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1. Introduction. We pursue further our researches on moments of the
type

H(x, k) =
∑

0<a≤k
{S(x; a, k)− f(a, k)x}2(1)

=
∑

0<a≤k
E2(x; a, k), say, (k ≤ x)

and
G(x,Q) =

∑

k≤Q
H(x, k) (Q ≤ x)

that appertain to given strictly increasing sequences of positive integers s
obeying a condition of the type

S(x; a, k) =
∑

s≤x
s≡a,mod k

1 = f(a, k)x+O{∆k(x)}(2)

for values of k that may be small compared with x. But, before revealing
what we intend and having been reminded that previously

∆k(x) = x log−A x(3)

by analogy with known properties of prime numbers, we should mention
that our first discussion of this topic appeared in 1975 in the third article III
of this series (1), in which the generalized Barban–Davenport–Halberstam
inequality

G(x,Q) = O(Qx) +O(x2 log−A x)(4)

was derived under the additional hypothesis that

f(a, k) = g{k, (a, k)}(5)

2000 Mathematics Subject Classification: Primary 11B25.
(1) We refer to these articles by the Roman numerals indicating their position in the

series; their full particulars are given in the list of references at the end.
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depended only on k and the highest common factor (a, k). Subsequently the
subject of an alternative and improved treatment in our paper [3], this result
was then augmented in IX by an asymptotic formula

G(x,Q) = {D1 + o(1)}Qx+O(x2 log−A x) (o(1)→ 0 as x/Q→ 1)(6)

of Barban–Montgomery type under the extra supposition, often realized in
familiar situations, that g(k, k) was a fixed positive multiple of a multi-
plicative function of k. Then, in the following paper X, it was shewn that
all previously imposed conditions on f(a, k) were actually irrelevant to the
truth of (2) (4) and (6) so that, in particular, the assumption (2) and the con-
clusion (4) are seen to be strictly equivalent when (3) is in place. Yet there
remained the important question of when (6) fails to be a fully informative
asymptotic formula because of the vanishing of D1, the final discussion in
IX having only uncovered some situations in which D1 = 0 and another in
which D1 6= 0.

Parallel to the picture just painted, there is the one portrayed by
Vaughan in two memoirs ([6] and [7]) published during the short interval
between the appearances of IX and X. In the latter of these, slightly gener-
alizing the underlying circumstances by attaching weights to the members
s of the sequence but retaining the condition (5) that was removed in X, he
employed the circle method to obtain Barban–Montgomery type formulae
with accurate remainder terms that were expressed in terms of a function
∆(x) of x alone appearing in lieu of ∆k(x) in a generalization of (2). Al-
though we have formed the view that the two approaches are roughly equal
in power in several situations, Vaughan’s method and insight lead to a full
understanding of the quiddity of D1 that we failed to reach in IX and X.

The genesis of our present investigation springs from thoughts similar to
those expressed by Professor Montgomery when he stated that the form of
Croft’s asymptotic formula [1]

G(x,Q) ∼ D2Q
3/2x1/2 (x2/3+ε < Q ≤ x)

for square-free numbers s could be foreseen from the likelihood of the truth
of the asymptotic formula

S(x) = S(x; 0, 1) =
6x
π2 +O(x1/4+ε).

We are thus prompted to see what can be learnt about the behaviour of
H(x, k) and G(x,Q) for large k and Q in the light of any known estimate
E(x; a, k) = O(∆k(x)) for values of k that are relatively small compared with
x. Indeed, put in the crudest terms, our inquiry could be whether G(x,Q)

(2) We mention (4) as well as (6) because the treatment of the former is often a
precursor to that of the latter.
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for large Q be essentially equal to the sum∑

k≤Q
k∆2

k(x),(7)

for which, if necessary, the given definition of ∆k(x) for small k would be
extended for larger k in a natural way. Yet, that we may overreach our-
selves in making such an ambitious assertion without qualification can be
appreciated from our knowledge that the formally dominant term in G(x,Q)
stems only from the Dirichlet’s series Φ(s) in IX and X that is defined in
terms of f(a, k) alone. In fact, since the addition of an appropriately thick
rogue sequence of zero density to a given sequence would increase the size of
the allowable value ∆k(x) in (2) without affecting the value of f(a, k) and
hence of the main constituent in G(x,Q), we must abate our speculations
to the contemplation of essentially one-sided inequalities between G(x,Q)
and (7). We are also reinforced in this view by the realization that formula
(4) implies that E(x; a, k) is usually not more than about

√
x/k for values

of k close to x even when ∆k(x) is taken to be no better than x log−A x for
arbitrary positive values of A.

Enough has been said to indicate that we should study our problem in
the case where there is still no explicitly stated restriction on f(a, k) and
where

∆k(x) = O{(x/k)α}(8)

for
k ≤ x1/2(9)

when α is a given constant satisfying

0 < α < 1/2.(10)

In this situation, influenced by Vaughan’s observations about the number
D1 in (6) that will be seen to be still valid without restriction (5), we use
the circle method in an iterative and slightly novel form to come close to
our expectation by shewing that

G(x,Q) = O(Q2−2αx2α log2(2x/Q))(11)

for largish values of Q up to x and hence that the bound

E(x; a, k) = O{(x/k)α log(2x/k)}
comparable with (8) is true on average for values of k in some range bounded
above by x; thus, in particular, D1 = 0. As a by-product of the first part of
the method, an asymptotic formula of the type

νc(x) ∼ A(c)(x− c)(12)

is also produced for the number νc(x) of pairs of numbers s, s′ not exceeding
x that differ by a given number c < x. From a more accurate variant of
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this, we then increase our knowledge of E(x; a, k) for some large individual
values of k by deducing that in case (5)

H(x, k) = O{k1−2αx2α(x/k)ε}(13)

when k is a prime number that is fairly close to x (here (5) is probably neces-
sary to ensure the truth of the result for each and every such k). Thence, by
assuming in addition that the function g(d) = g(d, d) of (5) above is multi-
plicative in the sense of criterion S of IX, we obtain in similar circumstances
the keener relation

H(x, k) = O{k1−2αx2α log3(2x/k)}(14)

which only falls short of what one might expect by a logarithmic factor.
In addition, though straying somewhat from the theme of this series, we
should mention that our proof of (12) is interesting methodologically in
that an hypothesis of type (8) with (9) and (10) removes the obstacles that
currently preclude a treatment of the prime twins conjecture by the circle
method even when all reasonable attributes of θ(x; a, k) are assumed, albeit
it has to be said that it is seldom in practice we are presented with a specific
sequence that is known to satisfy such generous assumptions in full.

As yet, the bound found for G(x,Q) may well be imperfect because of the
presence of the factor log2(2x/Q). While not able to effect any improvement
in the estimate under the circumstances so far assumed, we go on to shew
that the expected bound

G(x,Q) = O(Q2−2αx2α),(15)

is certainly true for all Q up to x provided that the range of validity of our
supposition (8) be extended to

k ≤ x2/3 log4/3 x.(16)

At least two questions remain. The first is about how much our conditions
for smaller k could be loosened with jeopardizing (11) or (15). We might, for
example, suspect that a smaller range of validity for (8) than (9) would still
be enough to ensure the continuation of (15) for large Q but, at present, see
no way to settle the matter. One also might hope that in most or all of our
work we could dispense with criteria such as (8) in favour of consequential
inequalities of type (15) for smallish Q. Yet we do not attempt to go down
such an avenue on the present occasion because such a journey, if successful,
would lengthen the exposition to an unacceptable extent and because the
statements of our theorems are at their vividest when expressed in terms of
(8). Instead we shall hold back any discussion of this possible advance until
such time as an adequate method has been developed to our satisfaction.

The second question concerns the circumstances in which (11) or (15)
can be converted into an asymptotic formula with (non-zero) main term
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when Q is large. Vaughan [7], indeed, has shewn there is such a formula
when the function f(a, k) = g{k, (a, k)} fulfils certain conditions, although
it must be said it is neither clear just what sequences conform to these
requirements nor how they can be characterized in terms of E(x; a, k) for
smaller k. Here we do two things. First, under the circumstances in which
(15) was established for all Q ≤ x, we shew that the asymptotic formula

G(x,Q) ∼ D2Q
2−2αx2x (D2 > 0)

holds for x2/3 log4/3 x < Q ≤ x whenever it is known to be true at the top
of the complementary range of Q; thus again we have an example where the
behaviour of S(x; a, k) for small k induces a similar behaviour for larger k.
Moreover, in this situation we find we can deduce an improvement in formula
(14) for H(x, k). On the other hand, however, we shall also construct a se-
quence satisfying (3) to which there does not answer an asymptotic formula
and for which the true order of magnitude of G(x,Q) is so variable that it
fluctuates between values as large and as small as Q1+εx1−ε and Qεx2−ε.

That there is at least a loose association between the functions f(a, k)
and the remainder term in (2) is manifest from what has already been said
and from what follows. But further research will be needed to elucidate it
and to refine any of our results that depend on it.

2. The interpretation of the constant D1. The entry to most of our
theorems is through the interpretation Vaughan would give to the constant
D1, which we shall shew to be still valid when it is only assumed in the first
instance that (3)

S(x; a, k) = f(a, k)x+ o(x)(17)

without the extra condition (5) being necessarily imposed. First we express
(17) for the special case k = 1 as

S(x) = S(x; 0, 1) = Cx+ o(x)(18)

and then must get our bearings by referring to X, drawing from it some
relevant facts and extending the notation therein. Starting with X(27) and
the left part of X(7) in a slightly different symbolism and setting

F (θ) = F (θ, x) =
∑

s≤x
e2πisθ,(19)

(3) It is important to note that at present we are only discussing the value of D1

as it has been defined in terms of f(a, k). We are not asserting that (17) alone implies a
Barban–Montgomery type theorem, which can be easily seen to be false in some situations
when o(x) divided by x tends very slowly to 0 as x→∞.
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we have that
∑

0<h≤k
(h,k)=1

∣∣∣∣F
(
h

k

)∣∣∣∣
2

is equal to both
1
k

∑

0<a≤k

(∑

d|k
µ

(
k

d

)
dS(x; a, d)

)2

(20)

and ∑

d|k
µ

(
k

d

)
d
∑

0<a≤d
S2(k; a, d)

provided we bear in mind the provenance of the inner sum in (20). Hence,
if we write F (h/k) as

∑

s≤x
e2πihs/k =

∑

0<b≤k
e2πihb/kS(x; b, k)(21)

and use condition (17), we deduce that
∑

0<h≤k
(h,k)=1

∣∣∣
∑

0<b≤k
e2πihb/kf(b, k)

∣∣∣
2

=
1
k

∑

0<a≤k

(∑

d|k
µ

(
k

d

)
df(a, d)

)2

(22)

=
∑

d|k
µ

(
k

d

)
d
∑

0<a≤d
f2(a, d)

for any given value of k after dividing by x2 and letting x → ∞, which
equation we express as both

