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On Waring’s problem: two cubes and two minicubes
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1. Introduction. Davenport proved in [3] that almost every natural
number can be expressed as a sum of four positive integral cubes. It is now
known, courtesy of Brüdern [1] and Wooley [11], that when N is sufficiently
large, the number of positive integers at most N that fail to be written in
such a way is slightly smaller than N37/42. Since any integer congruent to 4
(mod 9) is never a sum of three cubes, the number of summands here cannot
in general be reduced. A heuristic argument shows, however, that one of the
four cubes is almost redundant. This motivates the work of Brüdern and
Wooley (see [2]) on the representation of almost all positive integers as a
sum of four cubes, one of which is small (henceforth we call this a minicube).
They have shown that, with n being the natural number to be represented,
such a minicube can be as small as n5/36 without obstructing the existence
of representations. This raises the question as to whether we can restrict not
only one, but two (or even three) of the cubes in such a representation to
be minicubes, and still get an almost all result. The purpose of this paper
is to investigate representations of natural numbers by sums of four cubes,
two of which are small.

When n is a positive integer and θ > 0, write rθ(n) for the number of
solutions to the equation

(1.1) n = x3
1 + x3

2 + y3
1 + y3

2,

where x1, x2, y1, y2 are natural numbers satisfying y1, y2 ≤ nθ. Plainly any
one of these variables satisfying this equation must be at most n1/3, so a
trivial upper bound for θ is 1/3. A formal application of the circle method
suggests that when 1/6 < θ < 1/3, we should have

rθ(n) ∼ Γ (4/3)2

Γ (2/3)
S(n)n2θ−1/3,
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with S(n) being the familiar singular series associated with the represen-
tation of positive integers as sums of four cubes. Recalling the estimate
S(n)� 1 (see Exercise 3 of Section 4.6 of [8]), we therefore anticipate that
rθ(n) ≥ 1 as long as n is large enough and θ > 1/6. We establish this for
almost all n, in §§2–5, for values of θ rather smaller than 2/9.

Theorem 1.1. Whenever 192/869 ≤ θ ≤ 2/9, we have rθ(n) ≥ 1 for
almost all integers n.

In some sense, the sum of two cubes and two minicubes at most nθ

employed in the representation (1.1) carries the same weight as 2+6θ cubes.
Thus Theorem 1.1 asserts that almost every natural number n is the sum
of at most 3.326 cubes.

In §§6–8, we establish the following asymptotic formula for rθ(n).

Theorem 1.2. Whenever 1/4 < θ < 1/3, the asymptotic formula

rθ(n) =
Γ (4/3)2

Γ (2/3)
S(n)n2θ−1/3 +O(n2θ−1/3(log n)−1)

holds for almost all positive integers n.

This result can be compared with Brüdern and Wooley’s result (see The-
orem 1.2 of [2]) on representations as sums of three cubes and a minicube.
Our range of permissible values of θ is identical to that obtained in the latter
paper.

We establish Theorems 1.1 and 1.2 using the Hardy–Littlewood method.
We begin in §2 by laying the foundations for the application of this method.
This leads to a lower bound for the contribution from the major arcs in §3.
Some auxiliary mean value estimates vital to the proof of Theorem 1.1 are
then introduced in §4. Bessel’s inequality is used to relate the exceptional
set to a minor arc estimate in §5. Following three pruning processes, the
proof of Theorem 1.1 is complete. The derivation of the asymptotic formula
in Theorem 1.2 is covered in §§6–8 and essentially follows by conventional
means.

Throughout this paper, we use ε to denote an arbitrarily small positive
constant. The implicit constants in Vinogradov’s well-known notations �
and � depend at most on ε. Whenever ε appears in a statement, either
implicitly or explicitly, we assert that the statement is true for each ε > 0.
Note that the “value” of ε changes from statement to statement. The letter
$ always denotes a prime, and any variable denoted by the letter p (with
or without subscripts) is a prime that is congruent to 2 (mod 3). As usual,
we write e(z) = e2πiz.

2. Existence of representations. We begin our proof of Theorem 1.1
by introducing the basic ingredients for the application of the Hardy–Lit-
tlewood method.
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Fix a large integer N . Let θ be a positive number with θ ≤ 1/3. Define

(2.1) P = (N/4)1/3, R = P 3θ, Y = P 11/79, L = (logP )10.

We take η to be a sufficiently small (but fixed) positive number, and then
define the set of smooth numbers

A(R) = {m ∈ [1, R] ∩ Z : $ |m⇒ $ ≤ Rη}.
Also, when α ∈ [0, 1), define the generating functions

(2.2) f(α) =
∑

P<x≤2P

e(αx3) and h(α) =
∑

y∈A(R)

e(αy3).

When X and Z are positive numbers, define

A∗(X,Z) = {n ∈ Z ∩ [1, X] : $ |n⇒ $ ≤ Zη},(2.3)
B(X,Z) = A∗(2X,Z) \ A∗(X,Z).(2.4)

Note that A(X) = A∗(X,X). Fix τ > 0 with the property that τ−1 >

852 + 16
√

2833 ≈ 1703.6. Define J =
⌊

1
2τ logP

⌋
, and when α ∈ R, write

(2.5) K(α) =
∑

2−JY <p≤Y

∑
w∈B(P/p,2P/Y )

e(αp3w3).

For all θ > 0 and integers n with N < n ≤ 2N , let ρθ(n) denote the
number of integral solutions to the equation

n = x3 + (pw)3 + y3
1 + y3

2,

with

P < x ≤ 2P, 2−JY < p ≤ Y, w ∈ B(P/p, 2P/Y ), y1, y2 ∈ A(R).

