

√
d) be a quadratic field contained in L such that

L/K is cyclic and ramified (such a K always exists, as is easily seen).
Choosing an embedding G ↪→ PGL2(C) gives us a representation %0 as

above. In the D4 case there are two inequivalent choices of this embedding,
but it is immaterial for the discussion and the result below which one we
choose. With this %0 we are in the setting of Theorem 1 with a ramified
character χ on K× such that

(%0)|GK ∼
(
χ 0
0 1

)
.

We can then also retain all other notation from Proposition 1 and Theorem 1.
Our goal in this section is to recompute the data given in Theorem 1

(using among other things Theorem 1 itself) when L is given explicitly as a
radical extension of Qp. That is, for one particular lift % of %0 we shall give
first the restriction (det %)|UQp =: δ, and secondly the valuation c(%⊗ φ) of
the Artin conductor of %⊗φ for any character φ : GQp → C× of conductor pγ .

We shall need the following consequence of a theorem due to B. Perrin-
Riou (cf. Théorème 5 of [6]). The theorem applies generally to the case of a
dihedral extension of a p-adic field but we will of course only need it in the
V4 and D4 cases.
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Lemma 1 (cf. Théorème 5 of [6]). In the above situation we have χ(
√
d)

= 1 if and only if L can be embedded in a dihedral extension of degree
2[L : Qp] cyclic over K.

Proof. An immediate consequence of Théorème 5 of [6] is that the stated
embedding problem is solvable if and only if

√
d ∈ K is a norm from L. As

the kernel of χ consists precisely of the elements of K× that are norms from
L, the claim follows.

3.1. V4 cases. Assume now that G ∼= V4. The discussion of this case is
basically trivial if p 6= 2: By Proposition 1, there is only one such field L
and K/Qp is the unramified quadratic extension. We have c(χ) = 1, and
Theorem 1 shows that c(%⊗ φ) = 2 max{1, γ}, and that we may choose for
δ any character on UQp which is trivial on 1-units and on roots of unity of
odd order and satisfies

δ(−1) =
{

1 if p ≡ 3 (mod 4)

−1 if p ≡ 1 (mod 4).

The last statement follows because the character χ is necessarily non-trivial
on a1, whence χ(a1) = −1.

Let us proceed with the discussion of the 7 cases with G ∼= V4 for p = 2.

Proposition 2. Retaining all the above notation, for the 7 extensions
L/Q2 of V4-type we have lifts % of the attached %0 with the properties sum-
marized in the following table:

K L (det %)(−1) (det %)(5) c(%⊗ φ)

Q2(
√
−3) Q2(

√
−3,
√
−1) −1 1

{
4 if γ ≤ 2
2γ if γ ≥ 3

Q2(
√
−3) Q2(

√
−3,
√

2) −1 −1
{

6 if γ ≤ 3
2γ if γ ≥ 4

Q2(
√
−3) Q2(

√
−3,
√
−2) 1 −1

{
6 if γ ≤ 3
2γ if γ ≥ 4

Q2(
√

3) Q2(
√

3,
√
±2) 1 −1

{
7 if γ ≤ 2
2γ + 2 if γ ≥ 3

Q2(
√

2) Q2(
√

2,
√
−1) −1 −1

{
7 if γ ≤ 3
2γ + 2 if γ ≥ 4

Q2(
√

6) Q2(
√

6,
√
−1) −1 −1

{
7 if γ ≤ 3
2γ + 2 if γ ≥ 4

Proof. We give the details for the case K=Q2(
√
−3), L=Q2(

√
−3,
√

2).
The other cases are handled in a similar fashion. In this case, the valuation of
the conductor of L/K is 3. Proposition 1 then tells us that χ2 is non-trivial
of order 2, and Theorem 1 gives (det %)(5) = −1 and the stated value for
c(%⊗ φ).
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Concerning (det %)(−1) recall that this is ω(−1)ψ1(−1) where ω is the
quadratic character of Q×2 corresponding to K/Q2, and ψ1 is the charac-
ter occurring in the proof of Theorem 1. Also recall from that proof that
ψ1(−1) = χ(

√
d). Combining this with the above Lemma 1, as well as

with the general well known result (cf. for instance [4] or Lemma 2 be-
low) that a V4-extension Q2(

√
d,
√
a) can be embedded in a D4-extension

cyclic over Q2(
√
d) if and only if (a,−d) = 1, we deduce in our present case

that
(det %)(−1) = (−3,−1) · (2, 3) = −1.