R(k) =
1
k

∑

0<a≤k
w2(a, k) = kak = N(k)(23)

and
R(k) =

∑

0<h≤k
(h,k)=1

|P (h, k)|2(24)

after setting
P (h, k) =

∑

0<b≤k
e2πihb/kf(b, k)(25)

and recalling the definitions on pp. 4, 5, and 9 of X. Thus some of the
conclusions in the last page of X are tantamount to the convergence of the
series ∞∑

k=1

R(k) = C1, say,(26)
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and to the determination of D1 in Theorem 2 therein by

D1 = C − C1.(27)

The obvious fact that D1 ≥ 0 can be otherwise and indirectly deduced
by an appeal to that form of the large sieve inequality which asserts that
the function F (θ) in (19) is subject to the inequality

∑

k≤Q

∑

0<h≤k
(h,k)=1

∣∣∣∣F
(
h

k

)∣∣∣∣
2

≤ (x+ A1Q
2)

1�

0

|F (θ)|2 dθ = (x+ A1Q
2)S(x)(28)

= (x+ A1Q
2)(Cx+ o(x)),

this being a return in more accurate form to a relation otherwise exploited
in X. Hence, treating the inner sum on the left of this as in the derivation
of (22), we deduce after letting x→∞ that

∑

k≤Q
R(k) ≤ C

for any Q and hence that C1 ≤ C by (26).
The ideas embodied in (28) can be strengthened to form Vaughan’s prin-

ciple on our been prompted to appreciate that the series
∞∑

k=1

R(k) = C1

is actually the singular series associated with a formal application of the
circle method to the evaluation of the sum

S(x) =
1�

0

|F (θ)|2 dθ = Cx+ o(x),

as will become totally clear when we press these concepts to new conclusions.
Thus, without specifying precisely what they are, the major arcs used in the
attempted evaluation of the integral with positive integrand give rise to a
term that is asymptotically equivalent to C1x, whence once again D1 ≥ 0
and D1 is the formal contribution of the minor arcs. Necessarily somewhat
nebulous as yet, the notions involved will become rigorous once we have
prepared for our analysis by restating the chief criterion mentioned in the
introduction.

3. The tail of the series
∑
R(k). We are ready to study the sum

G(x,Q) for sequences s that satisfy Criterion V1 to the effect that

|E(x; a, k)| < A2{(x/k)α}(29)

for k ≤ x1/2 where A2 is some positive constant and 0 < α < 1/2.
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Our first theorem stems from the circle method, which for technical
reasons is applied for all y ≥ 1 to the evaluation of

S1(y) = S(2y)− S(y) =
∑

y<s≤2y

1(30)

instead of S(y) (4). Setting up the usual machinery, we define F1(θ, y)
through (17) and the equation

F1(θ1, y) = F (θ, 2y)− F (θ, y),

by means of which we first get

S1(y) =
1�

0

|F1(θ, y)|2 dθ.(31)

Next, the integrand being non-negative, we choose

M = M(y) = y1/2(32)

and use Dirichlet’s theorem to bound the integral from above by covering the
range of integration, mod 1, with the set of all (possibly overlapping) arcs
of the form |φ − h/k| ≤ 1/(Mk) corresponding to the fractions answering
to the conditions 0 < h ≤ k, (h, k) = 1, and k ≤ M , wherefore we gain the
inequality

S1(y) ≤
∑

k≤M

∑

0<h≤k
(h,k)=1

1/(Mk)�

−1/(Mk)

|F1(h/k+φ, y)|2 dφ =
∑

k≤M
T (y, k), say.(33)

We proceed as usual to the integrand in (33) and develop (21) to obtain
the equation

F (h/k, u) = u
∑

0<b≤k
e2πibh/kf(b, k) +

∑

0<b≤k
e2πibh/kE(u; b, k)(34)

= uP (h, k) + P1(u;h, k), say,

in the language of (25), whence by partial summation

(35) F1(h/k + φ, y) =
2y�

y

e2πiuφ dF (h/k, u)

= P (h, k)
2y�

y

e2πiuφ du+ [P1(u;h, k)e2πiuφ]2yy

− 2πiφ
2y�

y

P1(u;h, k)e2πiuφ du

(4) If we were to work with S(y), we would need the rather stronger requirement that
|E(u; a, k)| ≤ A2{(x/k)α} for u ≤ x and k ≤ x1/2.
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= P (h, k)J(φ, y) + P2(y;h, k;φ)− 2πiφP3(y;h, k;φ), say.

Therefore, if we apply Minkowski’s inequality to the value of T (y, k) in (33)
supplied by this, we obtain

T (y, k) ≤ R(k)
1/(Mk)�

−1/(Mk)

|J(φ, y)|2 dφ(36)

+
∑

0<h≤k
(h,k)=1

1/(Mk)�

−1/(Mk)

|P2(y;h, k;φ)− 2πiφP3(y;h, k;φ)|2 dφ

+ 2
(
R(k)

1/(Mk)�

−1/(Mk)

|J(φ, y)|2 dφ
)1/2

×
( ∑

0<h≤k

1/(Mk)�

−1/(Mk)

|P2(y;h, k;φ)− 2πiφP3(y;h, k;φ)|2 dφ
)1/2

= T1(y, k) + T2(y, k) + 2(T1(y, k)T2(y, k))1/2, say.

In this, by (35) and the Parseval–Plancherel theorem,

T1(y, k) ≤ R(k)
∞�

−∞
|J(φ, y)|2 dφ = yR(k)(37)

so that

T (y, k) ≤ yR(k) + T2(y, k) + 2y1/2R1/2(k)T 1/2
2 (y, k),(38)

with which estimation the first stage in the treatment of the integral S1(y)
is complete.

To bound T2(y, k) the Criterion V1 is brought into play in the exploita-
tion of the inequality

T2(y, k) ≤ 2
1/(Mk)�

−1/(Mk)

∑

0<h≤k
(h,k)=1

|P2(y;h, k;φ)|2 dφ(39)

+ 8π2
1/(Mk)�

−1/(Mk)

φ2
∑

0<h≤k
(h,k)=1

|P3(y;h, k;φ)|2 dφ

= 2T3(y, k) + 8π2T4(y, k), say,
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where (35) and (34) shew that the integrand of T3(y, k) does not exceed

2
∑

0<h≤k
(h,k)=1

(|P1(2y;h, k)|2 + |P1(y;h, k)|2)

≤ 2
∑

0<h≤k

(∣∣∣
∑

0<b≤k
e2πibh/kE(2y; b, k)

∣∣∣
2

+
∣∣∣
∑

0<b≤k
e2πibh/kE(y; b, k)

∣∣∣
2)

= 2k
∑

0<b≤k
(E2(2y; b, k) + E2(y; b, k))

≤ 6A2
2k

2y2α

k2α

because k ≤ M = y1/2 < (2y)1/2. Thus, integrating over a range of length
2/(Mk), we conclude that

T3(y, k) ≤ 12A2
2ky

2α

Mk2α .(40)

On the other hand, by (39), (35), and (34),

T4(y, k) ≤ 1
M2k2

1/(Mk)�

−1/(Mk)

∑

0<h≤k
(h,k)=1

∣∣∣
∑

0<b≤k
e2πibh/k

2y�

y

E(u; b, k)e2πiuφ du
∣∣∣
2
dφ

≤ 1
M2k2

∞�

−∞

∑

0<h≤k

∣∣∣
∑

0<b≤k
e2πibh/k

2y�

y

E(u; b, k)e2πiuφ du
∣∣∣
2
dφ

=
1

M2k

∑

0<b≤k

∞�

−∞

∣∣∣
2y�

y

E(u; b, k)e2πiuφ du
∣∣∣
2
dφ

=
1

M2k

∑

0<b≤k

2y�

y

E2(u; b, k) du

from another application of the Parseval–Plancherel theorem. Hence, by
Criterion V1,

T4(y, k) ≤ A2
2

M2k2α

2y�

y

u2α du <
2A2

2y
2α+1

M2k2α ,

which combined with (40) in (39) yields

T2(y, k) <
24A2

2ky
2α

Mk2α +
16π2A2

2y
2α+1

M2k2α <
200A2

2y
2α

k2α =
A3y

2α

k2α , say,(41)
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on account of (32). Altogether, therefore, we deduce from this and (37) that

T (y, k) < yR(k) +
A3y

2α

k2α +
2A1/2

3 yα+1/2R1/2(k)
kα

and then conclude from (33) that

S1(y) < y
∑

k≤M
R(k) + A3y

2α
∑

k≤M

1
k2α + 2A1/2

3 yα+1/2
∑

k≤M

R1/2(k)
kα

(42)

< y
∑

k≤M
R(k) +

A3y
α+1/2

1− 2α
+ 2A1/2

3 yα+1/2
∑

k≤M

R1/2(k)
kα

< y
∑

k≤M
R(k) + A4y

α+1/2 + A
1/2
4 yα+1/2

∑

k≤M

R1/2(k)
kα

,

where we must emphasize that A4 is determined by A2 and α and where we
may clearly assume that

A4 > R(1), 2A2.(43)

This is the fundamental inequality for S1(y) upon which our final results
depend, although to take advantage of it we shall need the following ele-
mentary

Lemma 1. Suppose the non-negative function v(k) has the property that
both v(1) < A5 and

V (u) =
∑

k>u

v(k) < A5u
−β

for some β in the range 0 ≤ β < 1− 2α and for u ≥ 1. Then

∑

k≤u

v1/2(k)
kα

<
2A1/2

5 u1/2−α−β/2

1/2− α− β/2

whenever u ≥ 1.

By the Cauchy–Schwarz inequality
(∑

k≤u

v1/2(k)
kα

)2

=
(∑

k≤u

v1/2(k)
kα/2−1/4−β/4 ·

1
kα/2+1/4+β/4

)2

≤
(∑

k≤u

v(k)
kα−1/2−β/2

)(∑

k≤u

1
kα+1/2+β/2

)
,

the first factor in which is
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v(1)−
u�

1

t−α+1/2+β/2 dV (t)

= v(1)− u−α+1/2+β/2V (u) + V (1) +
(

1
2

+
1
2
β − α

) u�

1

t−α−1/2+β/2V (t) dt

≤ 2A5 + A5

u�

0

t−α−1/2−β/2 dt

= 2A5 +
A5u

1/2−α−β/2

1/2− α− β/2 <
3A5u

1/2−α−β/2

1/2− α− β/2
owing to the condition imposed on β. Also the second factor does not exceed

u�

0

dt

tα+1/2+β/2
=

u1/2−α−β/2

1/2− α− β/2 ,

whence the left side of the stated inequality does not exceed

2A1/2
5 u1/2−α−β/2

1/2− α− β/2 ,

as proposed.
Our route to the first set of conclusions can now be traversed but is

somewhat circuitous because it depends on the repeated use of (42) and
Lemma 1, the first appeal to which will shew amongst other things that the
constant D1 in (27) is zero when Criterion V1 is in place.