It is apparent that rθ(n) ≥ ρθ(n), and our goal is to establish a lower bound
for ρθ(n) that produces the desired lower bound for rθ(n). To this end, for
any measurable subset B of [0, 1), define

(2.6) ρθ(n; B) =
�

B

f(α)K(α)h(α)2e(−nα) dα.

By orthogonality, we have ρθ(n) = ρθ(n; [0, 1)) for all integers n with N <
n ≤ 2N .

We analyse this integral using the Hardy–Littlewood method. When
a ∈ Z and q ∈ N satisfy 0 ≤ a ≤ q ≤ L and (a, q) = 1, define

(2.7) P(q, a) = {α ∈ [0, 1) : |α− a/q| ≤ LN−1}.
In addition, for any positive number X, when a ∈ Z and q ∈ N satisfy
0 ≤ a ≤ q ≤ X and (a, q) = 1, define

(2.8) M(q, a;X) = {α ∈ [0, 1) : |qα− a| ≤ XP−3}.
With this in mind, we define the major arcs P to be the union of the arcs
P(q, a) with a ∈ Z, q ∈ N satisfying 0 ≤ a ≤ q ≤ L and (a, q) = 1. Similarly,
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when 1 ≤ X ≤ N1/2, define the major arcs M(X) to be the union of the arcs
M(q, a;X) with a ∈ Z and q ∈ N satisfying 0 ≤ a ≤ q ≤ X and (a, q) = 1.
Their respective complements in [0, 1) are the minor arcs p and m(X). The
major arcs P are of central interest in our argument, with M(X) employed
as a tool for pruning the minor arcs p later.

3. Major arc estimate. The familiar approach to estimating the major
arc contribution ρθ(n; P), which we largely follow, is to approximate the
generating functions in the integrand of (2.6) by some suitably well-behaved
functions. First, when a ∈ Z and q ∈ N, let

(3.1) S(q, a) =
q∑
r=1

e(ar3/q).

Also, when β is a real number and Z is a positive number, write

(3.2) v(β;Z) =
2Z�

Z

e(βγ3) dγ.

In particular, write v(β) for v(β;P ). Recall from Theorem 4.1 of [8] that
when α ∈ R, a ∈ Z and q ∈ N, we have

(3.3) f(α) = q−1S(q, a)v(α− a/q) +O(q1/2+ε(1 + P 3|α− a/q|)1/2).

In particular, for all α ∈ P(q, a) ⊆ P, one obtains from (2.7) the relation

(3.4) f(α) = q−1S(q, a)v(α− a/q) +O(L1+ε).

Meanwhile, it follows from Lemma 8.5 of [10] that for all α ∈ P(q, a) ⊆ P,

(3.5) h(α) = q−1S(q, a)h(0) +O(RL−5).

The analysis which leads to the asymptotic formula for K̃(α) preceding
equation (4.4) in [2] shows that there exists a positive constant C with the
property that for all α ∈ P(q, a) ⊆ P, we have

(3.6) K(α) = Cq−1S(q, a)v(α− a/q) +O(PL−5).

When β ∈ R, define

(3.7) u(β) = Ch(0)2v(β)2.

Successive applications of (3.4), (3.5) and (3.6) then yield the relation

(3.8) f(α)K(α)h(α)2 = (q−1S(q, a))4u(α− a/q) +O(P 2R2L−5)

for all α ∈ P(q, a). For all positive integers q and n, write

(3.9) A(q, n) =
q∑

a=1
(a,q)=1

(q−1S(q, a))4e(−an/q).
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In addition, when n is a natural number, define

S(n;L) =
∑

1≤q≤L
A(q, n),(3.10)

J(n;L) =
L/N�

−L/N

u(β)e(−nβ) dβ.(3.11)

From (2.7), the measure of P is O(L3/N), so integrating both sides of (3.8)
against e(−nα) over α ∈ P, and appealing to (3.9)–(3.11), yields

(3.12) ρθ(n; P) = S(n;L)J(n;L) +O(P−1R2L−2).

Next recall the estimate

(3.13) v(β)� P (1 + P 3|β|)−1,

obtained via integration by parts. This ensures that the singular integral

(3.14) J(n) =
∞�

−∞
u(β)e(−nβ) dβ

converges absolutely and uniformly in n. Also, since h(0) � R, we deduce
from (3.7), (3.11) and (3.13) that

(3.15) J(n)− J(n;L)� R2P 2
∞�

L/N

(1 + P 3β)−2 dβ � R2P−1L−1.

Finally, the singular integral can be evaluated as follows. On applying the
methods outlined on pp. 21–22 of [4], it is readily seen that

∞�

−∞
v(β)2e(−βn) dβ =

1
9

�

V (n)

ξ−2/3(n− ξ)−2/3 dξ,

where V (n) is the interval of all real numbers ξ satisfying the inequalities
P 3 ≤ ξ ≤ 8P 3 and P 3 ≤ n − ξ ≤ 8P 3. Consequently, by (3.7), (3.14) and
the fact that h(0)� R, we infer that whenever n satisfies N < n ≤ 2N , we
have
(3.16) J(n)� R2P−1.

Meanwhile, Theorem 4.3 of [8] ensures that the singular series

(3.17) S(n) =
∞∑
q=1

A(q, n)

converges absolutely. Also, equation (1.3) of [5] shows that 1 � S(n) �
(log log n)4. In addition, the analysis of the singular series S(n) provided in
[2] demonstrates that

(3.18) S(n)−S(n;L)� L−1/16

for all but O(NL−1/16) integers n with N < n ≤ 2N .
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Equations (3.12), (3.15), (3.18), (3.16) and (2.1) together thus lead to
the asymptotic lower bound

ρθ(n; P)� S(n)n2θ−1/3 +O(n2θ−1/3(log n)−1/16),

valid for all integers n with N < n ≤ 2N , with at most O(N(logN)−1/16)
exceptions. We summarise this conclusion in the following proposition.