3.2. D4 cases. Assume that G ∼= D4. In this case also the discussion is
essentially trivial if p 6= 2: Proposition 1 shows that there exists a dihedral
extension L/Qp of order 8 only if p ≡ 3 (mod 4), and in that case there is
precisely one such; for an attached projective representation %0 Theorem 1
reveals that we have a lift % with det % vanishing on 1-units and roots of
unity of odd order, and

det %(−1) = (−1)(p+1)/4.

The number c(%⊗ φ) equals 2 max{1, γ}.
Let us now turn to the more complicated case p = 2. Before stating the

theorem we need some general facts about D4-extensions:

Lemma 2. Let k be a field of characteristic 6= 2. A biquadratic extension
k(
√
d,
√
a) can be embedded in a D4-extension cyclic over k(

√
d) if and only

if (a,−d) = 1, i.e. if and only if the equation

x2 − ay2 = ad

has a solution x, y ∈ k. If this is the case then the solutions L/k to this
embedding problem are precisely given by the fields

([) L = k(
√
d,
√
q(x+ y

√
a))

where q runs through k×.
If L as in ([) is a D4-extension then L can be embedded in a D8-extension

cyclic over k(
√
d) if and only if

(a, 2)(2qx,−d) = 1 in case x 6= 0,

and if and only if
(a, 2) = 1 in case x = 0.

Here, (·, ·) denotes the usual Brauer symbol over k.

Proof. The first part of the statement is well known; it can be obtained
as a trivial reformulation of Theorem 5 of [4].
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For the second part we need Theorem 6 of [4]. To apply it we need to
reshape the square roots generating L a bit: If x 6= 0 we find that

L = k(
√
u,
√
u− 1,

√
2q′(u+

√
u))

where

q′ :=
y2qa

2x
, u :=

x2

y2a
;

if on the other hand x = 0 then k(
√
d) = k(

√
−1), and we find

L = k(
√
u,
√
−1,
√

2q′
√
u)

with

q′ :=
yq

2
, u := a.

Now Theorem 6 of [4] immediately yields the second part of the state-
ment.

Theorem 2. The following table lists the D4-extensions L/Q2 together
with the number d such that the quadratic field K = Q2(

√
d) is the (uniquely

determined) quadratic subextension over which L is cyclic. Each extension
L gives rise to a projective representation %0 : GQ2 → PGL2(C) by choosing
an embedding Gal(L/Q2) ↪→ PGL2(C). Then there exists a lifting of %0
to a linear representation % with the properties stated in the table for the
determinant δ := det % and for the exponents of the Artin conductors of
a twist of % by a character φ : GQ2 → C× of conductor 2γ. The symbol i
denotes a complex 4th root of unity.

d L δ(−1) δ(5) c(%⊗ φ)

−3 Q2(
√
−3,
√

2 +
√
−2) 1 i

{
8 if γ ≤ 4
2γ if γ ≥ 5

−3 Q2(
√
−3,
√
−(2 +

√
−2)) −1 i

{
8 if γ ≤ 4
2γ if γ ≥ 5

−2 Q2(
√
−2,
√

1 +
√
−1) −1 −1

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

−2 Q2(
√
−2,
√

3(1 +
√
−1)) 1 −1

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

2 Q2(
√

2,
√

3 +
√

3) −1 −1
{

9 if γ ≤ 3
2γ + 2 if γ ≥ 4

2 Q2(
√

2,
√
−(3 +

√
3)) 1 −1

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

6 Q2(
√

6,
√

3 +
√
−1) −1 −1

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4
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d L δ(−1) δ(5) c(%⊗ φ)