Let us suppose that for some β satisfying 0 ≤ β < 1− 2α the end part

Γ (u) =
∑

k>u

R(k) (u ≥ 1)(44)

of the convergent series representing C1 in (26) is subject to the inequality

Γ (u) < A5u
−β,(45)

where for convenience it may be assumed that

A5 > A4(46)

and where R(1) < A5 by (43). Then, by Lemma 1 and (32), the sum

∑

k≤M

R1/2(k)
kα

in the last component in (42) would not exceed

2A1/2
5 y1/4−α/2−β/4

1/2− α− β/2 ,
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and we would therefore deduce that

S1(y) < y
∑

k≤M
R(k) + A4y

α+1/2 +
2(A4A5)1/2

1/2− α− β/2y
α/2+3/4−β/4(47)

< y
∑

k≤M
R(k) +

3(A4A5)1/2

1/2− α− β/2y
α/2+3/4−β/4

by (42) and the conditions on α and β. From this relationship we deduce
that Criterion V1 implies that D1 = 0 on the strength of the truth of (45)
for β = 0, which through (18) with remainder term O(xα) leads to the
inequality

Cy +O(yα) < y
∑

k≤M
R(k) +O(yα/2+3/4) ≤ y

∞∑

k=1

R(k) +O(yα/2+3/4).

Hence, dividing by y and letting y →∞, we infer that

C ≤
∞∑

k=1

R(k)

and hence that
D1 = C − C1 = 0(48)

because D1 ≥ 0.
Our first conclusion having been reached, we note from (47) that as-

sumption (29) now means that we would have

y

∞∑

k=1

R(k)− (2α + 1)A2y
α ≤ y

∑

k≤M
R(k) +

3(A4A5)1/2

1/2− α− β/2y
α/2+3/4−β/2

so that
∑

k>M

R(k) ≤ 4(A4A5)1/2

1/2− α− β/2y
α/2−1/4−β/2

in the light of (44) and (46). Thus, writing M = u and y = M 2 = u2, we
would arrive at the inequality

Γ (u) <
4(A4A5)1/2

1/2− α− β/2u
α−1/2−β/2

for any u ≥ 1. Consequently, in summary, (45) holds for β = 0, while
its truth for constant A5 and exponent −β implies in fact an improved
version with constant A′5 = 4(A4A5)1/2/(1/2−α−β/2) and exponent −β ′ =
α− 1/2− β/2; moreover, it is quickly confirmed that the initial constraints
on A5 in (46) and on β still apply to A′5 and β′.
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Let us therefore build an inductive algorithm by means of which we
produce the inequality

Γ (u) < Bnu
−βn (u ≥ 1)

for each non-negative integer n, where Bn and βn are defined iteratively by
β0 = 0, B0 = A5,

βn = βn−1/2 + 1/2− α, Bn =
4(A4Bn−1)1/2

1/2− α− βn−1/2
.

From the latter relations it follows that (1 − 2α − βn) = 1
2(1 − 2α − βn−1)

and hence that

βn = 1− 2α− 1
2n

(1− 2α)

and then

Bn =
4A1/2

4 B
1/2
n−12n

1− 2α
.

Since therefore

Bn =
(

4A1/2
4

1− 2α

)1+ 1
2 +...+ 1

2n−1 n∏

r=1

(2r)1/2n−r

in which the exponent of 2 in the product does not exceed 2n, we see first
that

Γ (u) = O(22nu2α−1u(1−2α)/2n)

and thus ascertain that

Γ (u) = O(u2α−1 log2 2u)(49)

on choosing n so that 2n = [log 3u].
The bound (49) just obtained is the most important entity upon which

the structures of the following treatments are based. In many instances it will
be applied through the medium of an intermediate result, in whose statement
we begin our practice of usually denoting the common value of R(k) and
N(k) by the latter symbol because we no longer need its interpretation as
an exponential sum. Derived by methods similar to those used in Lemma 1,
this is enunciated without proof as

Lemma 2. Let α have the same meaning as in the statement of Criterion
V1 in (29). Then, for u ≥ 1 and a given positive number η, we have

∑

k≤u
N(k)k1−2α+η = O(uη log2 2u)

and ∑

k>u

N(k)k1−2α−η = O(u−η log2 2u).
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Also ∑

k≤u
N(k)k1−2α = O(log3 2u)

and
∑

k≤u

N1/2(k)
kα

= O(log2 2u).

4. The integral I∗(u) and the first generalized Barban–Mont-
gomery theorem. To identify the integral I∗(u) that occupies an im-
portant place in the work, we must elaborate on the comparisons with X
made in Section 2 and make more explicit a method therein that stemmed
from the previous paper IX. First, the series Φ(s) on p. 10 of X being the
same as

∞∑

k=1

N(k)
k1+s(50)

by (23), the value of T ∗(u) in X is seen to be

1
2πi

c+i∞�

c−i∞
ζ(s+ 1)Φ(s)

us

s(s+ 1)(s+ 2)
ds (c > 0)(51)

by the representation of T ∗(u) on p. 26 of IX after we take note of the re-
moval of the factor C2 in IX. Then, still interpreted with the symbolism
of X, the equation

T ∗(u) =
1
2
Φ(0) log u+

1
2
B + I(u)

of IX(3) introduces the integral I(u) in the form

1
2πi

−1/2+i∞�

−1/2−i∞
ζ(s+ 1)Φ(s)

us

s(s+ 1)(s+ 2)
ds,

which for 0 < η < 1− 2α is equal to

(52)
Φ(−1)

2u
+

1
2πi

2α−2+η+i∞�

2α−2+η−i∞
ζ(s+ 1)Φ(s)

us

s(s+ 1)(s+ 2)
ds

=
Φ(−1)

2u
− 1

2
I∗(u), say,

because the abscissa of (absolute) convergence of Φ(s) does not exceed 2α−2



262 C. Hooley

by (50) and Lemma 2. Next, let us express Φ(s) in I∗(u) as (5)
∑

k≤u

N(k)
k1+s +

∑

k>u

N(k)
k1+s = Φ1(s) + Φ2(s), say,

denoting the contributions to I∗(u) due to Φ1(s) and Φ2(s) as I1(u) and
I2(u), respectively. Accordingly, since Lemma 2 implies that

|Φ2(s)| ≤
∑

k>u

N(k)
k2α−1+η = O(u−η log2 2u)

on the line of integration, we first have that

I2(u) = O(u2α−2+ηu−η log2 2u) = O(u2α−2 log2 2u)(53)

after heeding known bounds for ζ(s + 1) in terms of t. As for I1(u), we
move the line of integration to σ = 2α − 2− η > −2 (where now η denotes
a positive number less than 2α), on which

|Φ1(s)| ≤
∑

k≤u

N(k)
k2α−1−η = O(uη log2 2u)

with the consequence that

I1(u) = O(u2α−2−ηuη log2 2u) = O(u2α−2 log2 2u)(54)

by reasoning like that used before. Hence, in conclusion, we first have that

T ∗(u) =
1
2
Φ(0) log u+

1
2
B +

C1

2u
− 1

2
I∗(u)(55)

by (52) and the value of Φ(−1) furnished by (26), while also

I∗(u) = O(u2α−2 log2 2u)(56)

by (53) and (54).
An improved version of Theorem 2 in X emerges at once in the present

circumstances because Criterion V1 is readily seen to be stronger than the
previously used hypothesis of X(3). Indeed, leaving all work in X unaltered
save that appertaining to the remainder term in the unstated analogue of
IX(32), we find the constant D1 = C − C1 is zero by (48) and then replace
the main term in the formula by

x2I∗(x/Q) = O(Q2−2αx2α log2(2x/Q))

in virtue of (56). Thus, in recognition of Criterion V1, the first formula in
Theorem 2 of X now reads as

G(x,Q) = O(Q2−2αx2α log2(2x/Q)) +O(x2 log−A x)(57)

(5) It might seem more natural to interchange the meanings of Φ1(s) and Φ2(s) but
in so doing we would violate the definition of the former in IX.
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and hence as
G(x,Q) = O(Q2−2αx2α log2(2x/Q))

for (6) x log−A x < Q ≤ x, which result is not inconsistent with the
expectation that at the very least E(x; a, k) is usually not more than
O{(x/k)α log(2x/k)} when k > x log−A x.

Alongside (56), there is another property of the function I∗(u) that can
be usefully drawn from the above analysis. For any given number u ≥ 1, let
Q = x/u and suppose that x→∞. Then (57) can be expressed as

1
x2G(x, x/u) = I∗(u) +O(log−A x)

so that
lim
x→∞

1
x2G(x, x/u) = I∗(u).

Hence, since G(x, x/u1) ≥ G(x, x/u2) ≥ 0 for 1 ≤ u1 < u2, we deduce that
I∗(u) is a non-negative decreasing function of u for u ≥ 1.

But what has so far been accomplished falls short of what is attainable
because we have only taken cognizance of the effect of Criterion V1 on part
of the analysis of IX and X. To take full account of what is available will be
the task of the next section.

5. The stronger generalized Barban–Montgomery theorems. To
take full advantage of the power of Criterion V1 we must radically reap-
praise several other aspects of X in the light of equation (49), including the
preparations for a revised Barban–Davenport–Halberstam theorem that will
supplement Theorem I of X as a necessary portal to the treatment.

We pick up the analysis with the sums Ψx(k) and
∑

k≤Q
Ψx(k) =

∑

lm≤Q

W (x, l)
lm

in X(9) and X(10), where

W (x, l) =
∑

0<a≤l
w(a, l)S(x; a, l)

as in X(15). Secondly, by Criterion V1, we have in place of X(16) the equation

W (x, l) = xN(l) +O

(
xα

lα

∑

0<a≤l
|w(a, l)|

)
(58)

for l ≤ x1/2, while always

W (x, l) = xN(l) +O

(
x

l

∑

0<a≤l
|w(a, l)|

)
(59)

(6) Here we use (56) with (2− 2α)A replacing A.
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as before. Hence, if we follow the derivations of X(17) and X(19) (assuming
as always that Q ≤ x), we see that for (7) ξ1 ≤ x1/2

∑

k≤Q
Ψx(k) = x

∑

k≤Q
M(k) +O

(
xα log x

∑

l≤ξ1

1
l1+α

∑

0<a≤l
|w(a, l)|

)
(60)

+O

(
x log x

∑

ξ1<l≤Q

1
l2

∑

0<a≤l
|w(a, l)|

)

= x
∑

k≤Q
M(k) +O

(
xα log x

∑
1

)
+O

(
x log x

∑
2

)
, say,

in which the sums
∑

1 and
∑

2 are estimated after we have been reminded
of (23) and Lemma 2. Thence, by the Cauchy–Schwarz inequality,

∑
1

=
∑

l≤ξ1

1
l
· 1
lα

∑

0<α≤l
|w(a, l)| ≤

(∑

l≤ξ1

1
l

)1/2(∑

l≤ξ1
l1−2αN(l)