Proposition 3.1. For all but O(N(logN)−1/16) integers n with N <
n ≤ 2N , we have ρθ(n; P)� n2θ−1/3.

4. Auxiliary estimates. We now establish several mean value esti-
mates of generating functions that are required in the following section to
evaluate the minor arc contribution ρθ(n; p).

When α ∈ R and Q ≥ 1, write

g(α) =
∑

Q<y≤2Q

e(αy3).

We record for future reference the following lemma.

Lemma 4.1. Whenever R ≤ Q2/3, we have
1�

0

|g(α)2h(α)6| dα� QR13/4−τ .

Proof. This is Lemma 2.1 of [2].

The above gives rise to the following corollaries.

Corollary 4.2. Let

T1 =
1�

0

|f(α)2h(α)6| dα and T2 =
1�

0

|K(α)2h(α)6| dα.

Then whenever R ≤ P 2/3, we have

T2 ≤ T1 � PR13/4−τ .

Proof. The second inequality is immediate from Lemma 4.1 on taking
Q = P . It remains to establish the first inequality. We first show that every
natural number m admits at most one representation in the form pw, where
2−JY < p ≤ Y and w ∈ B(P/p, 2P/Y ). Indeed, suppose p1w1 = p2w2

with 2−JY < p1, p2 < Y and wi ∈ B(P/pi, 2P/Y ) for i = 1, 2. If p1 6= p2,
then p1 |w2. Since w2 ∈ B(P/p2, 2P/Y ), we see from (2.4) and (2.3) that
2−JY < p1 ≤ (2P/Y )η. According to (2.1), this is absurd as long as η is
small enough. Thus p1 = p2 and w1 = w2.

The first inequality in the corollary then follows by considering the dio-
phantine equations associated with T1 and T2, noting from (2.4) and (2.3)
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that pw > P for any pair (p, w) of variables in the sum (2.5) defining K(α),
and finally using the observation in the last paragraph.

We also quote the following useful lemma.

Lemma 4.3. Whenever 1 ≤ Q ≤ P , we have
1�

0

|f(α)2g(α)4| dα� P ε(PQ2 + P−1Q9/2).

Proof. This is the first estimate of Lemma 2.3 of [2].

The following result is a direct consequence of this lemma.

Corollary 4.4. Whenever R ≤ P 2/3, we have the estimate
1�

0

|K(α)2h(α)4| dα� P 1+εR2.

Proof. Using the argument of the proof of Corollary 4.2, we have
1�

0

|K(α)2h(α)4| dα ≤
1�

0

|f(α)2h(α)4| dα.

On considering the underlying diophantine equations, the desired conclusion
follows from Lemma 4.3 and the assumption that R ≤ P 2/3.

Next we define the mean value

(4.1) U1 =
1�

0

|K(α)|8 dα.

By considering the underlying diophantine equation, it follows from Theo-
rem 2 of [6] that

(4.2) U1 � P 5.

Introduce the function f∗ : [0, 1)→ C given by
(4.3)

f∗(α) =
{
q−1S(q, a)v(α− a/q) when α ∈M(q, a;P 6/5) ⊆M(P 6/5),
0 otherwise.

Also, when R ≤ X ≤ P 6/5 and t ≥ 4, let

(4.4) U(X; t) =
�

M(2X)\M(X)

|f∗(α)|t dα.

Finally, for all such t, define

(4.5) U2(t) =
�

M(R)\P

|f∗(α)|t dα.

Then we have the following estimates.
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Lemma 4.5. Whenever R ≤ X ≤ P 6/5 and t ≥ 4, we have

U(X; t)� P t−3X1−t/3.

For all such t, we also have

U2(t)� P t−3L1−t/3.

Proof. These two inequalities are established by the argument of Lem-
ma 5.1 of [7].

When β ∈ R and Z is a positive number, write

(4.6) w(β;Z) =
Z�

0

e(βγ3) dγ.

For all such Z and α ∈ R, let

(4.7) F ∗(α;Z) =
{
q−1S(q, a)w(α− a/q; 2P ) when α ∈M(q, a;Z),
0 otherwise.

For α ∈ R and B ⊆ [1, R], let

(4.8) j(α;B) =
∑
x∈B

e(αx3).

Finally, when t, Z > 0 and B ⊆ [1, R], put

U3(t;Z;B) =
�

M(Z)

|f∗(α)tj(α;B)6| dα,(4.9)

U4(t;Z;B) =
�

M(Z)

|F ∗(α;Z)tj(α;B)6| dα.(4.10)

We give upper bounds for these two integrals in the following lemma.

Lemma 4.6. Let 1 < Z ≤ R and B ⊆ [1, R]. Then when t > 2, we have

U3(t;Z;B)�t P
t−3R6.

On the other hand, when t >3, we have the same upper bound for U4(t;Z;B).

Proof. This argument is largely akin to that given in the proof of Lem-
ma 5.4 of [9]. Define the arithmetic function w multiplicatively by

(4.11) w($3u+v) =
{

3$−u−1/2 if u ≥ 0 and v = 1,
$−u−1 if u ≥ 0 and v ∈ {2, 3}.

Then from [8, Lemmata 4.3, 4.4 and Theorem 4.2], we deduce that when
(a, q) = 1, we have

(4.12) q−1S(q, a)� w(q).
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When α ∈ R, 1 < Z ≤ R, θ1 > 2 and θ2 > 1, let
(4.13)

Υ(α; θ1, θ2;Z) =
{
w(q)θ1(1 + P 3|α− a/q|)−θ2 when α ∈M(q, a;Z),
0 otherwise.