6 Q2(
√

6,
√

2(3 +
√
−1)) 1 −1

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

−6 Q2(
√
−6,
√

2 + 2
√
−2) 1 −1

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

−6 Q2(
√
−6,
√
−(2 + 2

√
−2)) −1 −1

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

−1 Q2(
√
−1,
√√

2) −1 i

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

−1 Q2(
√
−1,
√

3
√

2) −1 i

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

−1 Q2(
√
−1,
√√

3) 1 1
{

5 if γ ≤ 2
2γ + 2 if γ ≥ 3

−1 Q2(
√
−1,
√

2
√

3) 1 −1
{

7 if γ ≤ 2
2γ + 2 if γ ≥ 3

−1 Q2(
√
−1,
√√

6) 1 i

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

−1 Q2(
√
−1,
√

2
√

6) 1 i

{
9 if γ ≤ 3
2γ + 2 if γ ≥ 4

3 Q2(
√

3,
√

2 +
√
−1) −1 −1

{
7 if γ ≤ 2
2γ + 2 if γ ≥ 3

3 Q2(
√

3,
√

2(2 +
√
−1)) 1 1

{
5 if γ ≤ 2
2γ + 2 if γ ≥ 3

Proof. It is well known that there are exactly 18 D4-extensions of Q2,
and also what they actually look like (see for instance [1]). One finds this
list by applying Lemma 2: We have to find the biquadratic extensions
Q2(
√
d,
√
a) for which (a,−d) = 1; for such an extension, the D4-extensions

containing it which are cyclic over Q2(
√
d) are then given by the fields L =

Q2(
√
d,
√
q(x+ y

√
a)) where (x, y) is a solution to the equation x2 − ay2 =

ad, and q runs through Q×2 ; one sees immediately that we get exactly two
distinct fields L, by choosing q ∈ {1, u} where u is such that the numbers

1, d, a, ad, u, ud, ua, uad

is a full system of representatives for the square classes in Q×2 .
Given now any such field L = Q2(

√
d,
√
q(x+ y

√
a)), we compute the

exponent c of the conductor of the cyclic extension L/Q2(
√
d). Once an

embedding Gal(L/Q2) (and thus a projective representation %0) has been
chosen we have c = c(χ) where χ is the character of GQ2(

√
d) such that

(%0)|GQ2(
√
d)
∼
(
χ 0
0 1

)
. Interpreting χ as a character of K× with K := Q2(

√
d)

we are then in the situation of Theorem 1. Theorem 1 then gives us a “good”
lifting % but we have to determine the quantities χ1(a1) and χ2(a2) of the
theorem in order to get the desired data for the lift % (in the case d = −1,
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knowledge of χ1(a1)2 and χ2(a2) will do). To do this, we first claim (and
this must be verified individually in each case) that we can determine from
Proposition 1 the order 2s2 of χ2 solely from knowledge of c(χ) and the
fact that χ has order 4. Secondly, the number χ1(a1) can be determined
thus: Except in case d = −1 we have χ1(a1) = χ(

√
d); if d = −1 we have

χ1(a1)2 = χ(
√
d). So, it is clear that all the desired data for the lift % can

be determined by Theorem 1 if we can compute χ(
√
d). But combining

Lemmas 1 and 2 we find

χ(
√
d) =

{
(a, 2)(2qx,−d) if x 6= 0,

(a, 2) if x = 0.

Let us give the details for d = −3. The arguments in the other cases run
similarly. For d = −3 we have the two fields

L = Q2(
√
−3,
√
q(2 +

√
−2))

with q = ±1. In both cases we find c = 4. Proposition 1 then reveals that
s2 = 2, i.e. that χ2 has order 4. So, by Theorem 1 the number δ(5) is a
complex 4th root of unity. The theorem also immediately gives the number
c(%⊗ φ). We find

δ(−1) = χ(
√
−3) = (−2, 2)(2q · 2, 3) = (q, 3) =

{
1 for q = 1,

−1 for q = −1.

Remark 1. There are two inequivalent embeddings D4 ↪→ PGL2(C).
One can easily verify that switching between these in the setting of Theo-
rem 2 has the only effect of changing the sign of the complex 4th root of
unity i wherever it occurs in the table.
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