)1/2

= O{(log 2ξ1 · log3 2ξ1)1/2} = O(log2 x)

and
∑

2
≤
∑

l>ξ1

lα/2−3/2l−α/2−1/2
∑

0<a≤l
|w(a, l)|≤

(∑

l>ξ1

lα−2
)1/2(∑

l>ξ1

l−αN(l)
)1/2

= O{(ξα−1
1 ξα−1

1 log2 2ξ1)1/2} = O(ξα−1
1 log 2ξ1),

from which and (60) we deduce the formula
∑

k≤Q
Ψx(k) = x

∑

k≤Q
M(k) +O(x1/2+α/2 log2 x)(61)

on choosing ξ1 to be x1/2. Consequently, under our present circumstances,
the quantity Zx(k) in X(21) obeys the estimate

∑

k≤Q
Zx(k) = O(xα/2+3/2 log2 x)(62)

whenever Q ≤ x; also, before we go on to other elements of the analysis, we
should note for future reference that the right side of this could be changed
into

O(x2α/3+4/3 log2−β(1−α) x)(63)

if the range of applicability of (29) were stretched to k ≤ x2/3 logβ x.
The next constituent that requires re-examination is the first sum on the

right side of (60). Abandoning the methods suggested in IX and X as being

(7) We should note that in the last term of the first line of X(17) we failed to divide
by the l in the denominator on the right of (59) above. This did not, of course, invalidate
the succeeding estimations, although such a division is essential in the present context.
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now unsuitable, we start with the first equation on p. 10 of X to obtain
∑

k≤u
M(k) =

∑

lm≤u

N(l)
lm

=
∑

l≤u

N(l)
l

∑

m≤u/l

1
m

(64)

=
∑

l≤u

N(l)
l

(
log

u

l
+ γ

)
+O

(
1
u

∑

l≤u
N(l)

)

= log u
∞∑

l=1

N(l)
l
−
∞∑

l=1

N(l)
l

(log l − γ)

+O

(∑

l≥u

N(l) log 2l
l

)
+O

(
1
u

∞∑

l=1

N(l)
)

= Φ(0) logu+B1 +O(u2α−2 log3 2u) +O(1/u)

= Φ(0) logu+B1 +O(1/u)

by (50) and a variant of Lemma 2. Furthermore, for the function

Mξ(k) =
1
k

∑

l|k
l>ξ

N(l),(65)

we shall require the estimate
∑

k≤u
Mξ(k) = O(ξ2α−2 log3 2ξ)(66)

that is proved in like manner.
An analogue of Ψx(k) that arose in IX and X could be handled without

trouble there because it was involved in a summation over a range as short
as an arbitrary power of log x. More delicacy, however, is now requisite and
the sum ∑

3
=
∑

k<v

∑

s≤x−kx/v
(x− kx/v − s)f(s, k) (v ≤ x)(67)

in question must be treated by an appropriate modification of our previous
method that will bring in the integral

W1(v1, l) =
∑

s≤v1

(v1 − s)w(s, l)

of the sum W (u, l) appearing above and in X(14). But, ere we sketch the
analysis employed, let us note that a potential source of difficulty is that
Criterion V1 of itself does not imply a similar one for the Césaro means of
the sums S(x; a, k).

To take care of this point and, especially, of the possibility that v1 and
u in the integral
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W1(v1, l) =
v1�

0

W (u, l) du

may be less than l, we must where necessary modify the foundations laid
down in X by constructing them from the inequality

S(x; a, k) = O

(
x

k

)
+O(1)(68)

in place of X(8). Then, as the integrand in W1(v1, l) is estimated by (58)
and the appropriate analogue of (59), we have

W1(v1, l) =
1
2
v2

1N(l) +O

(max(v1,l2)�

l2

uα

lα

∑

0<a≤l
|w(a, l)| du

)

+O

{min(v1,l2)�

0

(
u

l
+ 1
) ∑

0<a≤l
|w(a, l)| du

}

=
1
2
v2

1N(l) +O

(
v1+α

1

lα

∑

0<a≤l
|w(a, l)|

)
+O

(
l3
∑

0<a≤l
|w(a, l)|

)

by a slightly eccentric procedure that caters for both cases v1 ≥ l2 and
v1 < l2 simultaneously. Consequently, starting at (67) and imitating the
way (60) was inferred, we discover that

∑
3

=
∑

k<v

∑

s≤x−kx/v
(x− kx/v − s) 1

k

∑

lm=k

w(s, l)

=
∑

lm<v

1
lm

∑

s≤x−lmx/v
(x− lmx/v − s)w(s, l)

=
1
2

∑

k<v

(x− kx/v)2M(k) +O

(
x1+α

∑

lm≤v

1
l1+α

∑

0<a≤l
|w(a, l)|

)

+O

( ∑

lm≤v

l2

m

∑

0<a≤l
|w(a, l)|

)

= x2T ∗(v) +O

(
x1+α log x

∑

l≤v

1
l1+α

∑

0<a≤l
|w(a, l)|

)

+O
(

log x
∑

l≤v
l2
∑

0<a≤l
|w(a, l)|

)

in the notation of IX(17) as modified on p. 10 of X. In this the inner sums
are O(log2 x) and O(v3+α log2 x) by the method for estimating

∑
1 and

∑
2,
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whence we decide that∑
3

= x2T ∗(v) +O(x1+α log3 x) +O(v3+α log3 x).(69)

We are now primed to obtain the revised intermediate generalized
Barban–Davenport–Halberstam theorem and then to deduce via this our
strengthened Barban–Montgomery type theorem. Let us then take the spe-
cial case

H(x, k) =
1
k

∑

q|k
q≤ξ

{Vx(q)− x2N(q)}+
1
k

∑

q|k
q>ξ

Vx(q)− x2Mξ(k) +Zx(k)(70)

of X(25), supposing that ξ = x1/2 and deducing first that
∑

q|k
{Vx(q)− x2N(q)} = kH(x, k)− kZx(k) = O(k2−2αx2α)− kZx(k)

for k ≤ x1/2 by (65) and Criterion V1. This, by the Möbius inversion formula,
implies that

Vx(q)− x2N(q) = O
(
x2α

∑

d|q
d2−2α

)
−
∑

d|q
µ

(
q

d

)
dZx(d)

= O(x2αq2−2α)−
∑

d|q
µ

(
d

q

)
dZx(d)

for q ≤ x1/2, wherefore the first term on the right of (70) transforms into

O

(
x2α

k

∑

q|k
q≤ξ

q2−2α
)
− 1
k

∑

dd1d2=k
dd1≤ξ

dZx(d)µ(d1)

= O

(
x1+αd(k)

k

)
−

∑

dd1d2=k
dd1≤ξ

Zx(d)µ(d1)
d1d2

.

Thence, deploying the consequential expression for H(x, k), summing over
k, and then using (66) and (62), we arrive at the equation

G(x,Q) = O(x1+α log2 x)−
∑

dd1d2≤Q
dd1≤ξ

Zx(d)µ(d1)
d1d2

+
∑

k≤Q

1
k

∑

q|k
q>ξ

Vx(q)

− x2
∑

k≤Q
Mξ(k) +

∑

k≤Q
Zx(k)

= −
∑

dd1d2≤Q
dd1≤ξ

Zx(d)µ(d1)
d1d2

+O

( ∑

ξ<q≤Q

1
q

log
2Q
q
Vx(q)

)

+O(x1+α log2 x) +O(x1+α log3 x) +O(xα/2+3/2 log2 x)
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= −
∑

dd1d2≤Q
dd1≤ξ

Zx(d)µ(d1)
d1d2

+O

( ∑

ξ<q≤Q

1
q

log
2Q
q
Vx(q)

)

+O(xα/2+3/2 log2 x),

in which the second term is

O

{(
Q+

x

ξ
logQ

)
x

}
= O(Qx) +O(x3/2 log x)

by the large sieve inequality and in which the first term is

−
∑

d1d2≤Q

µ(d1)
d1d2

∑

d≤min(Q/d1d2,ξ/d1)

Zx(d) = O

(
xα/2+3/2 log2 x

∑

d1,d2≤Q

1
d1d2

)

= O(xα/2+3/2 log4 x)

by another application of (62). Hence, under Criterion V1, we have the
generalized Barban–Davenport–Halberstam theorem of X in the improved
form

G(x,Q) = O(Qx) +O(xα/2+3/2 log4 x).(71)

In particular, we observe from this that

G(x,Q) = O(Qx)

whenever x3/4 ≤ Q ≤ x.
To complete the proof we now shun (70) and go back to its antecedent

(21) of X, it being appropriate as in X to use the notation T (u) for the sum
∑

k≤u
M(k).

Then, summing this equation over the range Q1 < k ≤ Q2 for choices of
Q1, Q2 to be so specified later that

x1/2 < Q1 < Q2 ≤ x,(72)

we obtain through (62) the equality

G(x;Q1, Q2) =
∑

Q1<k≤Q2

∑

0<a≤k
S2(x; a, k)− x2{T (Q2)− T (Q1)}

+
∑

Q1<k≤Q2

Zx(k)

= Γ (x;Q1, Q2)− x2{T (Q2)− T (Q1)}+O(xα/2+3/2 log2 x)

as a stronger version of an equation on p. 9 of X, whence IX(11) takes the
improved form
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G(x;Q1, Q2) = C(Q2 −Q1)x+ 2J(x;Q1, Q2) +O(Q2x
α)(73)

− x2Φ(0) log
Q2

Q1
+O

(
x2

Q1

)
+O(xα/2+3/2 log2 x)

= C(Q2 −Q1)x+ 2J(x;Q1, Q2)− x2Φ(0) log
Q2

Q1

+O

(
x2

Q1

)
+O(xα/2+3/2 log2 x)

in the light of (64) and IX(12). Next, if J(x,Q) be defined as in IX where
Q is either Q1 or Q2, then by analogy with IX

J(x,Q) =
∑

l<x/Q

∑

s′<x−lQ

∑

s′+lQ<s≤x
s≡s′,mod l

1,

wherein the innermost sum equals

(x− lQ− s′)f(s′, l) +O{(x/l)α}
by Criterion V1 because the lower limit s′ + lQ of summation exceeds lQ >
lx1/2 > l2. The remainder term in this being responsible for a contribution

O

(
x1+α

∑

l<x/Q

1
lα

)
= O

(
x2

Q1−α

)
(74)

to J(x,Q), we thus reach the sum

(75)
∑

l<x/Q

∑

s′<x−lQ
(x− lQ− s′)f(s′, l)

= x2T ∗(x/Q) +O(x1+α log3 x) +O

(
x3+α log3 x

Q3+α

)

that (67) and (69) shew to be the other part of J(x,Q). Then, in summation
of what we have so far accomplished in this paragraph, we deduce that

G(x;Q1, Q2) = C(Q2 −Q1)x+ 2x2(T ∗(x/Q1)− T ∗(x/Q2))(76)

− x2Φ(0) log(Q2/Q1)

+O

(
x2

Q1−α
1

)
+O(xα/2+3/2 log2 x) +O

(
x3+α log3 x

Q3+α
1

)

= (C − C1)(Q2 −Q1)x+ x2(I∗(x/Q2)− I∗(x/Q1))

+O(xα/2+3/2 log2 x)

= x2(I∗(x/Q2)− I∗(x/Q1)) +O(xα/2+3/2 log2 x)

by using in succession (73)–(75), (55), (48), and (71).
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If we combine the above result with the Barban–Davenport–Halberstam
inequality (71), we get

G(x,Q2) = O(Q2−2α
2 x2α log2(2x/Q2)) +O(Q1x) +O(xα/2+3/2 log4 x)

because of (56). All that remains is to seek the range of Q2 for which the
first term on the right of this estimate formally dominates. Here the second
term can be absorbed in the first if

Q1x = A6Q
2−2α
2 x2α log2(2x/Q2),

which certainly entails the requirement Q1 < Q2 for a suitably small A6.
Also the value of Q1 must exceed x1/2 by (72) so that the second term
can be forgotten when Q2−2α

2 x2α−1 > A7x
1/2 and surely therefore when

Q2 > x3/4 log2 x, in which event it is easily confirmed that the first term
also swallows up the third. Hence we have established

Theorem 1. Under Criterion V1, we have

G(x,Q) = O(Q2−2αx2α log2(2x/Q))

for Q > x3/4 log2 x.