With θ1, θ2 and Z as above and B ⊆ [1, R], write

(4.14) T (θ1, θ2;Z;B) =
�

M(Z)

|Υ(α; θ1, θ2;Z)j(α;B)6| dα.

Equations (4.3), (4.12) and (3.13) imply that when t > 2, we have

(4.15)
�

M(Z)

|f∗(α)tj(α;B)6| dα� P tT (t, t;Z;B).

On the other hand, Theorem 7.3 of [8] yields

(4.16) w(β;U)� U(1 + U3|β|)−1/3

for all positive numbers U . This, together with (4.7), (4.12), (4.13) and
(4.14), gives rise to

(4.17)
�

M(Z)

|F ∗(α;Z)tj(α;B)6| dα� P tT (t, t/3;Z;B)

for all t > 3. Here we prove that when θ1 > 2, θ2 > 1, 1 < Z ≤ R and
B ⊆ [1, R], we have

(4.18) T (θ1, θ2;Z;B)�θ1 P
−3R6.

Substituting (4.13) and (4.8) into (4.14), and recalling the definition of
M(Z) given after (2.8), yields

T (θ1, θ2;Z;B)

≤
∑

1≤q≤Z
w(q)θ1

q∑
a=1

�

M(q,a;Z)

(1 + P 3|α− a/q|)−θ2
∣∣∣∑
y∈B

e(y3α)
∣∣∣6 dα,

where we have removed the coprimality condition (a, q) = 1 in the a-
summation. Making the change of variables α = a/q + β in the integral,
we obtain

(4.19) T (θ1, θ2;Z;B)

≤
∑

1≤q≤Z
w(q)θ1

∞�

−∞
(1 + P 3|β|)−θ2

q∑
a=1

∣∣∣∑
y∈B

e(y3(β + a/q))
∣∣∣6 dβ.

Here we have extended the range of integration from |β| ≤ q−1ZP−3 to the
whole real line. This is valid as the completed integral converges absolutely.

When y = (y1, . . . , y6) with integral coordinates y1, . . . , y6, write

(4.20) Ψ(y) = y3
1 − y3

2 + y3
3 − y3

4 + y3
5 − y3

6.
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Expanding the innermost sum in (4.19) and then swapping the a- and y-
sums, we see that

q∑
a=1

∣∣∣∑
y∈B

e(y3(β + a/q))
∣∣∣6 =

∑
y1,...,y6∈B

e(βΨ(y))
q∑

a=1

e(aΨ(y)/q).

The a-sum here is zero unless q |Ψ(y), in which case it equals q. Thus

(4.21)
q∑

a=1

∣∣∣∑
y∈B

e(y3(β + a/q))
∣∣∣6 = q

∑
y1,...,y6∈B
q|Ψ(y)

e(βΨ(y)).

Let ρ(q) be the number of solutions to the congruence Ψ(y) ≡ 0 (mod q),
under the constraint that each coordinate of y is a positive integer not
exceeding q. A trivial estimate then gives

(4.22)
∑

y1,...,y6∈B
q|Ψ(y)

e(βΨ(y)) ≤
∑

1≤y1,...,y6≤R
q|Ψ(y)

1� (R/q + 1)6ρ(q).

By orthogonality, it follows from (3.1) and (4.20) that

qρ(q) =
q∑

a=1

|S(q, a)|6 =
q∑

a=1

(q, a)6
∣∣∣∣S( q

(q, a)
,

a

(q, a)

)∣∣∣∣6.
Hence Theorem 4.2 of [8] yields

(4.23) qρ(q)�
q∑

a=1

(q, a)6((q/(q, a))2/3)6 = q4
q∑

a=1

(q, a)2 � q6.

From (4.21)–(4.23) and the assumption that Z ≤ R, we see that the
double sum within the integral in (4.19) has the asymptotic upper bound

q(R/q + 1)6ρ(q)� (R/q + 1)6q6 = (R+ q)6 � R6.

Inserting this estimate into (4.19), and evaluating the remaining integral in
the same equation, we obtain

(4.24) T (θ1, θ2;Z;B)� P−3R6
∑

1≤q≤Z
w(q)θ1 .

It thus remains to show that the sum here is uniformly bounded over Z, up
to a multiplicative constant possibly depending on θ1.

As w is defined to be a multiplicative function, in the analysis of the q-
sum in (4.24) it suffices to evaluate the values of w($3u+v)θ1 for all primes $.
From the definition (4.11) of w, we readily confirm that for any prime $,
we have the bounds

w($3u+v)θ1 �θ1

{
$−θ1u−θ1/2 if u ≥ 0 and v = 1,
$−θ1u−θ1 if u ≥ 0 and v ∈ {2, 3}.
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This reveals that for each $ we have
∞∑
h=1

w($h)θ1 �θ1 $
−θ1/2.

This ensures the existence of a positive number A = A(θ1) for which the
q-sum in (4.24) is bounded above by the Euler product∏
$≤Z

(
1 +

∞∑
h=1

w($h)θ1
)
�
∏
$≤Z

(1 +A$−θ1/2)�
∏
$

(1 +$−θ1/2)A �θ1 1.

The given condition θ1 > 2 validates the last inequality above. The desired
inequality (4.18) follows immediately.

The lemma thus follows by putting (4.18) into (4.15) and (4.17) in turn,
and recalling the definitions (4.9) and (4.10) of U3 and U4 respectively.

5. Minor arc estimate. On recalling (2.1), it follows from Propo-
sition 3.1 that for almost all integers n with N < n ≤ 2N , we have

ρθ(n; P)� P−1R2.

We therefore seek to show that the minor arc contribution ρθ(n; p) is
o(P−1R2) for almost all such n. For any measurable subset B of [0, 1),
write
(5.1) S(B) =

�

B

|f(α)2K(α)2h(α)4| dα.