6. Formula for s-twins. As stated in the introduction, a feature of
sequences s satisfying Criterion V1 is that it is possible to establish an
asymptotic formula for the number νc(x) of pairs of numbers s, s′ that differ
by a given positive number c. However, the form of Criterion V1 adopted
lends itself primarily to the study of the pairs s, s′ satisfying

y < s, s′ ≤ 2y, s− s′ = c (0 < c < y)(77)

having cardinality ν∗c (y), say, from whose asymptotic formula we can derive
an expression for νc(x) by a simple argument. Being of interest in itself, this
formula for νc(x) is stated in Theorem 2 below but is not suitable in its
present form for our primary application to H(x, k) because uniformity in
c may be lost in the transition from (8) ν∗c (y). We shall therefore proceed
directly to H(x, k) from our conclusions on ν∗c (y).

Our procedure is to follow as far as possible the earlier analysis of Sec-
tion 3, starting with the equation

ν∗c (y) =
1�

0

|F1(θ, y)|2e−2πicθ dθ

and then using at the appropriate place the knowledge of R(k) that was
earlier gained. The integrand being no longer always positive, we use the
same Farey series as before but now split up the range of integration, mod 1,

(8) The most obvious way to obtain a fully satisfactory formula for νc(x) is to adopt
the hypothesis stated in footnote (4).
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in the customary manner into the non-overlapping arcs

−ϑ′h,k ≤ φ− h/k ≤ ϑh,k (1/(2Mk) ≤ ϑh,k, ϑ′h,k ≤ 1/(Mk))

so that we have

ν∗c (y) =
∑

k≤M

∑

0<h≤k
(h,k)=1

e−2πich/k
ϑh,k�

−ϑ′h,k

|F1(h/k + φ)|2e−2πicφ dφ(78)

=
∑

k≤M
T ∗(y, k), say,

as an analogue of (54). Next, since

|F1(h/k + φ, y)|2 = |P (h, k)|2|J(x, φ)|2

+ |P2(y;h, k;φ)− 2πiφP3(y;h, k;φ)|2
+O(|P (h, k)| · |J(x, φ)|
× |P2(y;h, k;φ)− 2πiφP3(y;h, k;φ)|)

by formula (35) for F1(h/k + φ, y), we deduce with the aid of the Cauchy–
Schwarz inequality that (9)

(79) T ∗(y, k)

=
∑

0<h≤k
(h,k)=1

|P (h, k)|2
ϑh,k�

−ϑ′h,k

|J(φ, y)|2e−2πicφ dφ

+O
( ∑

0<h≤k
(h,k)=1

1/(Mk)�

−1/(Mk)

|P2(y;h, k;φ)− 2πiφP3(y;h, k;φ)|2 dφ
)

+O
{(
R(k)

1/(Mk)�

−1/(Mk)

|J(φ, y)|2 dφ
)1/2

×
( ∑

0<h≤k
(h,k)=1

1/(Mk)�

−1/(Mk)

|P2(y;h, k;φ)−2πiφP3(y;h, k;φ)|2 dφ
)1/2}

=
∑

0<h≤k
(h,k)=1

|P (h, k)|2
ϑh,k�

−ϑ′h,k

|J(φ, y)|2e−2πicφ dφ

+O{T2(y, k)}+O{T 1/2
1 (y, k)T 1/2

2 (y, k)}

(9) The use of Minkowski’s inequality is less appropriate here than it was in Section 3.
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in the notation of (36). In the first term on the last line the limits on the
integration may be expunged provided that we introduce a compensating
term

O

( ∑

0<h≤k
(h,k)=1

|P (h, k)|2
∞�

1/(2MK)

dφ

φ2

)
= O(MkR(k)),

while estimates for T1(y, k) and T2(k, y) are supplied by (37) and (41). Con-
sequently, exploiting the Fourier integral theorem, we first see that

T ∗(y, k) = (y − c)
∑

0<h≤k
(h,k)=1

|P (h, k)|2e−2πihc/k +O(MkR(k))

+O

(
y2α

k2α

)
+O

(
yα+1/2R1/2(k)

kα

)

and then deduce from (78) that

ν∗c (y) = (y − c)
∑

k≤M

∑

0<h≤k
(h,k)=1

|P (h, k)|2e−2πihc/k +O(y2αM1−2α)

+O
(
M
∑

k≤M
kR(k)

)
+O

(
yα+1/2

∑

k≤M

R1/2(k)
kα

)
.

Here, in contrast with the corresponding situation we reached in the previous
analysis we are paralleling, we know the behaviour of the sums containing
R(k) = N(k) because of Lemma 2, and we therefore infer that

ν∗c (y) = (y − c)
∞∑

k=1

∑

0<h≤k
(h,k)=1

|P (h, k)|2e−2πihc/k +O
(
y
∑

k>M

N(k)
)

(80)

+O(y2αM1−2α) +O
(
M
∑

k≤M
kN(k)

)

+O

(
yα+1/2

∑

k≤M

N1/2(k)
kα

)

= (y − c)S(c) +O(yM2α−1) +O(y2αM1−2α log2 2y)

+O(M1+2α log2 2y) +O(yα+1/2 log2 2y)

= (y − c)S(c) +O(yα+1/2 log2 y), say,

which equation with its derivation implies
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Lemma 3. Let ν∗c (y) be the number of s-twins associated with condition
(77). Then, on Hypothesis V1, we have

ν∗c (y) = (y − c)S(c) +O(y1/2+α log2 2y)

uniformly for 0 < c < y, where

S(c) =
∞∑

k=1

∑

0<h≤k
(h,k)=1

|P (h, k)|2e−2πihc/k.

An equally valid formula for ν∗c (y) is obtained if S(c) be replaced by any
of its partial sums consisting of all terms corresponding to values of k up
to a limit not less than y1/2.

The above lemma constitutes a satisfactory preparation for the next
section but, as an aside, we mention that it implies the following

Theorem 2. If Hypothesis V1 be assumed , then

νc(x) = (x− c)S(c) +O(x1/2+α log2 x) (c > 0)

as x→∞, where the constant implied by the O-notation may depend on c.

7. The behaviour of H(x, k) for primes k. Still adopting Criterion
V1 but also now assuming that condition (5) is in place, we examine the sum
H(x, k) defined in (1) for largish individual values of k with emphasis on
the case where k is a prime number. That the secondary stipulation (5) or
something similar should be imposed seems essential because in its absence
there is little likelihood of there being a satisfactory asymptotic formula for
Ψk(x) in X(9) for large individual k. Yet, before we embark on this part of
the work, we should make plain that we do not insist that k be a prime until
necessary.

It is not convenient to study H(x, k) directly for reasons associated with
our previous remarks about formulae for νc(x) and ν∗c (y). We therefore in-
troduce the sum

H1(y, k) =
∑

0<a≤k
[S(2y; a, k)− S(y; a, k)− g{k, (a, k)}y]2(81)

for y > k and, letting yr = 2−r−1x and R = R(k, y) = O(log y) be the
greatest value of R for which yr ≥ k, employ it and the Cauchy–Schwarz
inequality to gain the relation

H(x, k) =
∑

0<a≤k

( ∑

0≤r≤R
[S(2yr; a, k)− S(yr; a, k)− g{k, (a, k)}yr]

+ S(yR; a, k)− g{k, (a, k)}yR
)2
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= O

{( ∑

0≤r≤R

1
2αr

)( ∑

0≤r≤R
2αrH1(yr, k)

)}
+O(H(yR, k))

= O
( ∑

0≤r≤R
2αrH1(yr, k)

)
+O(H(yR, k)).

In the summand of H(yR; a, k) both S(yR, k) and g{k, (a, k)}yR are O(1)
because of (68) and the given inequality k ≤ yR < 2k; hence

H(yR, k) = O(k)

and

H(x, k) = O
( ∑

0≤r≤R
2αrH1(yr, k)

)
+O(k),(82)

it therefore being enough to derive a suitable bound for H1(y, k) when

k ≤ y ≤ x/2.(83)

We do not tarry long over the earlier stages of the treatment of H1(y, k)
because they resemble what has already occurred in [3], IX, and previous
parts of this paper. First we decompose H1(y, k) in the same way as H(x, k)
in [3] to yield the equation

H1(y, k) =
∑

0<a≤k
{S(2y; a, k)− S(y; a, k)}2(84)

− 2y
∑

δ|k
g(k, δ)

∑

0<a≤k
(a,k)=δ

{S(2y; a, k)− S(y; a, k)}

+ y2
∑

δ|k
φ(k/δ)g2(k, δ)

= H2(y, k)− 2yH3(y, k) + y2H4(k), say,

and in the first place treat the constituents therein without further restric-
tions on k. Secondly, with appropriate interpretations of empty sums, the
inner sum in H3(y, k) is shewn to be

∑

d|k/δ
µ(d)

∑

s≤x
s≡0,mod dδ

1 = y
∑

dδ|k
dδ≤y1/2

µ(d)g(dδ) +O

(
yα

∑

d|k/δ
dδ≤y1/2

1
(dδ)α

)

+O

(
y
∑

d|k/δ
dδ>y1/2

1
dδ

)
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= y
∑

dδ|k
µ(d)g(dδ) +O

(
yαd(k)
δα

)
+O

(
y
∑

d|k/δ
dδ>y1/2

1
dδ

)

= y
∑

dδ|k
µ(d)g(dδ) +O(y1/2d(k))

by Criterion V1 if we adopt the notation g(dδ) of Criterion U of IX and
use the relation g(dδ) = O(1/(dδ)). Then by IX(6) this expression can be
replaced by

yφ(k/δ)g(k, δ) +O(y1/2+ε)

with the implication that

H3(y, k) = y
∑

δ|k
φ(k/δ)g2(k, δ) +O

(
y1/2+ε

k

∑

δ|k
1
)

= yH4(k) +O

(
y1/2+ε

k

)
,

whence

H1(y, k) = H2(y, k)− y2H4(k) +O

(
y3/2+ε

k

)
(85)

from (84). Also, by what is now a familiar argument, we infer the equation

H2(y, k) =
∑

0<a≤k

( ∑

y<s≤2y
s≡a,mod k

1
)2

=
∑

s−s′=lk
y<s,s′≤2y

1(86)

= S(2y)− S(y) + 2
∑

0<l<y/k

∑

y<s,s′≤2y
s−s′=lk

1

= Cy +O(yα) + 2
∑

0<l<y/k

ν∗lk(y)

= Cy +O(yα) + 2H5(y, k), say,

from (18) and the definition of ν∗c (y) in the previous section. From this we
then go on to refine through (5) the asymptotic formula in Lemma 3, it first
being requisite to change the notation in the definition of S(c) in (80) in
recognition of our having now earmarked the letter k to denote the fixed
modulus inherent in H(x, k).

Let us therefore write

S(c) =
∞∑

m=1

∑

0<h≤m
(h,m)=1

|P (h,m)|2e−2πihc/m (c > 0)

and size up the impact of the condition (5) on its terms with the help of the
Ramanujan sum
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cq(n) =
∑

0<b≤q
(b,q)=1

e2πinb/q =
∑

d|q; d|n
µ

(
q

d

)
d.(87)

If (h,m) = 1, then (25) implies that

P (h,m) =
∑

δ|m
g(m, δ)

∑

0<b≤m
(b,m)=δ

e2πihb/m =
∑

δ|m
g(m, δ)cm/δ(h)

=
∑

δ|m
g(m, δ)cm/δ(1) = P (1,m)

and thus also that

P (1,m) =
∑

δ|m
µ

(
m

δ

)
g(m, δ) = O

(
d(m)
m

)
;

hence definition (24) translates into

R(m) = φ(m)P 2(1,m) = O

(
mε

m

)
,(88)

while the inner sum in the singular series equals

P 2(1,m)cm(c).

Consequently the formula in Lemma 3 can be expressed as

ν∗c (y) = (y − c)
∑

m≤y1/2

P 2(1,m)cm(c) +O(yα+1/2 log2 2y),(89)

in which form it is used to evaluate the last term in (86).
To prepare for this evaluation we need an estimate for the sum∑

l≤u
(u− l)cm(lk)

for any positive integers k and m. This equals

(90)
∑

l≤u
(u− l)

∑

d|m; d|lk
µ

(
m

d

)
d

=
∑

d|m
µ

(
m

d

)
d

∑

l≤u
l≡0,mod d/(d,k)

(u− l)

=
1
2
u2
∑

d|m
µ

(
m

d

)
(d, k)− 1

2
u
∑

d|m
µ

(
m

d

)
d+O

(∑

d|m
d2
)

=
1
2
u2
∑

d|m
µ

(
m

d

)
(d, k)− 1

2
uφ(m) +O(m2),
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in which ∑

d|m
µ

(
m

d

)
(d, k) =

{
φ(m) if m | k,
0 if m - k.(91)

In turning these facts to initial advantage, we first assume merely that
k is a given positive integer and y →∞ so that certainly y/k > y2/3. Then,
in this framework, (85), (88)–(90) shew that

H5(y, k) = k
∑

m≤y1/2

P 2(1,m)
∑

l<y/k

(
y

k
− l
)
cm(lk) +O

(
yα+3/2 log2 y

k

)
(92)

=
y2

2k

∑

m|k
P 2(1,m)φ(m) +O

(
y
∑

m≤y1/2

P 2(1,m)φ(m)
)

+O

(
yα+3/2 log2 y

k

)

=
y2

2k

∑

m|k
P 2(1,m)φ(m)+O

(
y

∞∑

m=1

R(m)
)

+O
(
yα+3/2 log2 y

k

)

=
y2

2k

∑

m|k
P 2(1,m)φ(m) +O

(
yα+3/2 log2 y

k

)

because of (26) and (88). But Criterion V1, (81), and (85) imply that
H2(y, k) ∼ y2H4(k) as y →∞ so that (91) leads to

H4(k) =
1
k

∑

m|k
P 2(1,m)φ(m),

an identity in k that is not altogether easy to verify directly.
Let us now approach more closely the conditions under which the theo-

rem will be established, supposing that k is a prime number exceeding x1/2

and therefore y1/2. Then, by (85) and (86), we gain the equation

H1(y, k) = Cy + 2H5(y, k)− y2

k

∑

m|k
P 2(1,m)φ(m) +O(y3/2+ε/k),(93)

to progress from which we estimate H5(y, k) by modifying its previous treat-
ment. First, we can write the series

∑

m≤y1/2

P 2(1,m)cm(lk)(94)

in the formula (89) for ν∗lk(y) as
∑

m≤y/k
P 2(1,m)cm(lk) +O

( ∑

y/k<m≤y1/2

P 2(1,m)(m, l)
)

(95)
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because |cm(lk)| ≤ (m, lk) and k is a prime greater than the variable m of
summation. Next the contribution due to the second portion of this is

(96) O
(
y

∑

y/k<m≤y1/2

P 2(1,m)
∑

l≤y/k
(m, l)

)

= O

(
y2

k

∑

y/k<m≤y1/2

md(m)
φ(m)m

P 2(1,m)φ(m)
)

= O

(
y2

k

∑

m>y/k

R(m)
m1−ε

)
,

which by (88) and Lemma 2 equals

O

{
y2

k

(
y

k

)2α−2+ε}
= O{k1−2αy2α(y/k)ε},(97)

while the remainder term in (89) is responsible for a fourth gift of

O

(
yα+3/2 log2 2y

k

)
(98)

to H5(y, k). So far as the first term in (95) is concerned, we see by altering
the analysis in (92) that it creates an amount

(99)
1
2
y2

k

∑

m≤y/k
m|k

P 2(1,m)φ(m)− 1
2
y
∑

m≤y/k
P 2(1,m)φ(m)

+O
(
k
∑

m≤y/k
m2P 2(1,m)

)

≤ 1
2
y2

k

∑

m|k
P 2(1,m)φ(m)− 1

2
y

∞∑

m=1

R(m) +O
(
y
∑

m>y/k

R(m)
)

+O
(
k log log(10y/k)

∑

m≤y/k
mR(m)

)

=
1
2
y2

k

∑

m|k
P 2(1,m)φ(m)

− 1
2
y

∞∑

m=1

R(m) +O(k1−2αy2α log2(2y/k))

+O(k1−2αy2α log2(2y/k) log log(10y/k))

because of Lemma 2. Thence, bearing in mind that
∞∑

m=1

R(m) = C1 = C,
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let us insert these results (97), (98), and (99) into (93) to infer that

H1(y, k) ≤ Cy − C1y +O(k1−2αy2α(y/k)ε) +O

(
yα+3/2+ε

k

)

= O(k1−2αy2α(y/k)ε)

provided that yβ<k≤y, where β is any constant between (3/2−α)/(2(1−α))
and 1. This condition being stronger than what was previously assumed, we
deduce that

H1(y, k) = O(k1−2αy2α(y/k)ε)

because H1(y, k) is non-negative, whence via (82) we quickly obtain

Theorem 3. Let β be as above and suppose that k is a prime number
between xβ and x. Then, for sequences satisfying Criterion V1 and condition
(5), we have

H(x, k) = O(k1−2αx2α(x/k)ε),

where H(x, k) is defined in (1).

We examine the change in the above theorem that is brought about by
our assuming that the sequence s satisfies Criterion S of IX to the effect that
the function g(d)/C = g(d, d)/C is multiplicative. It having been shewn in
IX that the function f(b,m)/C is then multiplicative in m for each integer
b, it follows by standard methods that so is the sum

1
C
P (1,m) =

1
C

∑

0<b≤m
e2πib/mf(b,m)

as defined in (25), whence we draw from (88) the multiplicativity of R1(m) =
R(m)/C as the first implication of our additional supposition. From this we
proceed to a new estimation of the tail of the series (94) but, for reasons to
be explained, must begin by tightening up the initial calculations previously
stemming from the relation |cm(lk)| = |cm(l)| ≤ (m, l), which must be
slightly refined by means of the familiar determination

cpγ (pβ) =




φ(pγ) if β ≥ γ,
pγ−1 if β = γ − 1,
0 otherwise,

(100)

that is a corollary of (87). Let us now write

m =
∏

p

pγ

and then set
m1 =

∏

p

pγ−1, m2 =
∏

p

p
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with an obvious interpretation for the third entity. Next, having established
that we can certainly suppose that l is divisible by m1 when estimating the
sum ∑

4,u
=
∑

4,u,m
=
∑

l≤u
|cm(l)|,

let us consider the influence of those values of l for which m3 is the largest
divisor of m2 dividing l/m1. Then, notwithstanding the possibility that
l/(m1m3) and m3 are not necessarily coprime, the summands in this case
do not exceed m1m3 by (100) and contribute in all

O
(
m1m3

∑

l≤u
l≡0,modm1m3

1
)

= O(u)

to
∑

4,u, the conclusion being that
∑

4,u
= O

(
u
∑

m3|m2

1
)

= O(2ω(m)u).(101)

Thus 2ω(m) can replace d(m) in the sum in the middle term of (96), an
improvement (10) that in the prevailing situation is not as insubstantial as
might appear.

To process the new sum we start with the associated sum
∑

m≤u
m2ω(m)R1(m),

which, by the multiplicitivity of R1(m) and then by Lemma 2, equals
∑

λµ≤u
(λ,µ)=1

λµR1(λµ) =
∑

λµ≤u
(λ,µ)=1

λR1(λ)µR1(µ) ≤
∑

λ≤µ
λR1(λ)

∑

µ≤u/λ
µR1(µ)(102)

= O

(
u2α

∑

λ≤u
λ1−2αR1(λ) log2 2u

λ

)

= O(u2α log5 u).