An application of Bessel’s inequality then gives

(5.2)
∑

N<n≤2N

|ρθ(n; p)|2 ≤ S(p).

If we can show that S(p) = o(PR4), the desired bound for ρθ(n; p) then
follows from a simple averaging argument. We first decompose p into the
components

(5.3)
m = m(PY 3), D = M(PY 3) \M(P 6/5),

U = M(P 6/5) \M(R), A = M(R) \P.

Then evidently

(5.4) S(p) = S(m) + S(D) + S(U) + S(A).

For any positive number Y , define

I(Y ) =
�

m

|f(α)2K(α)6| dα.

It is then a consequence of Corollary 3.2 of [2] that when Y is chosen as
in (2.1), we have the bound

(5.5) I(Y )� P 19/4−τ/2Y −3/4.
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Proposition 5.1. As long as θ ≤ 2/9, we have

S(m)� PR4L−1/50.

Proof. An application of Hölder’s inequality to (5.1) reveals that

S(m) ≤ I(Y )1/3
( 1�

0

|f(α)2h(α)6| dα
)2/3

.

The restriction θ ≤ 2/9 enables the application of Corollary 4.2 here. To-
gether with (5.5) and (2.1), this gives

S(m)� (P 19/4−τ/2Y −3/4)1/3(PR13/4−τ )2/3 = P 175/79−τ/6R13/6−2τ/3.

Note that when θ ≥ 192/869, this bound is indeed sufficient for this propo-
sition.

Next we evaluate S(D). For any non-negative integer l, if the dyadic
interval (2lP 6/5, 2l+1P 6/5] lies within the interval (P 6/5, PY 3], then l <
c logP , where c = 86/(395 log 2). By introducing another dissection in the
shape

(5.6) k(X) = M(2X) \M(X),

we have

(5.7) D ⊆
⋃

0≤l<c logP

k(2lP 6/5),

whence it suffices to consider S(k(X)) when X ∈ [P 6/5, PY 3]. With λ =
3/34− τ/4 and X as above, we record for future reference the bound

(5.8)
�

k(X)

|f(α)2K(α)5| dα� P 4+λY −1−λ(PY 3X−1)1/2,

which is provided by equation (5.6) of [2]. This inequality is the ignition
spark for the following lemma.

Lemma 5.2. Whenever P 6/5 ≤ X ≤ PY 3 and θ ≤ 2/9, we have

S(k(X))� P 13/6+λ/3+εY 1/6−λ/3R13/6−2τ/3.

Proof. Equation (5.1) reveals that

(5.9) S(k(X)) ≤
(

sup
α∈k(X)

|f(α)|
)1/3 �

k(X)

|f(α)5/3K(α)2h(α)4| dα.

On recalling that X ≥ P 6/5, successive applications of (3.3), (3.13), Theo-
rem 4.2 of [8], (5.6) as well as the definition of m(X) after (2.8), give rise to
the bound

sup
α∈k(X)

|f(α)| � PX−1/3 +X1/2+ε � X1/2+ε.
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This together with another application of Hölder’s inequality to (5.9) leads
to

S(k(X))�
(
X1/2+ε

�

k(X)

|f(α)2K(α)5| dα
)1/3

T
1/6
2 T

1/2
1 ,

where T1 and T2 are defined in Corollary 4.2. Applications of that corollary
as well as (5.8) thus yield

S(k(X))� P ε(X1/2P 4+λY −1−λ(PY 3X−1)1/2)1/3(PR13/4−τ )2/3.

A modicum of computation confirms that this is indeed the bound in the
statement of the lemma.

The relation (5.7), together with Lemma 5.2, (2.1) and the value of λ
given before (5.8), reveals that

S(D) ≤
∑

0≤l<c logP

S(k(2lP 6/5))� P 13/6+λ/3Y 1/6−λ/3R13/6

= P 175/79−17τ/237R13/6.

A modest calculation leads us to the following proposition.

Proposition 5.3. Provided that 192/869 ≤ θ ≤ 2/9, we have

S(D)� PR4L−1/50.

The treatment of S(U) is similar. For any non-negative integer l, if

(2lR, 2l+1R] ⊆ (R,P 6/5],

then l satisfies the constraint 2l+1R ≤ P 6/5. This together with (2.1) implies
that 0 ≤ l < cθ logP , where cθ = (6/5− 3θ)/log 2. It follows that

(5.10) U ⊆
⋃

0≤l<cθ logP

k(2lR).

This necessitates the estimation of S(k(X)) in the case where R ≤ X ≤ P 6/5.
This is provided by the following lemma.

Lemma 5.4. Whenever R ≤ X ≤ P 6/5 and θ ≤ 2/9, we have

S(k(X))� P ε(P 7/3R13/6−2τ/3X−5/12 +XPR2).

Proof. By (3.3), (5.6) and (2.8), when α ∈ k(X), we have

f(α) = f∗(α) +O(X1/2+ε),

where f∗ is defined in (4.3). This together with (5.1) implies that

(5.11) S(k(X))� I1(X) +X1+ε
1�

0

|K(α)2h(α)4| dα,
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where
I1(X) =

�

k(X)

|f∗(α)2K(α)2h(α)4| dα.

By Corollary 4.4, when θ ≤ 2/9, the second term in (5.11) is O(XP 1+εR2).
Meanwhile, an application of Hölder’s inequality yields

I1(X) ≤ T 2/3
2 U

1/12
1 U(X; 8)1/4,

where T2 is given in Corollary 4.2, and U1 and U(X; t) are defined respec-
tively in (4.1) and (4.4). Successive applications of Lemma 4.5, Corollary 4.2
and (4.2) give rise to

I1(X)� (PR13/4−τ )2/3(P 5)1/12(P 5X−5/3)1/4 = P 7/3R13/6−2τ/3X−5/12.