Then, progressing to the sum
∑

5,u
=
∑

m≤u

m2

φ(m)
2ω(m)R1(m)

more closely connected with (95), we avail ourselves of the multiplicative

(10) A further slight improvement is possible but does not permit any simplification
in the ensuing calculations.
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majorant
π2

6

∑

λµ=m
(λ,µ)=1

1
λ1

of m/φ(m), where λ1 is the square-free product of all the primes dividing λ.
By means of this and (102), we get

∑
5,u
≤ π2

6

∑

λµ≤u
(λ,µ)=1

λµ

λ1
2ω(λ)2ω(µ)R1(λ)R1(µ)

≤ π2

6

∑

λ≤u

λ2ω(λ)R1(λ)
λ1

∑

µ≤u/λ
µ2ω(µ)R1(µ)

= O

(
u2α log5 u

∑

λ≤u

λ1−2α2ω(λ)R1(λ)
λ1

)

and hence, by (88),
∑

5,u
= O

(
u2α log5 u

∑

λ≤u

1
λ1λα

)
= O(u2α log5 u)(103)

because α > 0 and because the series
∑∞

λ=1 1/(λ1λ
α) is seen to be convergent

by Euler’s product formula. Being
∑

y/k<m≤y1/2

2ω(m)R1(m)
φ(m)

,

the replacement sum in (96) is estimated as

O

{(
y

k

)2α−2

log5 2y
k

}

by (103) and partial summation, wherefore we obtain

H(x, k) = O{k1−2αx2α log5(2x/k)}
after improving (97) and retaining the estimations in (99) in their initial
state. Accordingly, we have reached

Theorem 4. To the data of Theorem 3 let us add the assumption that
the sequence s satisfy Criterion S of IX. Then

H(x, k) = O{k1−2αx2α log5(2x/k)}.
A brief observation on our procedures may be helpful. Without the as-

sumption of Criterion S, the substitution of 2ω(m) for d(m) is not helpful so
that we preferred to go to Theorem 3 as quickly as possible without being
unnecessarily diverted by the estimation of

∑
4,u in (101). But, although
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normally in problems of multiplicative number theory the functions 2ω(m)

and d(m) are virtually indistinguishable in regard to their treatment, the
multiplicativity of R(m) can only be effectively exploited in the present con-
text if the divisor function of m occurring can be interpreted through the
factorization of m as a product of coprime integers. This is because problems
about R1(m) must be structured so that they avoid too heavy an involve-
ment with such quantities as R1(p2), about which Lemma 2 provides little
information.

8. The implications of Criterion V2. We shall shew how to obtain
a Barban–Montgomery theorem of expected quality for sequences s that
satisfy Criterion V2 to the effect that inequality (29) in Criterion V1 is
valid for all k up to x2/3 logβ x, where β will be chosen to be 4/3 so that

β < 2/(1− α).(104)

We begin with equation (73), in which the final remainder term
O(xα/2+3/2 log2 x) can be replaced by O(x4/3+2α/3 log2−β(1−α) x) because
of our comments regarding (62) when Criterion V2 replaces Criterion V1;
consequently a similar substitution is possible in the first line of (76) and

thus in the second line also when Q1 ≥ x2/3 log( 1
1−α )− 1

2β x because then it is
easily verified that

x2/Q1−α
1 , (x3+α log3 x)/Q3+α

1 < x4/3+2α/3 log2−β(1−α) x

by (104). Therefore, setting

Q1 =
1
3
x2/3 logβ x > x2/3 log( 1

1−α )− 1
2β x,(105)

we deduce after a short calculation that for Q ≥ Q1

G(x;Q1, Q) = x2(I∗(x/Q)− I∗(x/Q1)) +O(x4/3+2α/3 log2−β(1−α) x)(106)

= x2(I∗(x/Q)− I∗(x/Q1))

+O(Q2−2αx2α log2−3β(1−α) x),

which with another application of Criterion V2 serves first as the foundation
for estimating I∗(v).

Let Q = 2Q1 so that Q is less than the upper limit of validity for the
operation of Criterion V2. Then, since

G(x;Q/2, Q) ≤
∑

k≤Q

∑

0<a≤k
E2(x; a, k) = O(Q2−2αx2α),(107)

it is deduced from (106) that

I∗(x/Q)− I∗(2x/Q) = O{(x/Q)2α−2},
which determines the behaviour of I∗(v) as v → ∞. In fact, simply deter-
mine x and Q uniquely by v = 3

2x
1/3 log−β x and Q = 2

3x
2/3 logβ x, where
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x,Q→∞, and infer that

I∗(v)− I∗(2v) = O

(
1

v2−2α

)
;

hence we arrive at the inequality

I∗(v) = O

(
1

v2−2α

∞∑

γ=0

1
(21−α)2γ

)
= O

(
1

v2−2α

)
(108)

we sought, since the previous inferior inequality (11) (55) certainly implies
that I∗(v)→ 0 as v →∞.

It is but a short step to the consequential Barban–Montgomery type
theorem. If Q be not more that Q1 as defined by (104), then

G(x,Q) = O(Q2−2αx2α)(109)

by Criterion V2. Alternatively, if Q > Q1, we have that

G(x,Q) = G(x,Q1) +G(x;Q1, Q),

in which
G(x,Q1) = O(Q2−2α

1 x2α) = O(Q2−2αx2α)

and
G(x;Q1, Q) = O(Q2−2αx2α)

by (106) and (108). Hence (109) holds for all Q up to x and we thus have
proved

Theorem 5. If the sequence s meet the requirements of Criterion V2,
then

G(x,Q) = O(Q2−2αx2α)

for Q ≤ x.
Let us now suppose that we are presented with a sequence conforming to

Criterion V2 and having the additional property that there is an asymptotic
formula (12)

G(x,Q) ∼ D2Q
2−2αx2α(110)

for a range of Q bounded above by x2/3 logβ x = 2Q1. Although typically
(110) might be granted for all such Q bounded below by a function of x
tending slowly to infinity, the only part of the range we actually need is the
segment Q1 ≤ Q ≤ 2Q1. If first Q = 2Q1 as in the deduction of (108), the
inequality (107) should be superseded by

G(x;Q/2, Q) ∼ D2

(
1− 1

22−2α

)
Q2−2αx2α,

(11) All that is needed here is that I∗(u) = o(1/u), as proved in X.
(12) Throughout the symbol of asymptotic equivalence and the o-symbol refer to a

passage of x/Q to infinity; thus, as always, x→∞.
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the insertion of which in (106) implies that

I∗(v)− I∗(2v) ∼ D2

(
1− 1

22−2α

)
1

v2−2α

by the same choice as before of x and Q in terms of v. Thence, since now

I∗(v) ∼ D2

(
1− 1

22−2α

)
1

v2−2α

∞∑

γ=0

1
2γ(1−α)

=
D2

v2−2α(111)

rather than (108), we conclude from our hypothesis and (106) that

G(x,Q) = G(x,Q1) +G(x;Q1, Q)

= D2Q
2−2α
1 x2α +D2x

2
(
Q2−2α

x2−2α −
Q2−2α

1

x2−2α

)
+ o(Q2−2αx2α)

= {D2 + o(1)}Q2−2αx2α

for all Q > Q1. A Barban–Montgomery type theorem with explicit main
term thus emerges in the circumstances described.

Other useful consequences follow from the assumption of Criterion V2.
To deduce the one that is perhaps the most interesting, we take the formula

ζ(s+ 1)Φ(s)
s(s+ 1)(s+ 2)

=
∞�

1

T ∗(u)us−1 du (σ > 0)

that is associated with formula (51) for T ∗(u) by means of the Mellin inver-
sion theorem. Substituting in the integral the value of T ∗(u) furnished by
(55), we have, for σ > 0 in the first place,

ζ(s+ 1)Φ(s)
s(s+ 1)(s+ 2)

=
1
2
Φ(0)

∞�

1

u−s−1 log u du+
1
2
B

∞�

1

u−s−1 du

+
Φ(−1)

2

∞�

1

u−s−2 du− 1
2

∞�

1

I∗(u)u−s−1 du

=
Φ(0)
2s2 +

B

2s
+

Φ(−1)
2(s+ 1)

− 1
2

∞�

1

I∗(u)u−s−1 du

and therefore find that the Dirichlet’s integral

J(s) = −1
2

∞�

1

I∗(u)u−s−1 du(112)

produces the analytic continuation beyond the abscissa σ = −1 of the func-
tion (13)

ζ(s+ 1)Φ(s)
s(s+ 1)(s+ 2)

− Φ(0)
2s2 −

B

2s
− Φ(−1)

2(s+ 1)
.

(13) Although it is unnecessary, we can easily verify that the value of B is such that
the effects of the poles at s = 0 annihilate themselves.
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Also, by (108) J(s) is regular and equal to

O

(∞�

1

du

u3−2α+σ

)
= O

(
1

σ − (2α− 2)

)

for σ > 2α− 2. Therefore, for 0 < η < 1− 2α,

Φ(2α− 2 + η) = O(1/η),(113)

from which, on setting η = 1/log 2u, we conclude that
∑

k≤u
N(k)k1−2α = O(log 2u)(114)

after we recall the definition of Φ(s) in (50). This represents an improvement
in the third equation of Lemma 2, the exponent in the logarithm being
reduced from 3 to 1; hence the exponents in the first two equations can also
be reduced but only to 1.

A sharper estimate in Theorem 4 is a reward for the assumption of the
condition V2. Taking up the improved assessments stemming from (114),
we get

Theorem 6. Let us replace Criterion V1 by Criterion V2 in the data of
Theorem 4. Then

H(x, k) = O{k1−2αx2α log2(2x/k)}.
We can even go a little further if once again we also assume the truth

of (110), since from (111) and (112) a routine analytical argument would
harvest the equation

2J(s) =−D2

∞�

1

du

us+3−2α +
∞�

1

o

(
1

us+3−2α

)
du

=
−D2

s− (2α− 2)
+ o

(
1

s− (2α− 2)

)

as s→ 2α− 2 + 0. From this it then follows that

Φ(2α− 2 + η) ∼ (2− 2α)(1− 2α)αD2

−ζ(2α− 1)
· 1
η

as η → 0, whence ∑

k≤u
N(k)k1−2α ∼ D3 log 2u

as u→∞ by a familiar Tauberian theorem. The upshot of this being that the
o-symbol can replace the O-symbol in the improved first two parts of Lem-
ma 2 derived under Criterion V2, we readily deduce a variant of Theorem 6
in which

H(x, k) = o{k1−2αx2α log2(2x/k)}.
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9. A sequence for which the Barban–Montgomery type theorem
has no main term of steady order of magnitude. The sequence s
to be considered is constructed by removing from the natural numbers all
multiples of primes p′ belonging to a particular type of set for which

∑

p′

1
p′

(115)

is convergent and equal to a constant C2 say. This, as will be shewn by
a simple method that avoids any intricacies of sieve machinery, meets the
conditions of Criteria U and S as originally stated in IX with remainder
term O(x log−A x).

Specializing in two stages the set of primes p′ to be adopted, we first
suppose that, for any positive number A, the tails of (115) are subject to
the relation

P (u) =
∑

p′>u

1
p′

= O(log−A u) (u ≥ 3/2),(116)

from which, letting d′ denote generally any square-free product (possibly 1)
of the sieving primes, we easily deduce that

∑

d′≤y
1 = O(y log−A 2y) and

∑

d′>y

1/d′ = O(log−A 2y) (y ≥ 1)(117)

as follows. Let A > 1 be fixed at will and let

σt =
A log log 10t

log 10t
,

noting that σt is decreasing for t ≥ 3/2 and that (116) can be assumed with
2A instead of A. Then the first sum in (117) does not exceed

(10y)1−σy
∑

d′≤y

1
d′1−σy

≤ 10y

logA 10y

∏

p′≤y

(
1 +

1
p′1−σy

)

≤ 10y

logA 10y
exp

(∑

p′≤y

p′σy

p′

)
,

wherein
∑

p′≤y

p′σy

p′
=

y�

3/2

tσy d{C2 − P (t)} = −
y�

3/2

tσy dP (t)

≤
(

3
2

)σy
C2 +O

(
σy

y�

3/2

tσt

t log2A t
dt

)

= O(1) +O

( ∞�

3/2

dt

t logA t

)
= O(1).
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Thus the first part of (117) is substantiated; the second part is deduced from
this (with A+1 instead of A) by partial summation.