The lemma then follows by inserting this bound into (5.11).

The relation (5.10) implies that

S(U) ≤
∑

0≤l<cθ logP

S(k(2lR)).

Applying Lemma 5.4 to each term in the sum, and recalling (2.1), gives

S(U)� P ε
∑

0≤l<cθ logP

(P 7/3R13/6−2τ/3(2lR)−5/12 + (2lR)PR2)

� P ε(P 7/3R7/4−2τ/3 + P 11/5R2).

A modest assumption on θ, together with (2.1), implies the following result.

Proposition 5.5. Whenever 1/5 < θ ≤ 2/9, we have

S(U)� PR4L−1/50.

It remains to investigate S(A). Recall the definition (4.3) of f∗. By (3.3)
and (2.8), when α ∈M(R), we have

f(α) = f∗(α) +O(R1/2+ε).

Using this and (5.3) in (5.1) gives

S(A)� R1+ε
1�

0

|K(α)2h(α)4| dα+
�

A

|f∗(α)2K(α)2h(α)4| dα.

Corollary 4.4 implies that when θ ≤ 2/9, we have

(5.12) S(A)� P 1+εR3 +
�

A

|f∗(α)2K(α)2h(α)4| dα.
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An application of Hölder’s inequality yields

(5.13)
�

A

|f∗(α)2K(α)2h(α)4| dα

≤ U2(16/3)1/12
( �

M(R)

|f∗(α)7/3h(α)6| dα
)2/3

U
1/4
1 ,

where U1 and U2(t) are defined as in (4.1) and (4.5) respectively. According
to (4.9), (4.8) and (2.2), the integral here is just U3(7/3;R;B) with B =
A(R). Applying Lemmata 4.5, 4.6 and (4.2) to (5.13) gives�

A

|f∗(α)2K(α)2h(α)4| dα� (P 7/3L−7/9)1/12(P−2/3R6)2/3(P 5)1/4

� PR4L−7/108.

Putting this back into (5.12), we obtain the following proposition.

Proposition 5.6. For any positive number θ with θ ≤ 2/9, we have

S(A)� PR4L−7/108.

Propositions 5.1, 5.3, 5.5 and 5.6, together with (5.2) and (5.4), thus
imply that whenever 192/869 ≤ θ ≤ 2/9, we have∑

N<n≤2N

|ρθ(n; p)|2 � PR4L−1/50.

A simple averaging argument then reveals that for all except O(NL−1/100)
integers n with N < n ≤ 2N , we have

ρθ(n; p)� P−1R2L−1/200.

This together with (2.1) yields the following proposition.

Proposition 5.7. Whenever 192/869 ≤ θ ≤ 2/9, we have

ρθ(n; p)� n2θ−1/3(log n)−1/20

for all integers n with N < n ≤ 2N , with at most O(N(logN)−1/10) excep-
tions.

Theorem 1.1 follows from Propositions 3.1 and 5.7, upon recalling that
rθ(n) ≥ ρθ(n), and finally by summing over dyadic intervals.

6. The asymptotic formula. Our goal in this section is to establish
Theorem 1.2. Let N be a large integer, let P = (N/4)1/3, and take R to
be a parameter in the interval [N θ, (2N)θ]. Observe that if n is the integer
in (1.1) with N < n ≤ 2N , then at least one of x1, x2, y1 and y2 is greater
than P . Since y1, y2 ≤ nθ with θ < 1/3, neither y1 nor y2 exceeds P . So one
of x1 and x2 is greater than P . For all integers n with N < n ≤ 2N , we thus
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define σθ(n) to be the number of solutions to (1.1) with

1 ≤ x1, x2 ≤ 2P, max{x1, x2} > P, 1 ≤ y1, y2 ≤ R.
In our analysis of σθ(n), we adapt the argument which leads to equation (2.2)
of [12]. When α ∈ [0, 1), write

F (α) =
∑

1≤x≤2P

e(αx3), F0(α) =
∑

1≤x≤P
e(αx3)

and

(6.1) G(α) =
∑

1≤y≤R
e(αy3).

For any measurable set B ⊆ [0, 1), write

(6.2) σθ(n; B) =
�

B

(F (α)2 − F0(α)2)G(α)2e(−nα) dα.

Then by orthogonality, we have σθ(n) = σθ(n; [0, 1)) for all integers n with
N < n ≤ 2N .

Take L = (logP )100. Recall the respective definitions (2.7) and (2.8) of
P and M(X). For all integers a and q with 0 ≤ a ≤ q ≤ P 3/4 and (a, q) = 1,
introduce the major arc

(6.3) N(q, a) = M(q, a;P 3/4).

Write N for the union of all these major arcs N(q, a), and let n = [0, 1) \N
be the corresponding minor arc.

7. Major arc estimate. As in §2, we first seek approximations for the
generating functions in the integral defining σθ(n; P). Recall the definition
(4.6) of w(β;Z). By Theorem 4.1 of [8], when α ∈ [0, 1), a ∈ Z and q ∈ N
with (a, q) = 1, we have the relation

(7.1) F (α) = q−1S(q, a)w(α− a/q; 2P ) +O(q1/2+ε(1 + P 3|α− a/q|)1/2).

In particular, whenever α ∈ P(q, a) ⊆ P, we get

(7.2) F (α) = q−1S(q, a)w(α− a/q; 2P ) +O(L1+ε).

By the same token, when α ∈ P(q, a), we have

F0(α) = q−1S(q, a)w(α− a/q;P ) +O(L1+ε),(7.3)

G(α) = q−1S(q, a)w(α− a/q;R) +O(L1+ε).(7.4)

When β is a real number, write

(7.5) W (β) = (w(β; 2P )2 − w(β;P )2)w(β;R)2.

We deduce from (7.2)–(7.5) that

(7.6) (F (α)2−F0(α)2)G(α)2 = (q−1S(q, a))4W (α− a/q) +O(P 2RL1+ε).
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Define A(q, n) and S(n;L) as in (3.9) and (3.10) respectively, and write

(7.7) J (n;L) =
L/N�

−L/N

W (β)e(−nβ) dβ.

Recall from (2.7) that the measure of P is O(L3/N). Integrating both sides
of (7.6) against e(−nα) over all α ∈ P, and using (6.2), (3.10) and (7.7),
thus gives

(7.8) σθ(n; P) = S(n;L)J (n;L) +O(P−1RL4+ε).

Recall the definition (3.2) of v(β;Z). From (7.5), we get

W (β) = ((v(β;P ) + w(β;P ))2 − w(β;P )2)w(β;R)2(7.9)

= (v(β;P )2 + 2v(β;P )w(β;P ))w(β;R)2.

Combining this with (4.16), (3.13) and a trivial estimate for w(β;R), we get

(7.10) W (β)� P 2R2(1 + P 3|β|)−4/3

for all real β. This confirms the absolute and uniform convergence over n of
the singular integral

(7.11) J (n) =
∞�

−∞
W (β)e(−nβ) dβ.

Also, for all positive integers n, we deduce from (7.7) and (7.10) that

(7.12) |J (n)− J (n;L)| � P 2R2
∞�

L/N

(1 + P 3β)−4/3 dβ � P−1R2L−1/3.

The value of the singular integral can be computed as follows. Putting
(7.9) into (7.11) gives

(7.13) J (n) =
∞�

−∞
(v(β;P )2 + 2v(β;P )w(β;P ))w(β;R)2e(−nβ) dβ.

By a change of variables in (3.2) and (4.6), when Z is any positive number
and β is real, we have

(7.14) v(β;Z) = Zv(βZ3; 1) and w(β;Z) = Zw(βZ3; 1).

Putting these two equalities into (7.13), and replacing β by βP−3 in the
same equation, we get

(7.15) J (n) = P−1R2

×
∞�

−∞
(v(β; 1)2 + 2v(β; 1)w(β; 1))w(βR3P−3; 1)2e(−nβP−3) dβ.
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Using a first order Taylor approximation, we have

w(ξ; 1) = 1 +O(min{1, |ξ|})
for all real ξ. Meanwhile, the inequalities (3.13) and (4.16) imply that

v(β; 1)2 + 2v(β; 1)w(β; 1)� |β|−4/3

for all real β. Coupled with (7.15), these two relations give rise to the equality

(7.16) J (n) = P−1R2(J ∗(n) + E),

where

(7.17) J ∗(n) =
∞�

−∞
(v(β; 1)2 + 2v(β; 1)w(β; 1))e(−nβP−3) dβ

and

(7.18) E �
∞�

0

β−4/3 min{1, βR3P−3} dβ � P−1R.

Replacing β by βP 3 in (7.17), and using (7.14), we have

(7.19) J ∗(n) = P (J1(n) + 2J2(n)),

where

J1(n) =
∞�

−∞
v(β;P )2e(−nβ) dβ,

J2(n) =
∞�

−∞
v(β;P )w(β;P )e(−nβ) dβ.

Using the methods outlined on pp. 21–22 of [4], we have

J1(n) =
(

1
3

)2

n−1/3
b�

a

(σ(1− σ))−2/3 dσ,

where

a = max
{
P 3/n, 1− 8P 3/n

}
and b = min{1− P 3/n, 8P 3/n}.

On recalling that P = (N/4)1/3 and N < n ≤ 2N , we check that n < 9P 3.
This gives a = P 3/n and b = 1− P 3/n, hence

(7.20) J1(n) =
(

1
3

)2

n−1/3

1−P 3/n�

P 3/n

(σ(1− σ))−2/3 dσ.

In similar fashion, we obtain

(7.21) J2(n) =
(

1
3

)2

n−1/3
1�

1−P 3/n

(σ(1− σ))−2/3 dσ.
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Combining (7.19), (7.20) and (7.21) gives

J ∗(n) =
(

1
3

)2

(Pn−1/3)
( 1�

P 3/n

(σ(1− σ))−2/3 dσ +
1�

1−P 3/n

(σ(1− σ))−2/3 dσ
)
.

Replacing σ by 1− σ in the latter integral then yields

J ∗(n) =
(

1
3

)2

(Pn−1/3)
1�

0

(σ(1− σ))−2/3 dσ = Pn−1/3Γ (4/3)2/Γ (2/3).

This, together with (7.16), (7.18) and our choice of parameters at the be-
ginning of §6, gives rise to the asymptotic formula

J (n) =
Γ (4/3)2

Γ (2/3)
R2n−1/3(1 +O(P−1R)).

Meanwhile, the singular series S(n) as defined in (3.17) stays abso-
lutely and uniformly convergent. The estimate (3.18) remains true for all
but O(NL−1/16) integers n with N < n ≤ 2N . This together with (7.12)
and (7.8) leads to the following proposition.

Proposition 7.1. Let θ be a positive number with θ < 1/3. Then for
all but O(N(logN)−6) integers n with N < n ≤ 2N , we have

σθ(n; P) =
Γ (4/3)2

Γ (2/3)
S(n)R2n−1/3 +O(P−1R2(logN)−6).

8. Minor arc estimate. As in §5, we wish to obtain a bound for the
mean square value ∑

N<n≤2N

|σθ(n; p)|2,

which is o(PR4). When B is a measurable subset of [0, 1), write

(8.1) Ξ(B) =
�

B

|(F (α)2 − F0(α)2)2G(α)4| dα.

An application of Bessel’s inequality gives

(8.2)
∑

N<n≤2N

|σθ(n; p)|2 ≤ Ξ(p).

The decomposition p = n ∪ (N \P) implies that

(8.3) Ξ(p) = Ξ(n) +Ξ(N \P).

Define f as in (2.2). From the factorisation

F (α)2 − F0(α)2 = f(α)(F (α) + F0(α)),

we can expand Ξ(n) in (8.1) as

(8.4) Ξ(n)�
�

n

|f(α)2F (α)2G(α)4| dα+
�

n

|f(α)2F0(α)2G(α)4| dα.
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An application of Hölder’s inequality yields

(8.5)
�

n

|f(α)2F (α)2G(α)4| dα ≤
(

sup
α∈n
|F (α)|

)2
1�

0

|f(α)2G(α)4| dα.

A modified version of Weyl’s inequality (see, for instance, Lemma 1 of [6])
confirms that

(8.6) sup
α∈n
|F (α)| � P 3/4+ε.

Hence (8.5), (8.6) and Lemma 4.3 imply that�

n

|f(α)2F (α)2G(α)4| dα� (P 3/4)2P ε(PR2 + P−1R9/2)

= P ε(P 5/2R2 + P 1/2R9/2).

An almost identical argument yields the same upper bound for the other
integral in (8.4). Hence whenever 1/4 < θ < 1/3, we have

(8.7) Ξ(n)� P ε(P 5/2R2 + P 1/2R9/2)� PR4L−1/10.

As for the contribution from the set of arcs N \P, first note that (8.1)
gives

(8.8) Ξ(N \P)�
�

N\P

|F (α)4G(α)4| dα+
�

N\P

|F0(α)4G(α)4| dα.

Recalling the respective definitions (4.7) and (6.3) of F ∗ and N(q, a), we
deduce from (7.1) that

F (α) = F ∗(α;P 3/4) +O(P 3/8+ε)

for all α ∈ N. This together with an application of Hua’s lemma thus yields

(8.9)
�

N\P

|F (α)4G(α)4| dα

�
�

N\P

|F ∗(α;P 3/4)4G(α)4| dα+O
(
P 3/2+ε

1�

0

|G(α)|4 dα
)

=
�

N\P

|F ∗(α;P 3/4)4G(α)4| dα+O(P 3/2+εR2).

An application of Hölder’s inequality yields

(8.10)
�

N\P

|F ∗(α;P 3/4)4G(α)4| dα

≤
( �

N

|F ∗(α;P 3/4)7/2G(α)6| dα
)2/3( �

N\P

|F ∗(α;P 3/4)|5 dα
)1/3

.



Waring’s problem for cubes 397

From (4.8), (4.10) and (6.1), the first integral here is U4(7/2, P 3/4;B) with
B = [1, R] ∩ Z. Now that θ > 1/4, the assumptions P = (N/4)1/3 and
N θ < R ≤ (2N)θ, made in §6, imply that P 3/4 < R. This allows us to apply
Lemma 4.6, producing the bound

(8.11)
�

N

|F ∗(α;P 3/4)7/2G(α)6| dα� P 1/2R6.

Now the argument of Lemma 5.1 of [7] provides the bound

(8.12)
�

N\P

|F ∗(α;P 3/4)|5 dα� P 2L−2/3.

Inserting the estimates (8.11) and (8.12) into (8.10), and using (8.9), we
obtain

�

N\P

|F (α)4G(α)4| dα

� (P 1/2R6)2/3(P 2L−2/3)1/3 + P 3/2+εR2 � PR4L−2/9.

A parallel argument yields the same upper bound for the remaining integral
in (8.8). We therefore obtain

Ξ(N \P)� PR4L−2/9.

This, together with (8.2), (8.3) and (8.7), implies the following.

Proposition 8.1. As long as 1/4 < θ < 1/3, we have∑
N<n≤2N

|σθ(n; p)|2 � PR4L−1/10.

We conclude this section with a proof of Theorem 1.2. A simple averaging
argument from the above proposition, along with our choice of parameters
in §6, implies that for such θ, the inequality

(8.13) |σθ(n; p)| � P−1R2L−1/40 � P−1R2(logN)−2

holds for all integers n with N < n ≤ N +N(logN)−2, with O(N(logN)−5)
exceptions. Coupled with the conclusion of Proposition 7.1, the upper bound
(8.13) implies that

(8.14) σθ(n) = σθ(n; [0, 1)) =
Γ (4/3)2

Γ (2/3)
S(n)R2n−1/3+O(P−1R2(logN)−2)

for all but O(N(logN)−5) integers n with N < n ≤ N + N(logN)−2. For
all such n and θ, we have

N θ < nθ ≤ N θ +O(N θ(logN)−2),
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whence there exists a positive constant A such that

N θ < nθ ≤ N θ +AN θ(logN)−2.

Recall the definition (1.1) of rθ(n) as well as equation (1.3) of [5], which
gives 1 � S(n) � (log log n)4. Putting first R = N θ and then R = N θ +
AN θ(logN)−2 into (8.14), we arrive at the relation

rθ(n) =
Γ (4/3)2

Γ (2/3)
S(n)N2θ−1/3 +O(N2θn−1/3(logN)ε−2).

Hence when 1/4 < θ < 1/3, the asymptotic formula

rθ(n) =
Γ (4/3)2

Γ (2/3)
S(n)n2θ−1/3 +O(n2θ−1/3(log n)−1)

holds for all but O(N(logN)−5) integers n with N < n ≤ N +N(logN)−2.
There are altogether O((logN)3) intervals of such type that cover [1, 2N ].
Summing over all such intervals leads to the same asymptotic formula with
the total number of exceptions encountered being O(N(logN)−2). The con-
clusion of Theorem 1.2 thus holds for all real numbers θ in the range
(1/4, 1/3).
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