The formula for S(x; a, k) is quickly derived. In the usual way, for

(a, k) = δ,(118)
we have first that

S(x; a, k) =
∑

n≤x
n≡a,mod k

∑

d′|n
µ(d′) =

∑

d′≤x
µ(d′)

∑

n≤x
n≡a,mod k
n≡0,mod d′

1.

Next, the two congruences in the last inner sum are compatible if and only
if (k, d′) | a and hence if and only if (k, d′) | δ, in which case the solutions in
n belong to a single residue class, mod [k, d′]. Hence

S(x; a, k) =
∑

d′≤x
(k,d′)|δ

(
x(k, d′)µ(d′)

kd′
+O(1)

)

=
x

k

∑

(k,d′)|δ

(k, d′)µ(d′)
d′

+O

(
x
∑

d′≥x

1
d′

)
+O

(∑

d′≤x
1
)

=
x

k

∑
6

+O

(
x

logA x

)
, say,

by (117). The terms in
∑

6 being multiplicative in d′ in an obvious sense,
we then have by absolute convergence that

∑
6

=
∏

p′|δ
(1− 1)

∏

p′-δ; p′|k
1
∏

p′-k

(
1− 1

p′

)
= CΨ(δ)

∏

p′|k

(
1− 1

p′

)−1

,

where
C =

∏

p′

(
1− 1

p′

)

and Ψ(δ) is the (trivially) multiplicative function that is 0 or 1 according
as δ is or is not divisible by a sieving prime. Therefore, having identified
Cψ(k) = CΨ(k)/k with g(k, k) because of (118), we infer that

S(x; a, k) =
CxΨ(δ)

k

∏

p′|k

(
1− 1

p′

)−1

+O(x log−A x)

in accordance with Criteria U and S of IX.
By IX(27) we have in this case that

Φ(s) =
∏

p

(
1 +

1
p− 1

∞∑

m=1

{pψ(pm)− ψ(pm−1)}2
pms+1

)
(119)

=
∏

p′

(
1 +

1
(p′ − 1)p′s+1

)
=
∑

d′

1
φ(d′)d′s+1
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so that, in particular,

Φ(−1) =
∏

p′

(
1 +

1
p′ − 1

)
=
∏

p′

(
1− 1

p′

)−1

=
1
C
.

Thus the sequences produced have the feature that the constant D1 =
C − C2Φ(−1) in the formal main term of their Barban–Montgomery type
theorem is zero.

Having satisfied a necessary condition for there to be a fluctuation in
the true order of magnitude of G(x,Q) for Q fairly close to x, we specialize
the situation yet further by insisting that the sieving primes shall form a
sequence of such a pronounced lacunary type that the numbers d′ are also
lacunary. Accordingly, letting ξr be a slowly increasing positive sequence
tending to infinity, we construct a very rapidly increasing sequence of real
numbers u1 > 1, u2, . . . , ur, . . . defined iteratively by the recurrence relation

ur+1 = ee
ur
,(120)

in terms of which the sieving primes p′ are to be just those primes p that lie
in intervals Ir of the type [ur, ur + ur log−ξr ur). Since obviously

1

2 logξr+1 ur
<
∑

p∈Ir

1
p
<

2

logξr+1 ur
(r > r0)

provided ξr be chosen to increase sufficiently slowly, we first have the in-
equalities

1

2 logξr+1 ur
<
∑

p′≥ur

1
p′
< 2

∑

s≥r

1

logξs+1 us
(121)

< 2
∑

s≥r

1

logξr+1(u2s−r
r )

<
2

logξr+1 ur

∞∑

γ=0

1
2γ

=
4

logξr+1 ur
.

Hence, as ξr > A− 1 for sufficiently large r, we also have either that
∑

p′>u

1
p′
≤
∑

p′≥ur

1
p′
<

4

logA ur
<

5

logA u

when u > u0(A) lies in an interval Ir or that
∑

p′>u

1
p′
≤

∑

p′≥ur+1

1
p′
<

4

logA ur+1
<

4

logA u

when u > u0(A) lies between consecutive intervals Ir and Ir+1. As a result,
we have confirmed that the set of sieving primes p′ conforms to the condition
(116), on which the earlier work of the section was based.
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Next, any square-free product of primes belonging to Ir does not exceed

(2ur)ur/logur < e2ur

with the implication that any product d′r of numbers of type d′ having prime
factors belonging only to the first r intervals Is does not exceed

∏

s≤r
e2ur = exp

(
2
∑

s≤r
us

)
< e3ur = vr, say.(122)

In contrast, any number d′ not of type d′r cannot be less than the first prime
in Ir+1 and is therefore not less than ur+1.

With this structure, we reinterpret conclusion (32) of IX for various
values of u defined in terms of the sequence ur. First, for any ε > 0, let us
suppose that

v4/ε
r ≤ u′ < u

1/2
r+1 (r > r0(ε)).(123)

Then, in the integral representations of T ∗(u) in IX (see also Section 4) for
u = u′ and u = u′2, we may replace Φ(s) by

ΦI(s) =
∑

n≤vr

an
ns

because of the form of the Dirichlet’s series exhibited in (119). Hence, fol-
lowing the pattern of previous analysis and letting Bvr denote the analogue
of B, we have

T ∗(u) =
1
2
ΦI(0) log u+

1
2
Bvr +

ΦI(−1)
2u

+
1
2

ε/2−2+i∞�

ε/2−2−i∞
ΦI(s)ζ(s+ 1)

us

s(s+ 1)(s+ 2)
ds

=
1
2
ΦI(0) log u+

1
2
Bvr +

ΦI(−1)
2u

+O

(
uε/2Φ1(ε/2− 2)

u2

)

=
1
2
ΦI(0) log u+

1
2
Bvr +

ΦI(−1)
2u

+O

(
1

u2−ε

)
,

since

ΦI(ε/2− 2) < v1−ε/2
r ΦI(−1) < vrΦ(−1) = O(uε/2)

by (123). If this be combined with the formula for I∗(u) supplied by (52)
and if we write

ΦII(s) =
∑

n>vr

an
ns

=
∑

n≥ur+1

an
ns
,
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it follows that

1
2
I∗(u′)− 1

2
I∗(u′2) =

Φ(−1)
2

(
1
u′
− 1
u′2

)
− Φ(0)

2
log u′

− {T ∗(u′)− T ∗(u′2)}

=
ΦII(−1)

2

(
1
u′
− 1
u′2

)
− ΦII(0)

2
log u′ +O

(
1

u′2−ε

)

=
ΦII(−1)

2u′
− ΦII(0)

2
log u′ +O

(
1

u′2−ε

)

and thence that

I∗(u′) =
ΦII(−1)

u′
− ΦII(0) log u′ +O

(
1

u′2−ε

)
(124)

because I∗(u′2) = O(u′−2) by (55) and IX(32). But

ΦII(0) <
1

ur+1
ΦII(−1) <

1
u′2

ΦII(−1),

and we therefore conclude that

I∗(u′) <
ΦII(−1)

u′
+O

(
1

u′2−ε

)
(125)

and

I∗(u′) >
ΦII(−1)

u′

(
1− log u′

u′

)
+O

(
1

u′2−ε

)
(126)

>
ΦII(−1)

2u′
+O

(
1

u′2−ε

)
(r > r0).

The required result is almost in sight. All numbers d′ appearing in the
Dirichlet development of ΦII(s) having at least one prime factor not less
than ur+1, we have

ΦII(−1) =
∏

p′<ur+ur log−ξr ur

(
1 +

1
p′

){ ∏

p′≥ur+1

(
1 +

1
p′

)
− 1
}

and infer that

ΦII(−1) ' 1

logξr+1+1 ur+1
(127)

in the light of (121). To profit from this let A be any positive constant as
before and first choose u′ in (123 ) so that u1/(2A)

r+1 ≤ u′ < u
1/2
r+1. Then (126)
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and (127) shew that

I∗(u′) >
A1

u′ logξr+1+1 ur+1
+O

(
1

u′2−ε

)

≥ A1

u′ logξr+1+1 u′ (2A)ξr+1+1
+O

(
1

u′2−ε

)

>
A1

u′1+ε +O

(
1

u′2−ε

)
>

1
u′1+ε

for r > r0(ε,A) provided that the rate of increase of ξr be sufficiently slow.
In contrast, if v4/ε

r ≤ u′ < v
4A/ε
r , then the other inequality (125) leads to

I∗(u′) <
A2

u′ logξr+1+1 ur+1
+O

(
1

u′2−ε

)
<

1
u′2−ε

for r > r′0(ε,A) because

logξr+1+1 ur+1 = e(ξr+1+1)ur = v
1
3 (ξr+1+1)
r > u′

ε
12A (ξr+1+1) > u′

by (120) and (122). Thus there are indefinitely large values of v for which
an inequality of the type

I∗(u) > 1/u1+ε(128)

holds for all u in a range of the type

v ≤ u < vA,(129)

whereas there are other such values of v for which

I∗(u) < 1/u2−ε(130)

in a similar range of u.
Finally, being guided by the analysis of Section 4 and remembering that

here D1 = 0, we have

G(x,Q) = x2I∗(x/Q) +O(x2 log−2A x),

to apply which in the current situation we set v = log x and choose x so that
either (128) or (130) is valid in the range (129). Since the consequential upper
and lower bounds for I∗(x/Q) are clearly not perturbed by the addition of
the remainder term O(x2 log−2A x) when x log−A x < Q ≤ x log−1 x, we
deduce

Theorem 7. There are sequences s meeting the conditions of Criterion
U which have the following features:

(i) there are indefinitely large values of x for which

G(x,Q) > Q1+εx1−ε

whenever x log−A x < Q ≤ x log−1 x;
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(ii) there are also indefinitely large values of x for which

G(x,Q) < Q2−εxε

whenever x log−A x < Q ≤ x log−1 x.

The selection of x log−1 x as the upper bound for Q is not crucial, al-
though we must make sure that x/Q does not become too small.

References

[1] M. J. Croft, Square-free numbers in arithmetic progressions, Proc. London Math.
Soc. (3) 30 (1975), 143–159.

[2] C. Hooley, On the Barban–Davenport–Halberstam theorem III , J. London Math. Soc.
(2) 10 (1975), 249–256.

[3] —, On a new approach to various problems of Waring’s type, in: Recent Progress in
Analytic Number Theory, Vol. 1, Academic Press, 1981, 127–192.

[4] —, On the Barban–Davenport–Halberstam theorem: IX , Acta Arith. 83 (1998), 17–30.
[5] —, On the Barban–Davenport–Halberstam theorem: X , Hardy–Ramanujan J. 21

(1998), 2–11.
[6] R. C. Vaughan, On a variance associated with the distribution of general sequences

in arithmetic progressions. I , Philos. Trans. Roy. Soc. London Ser. A 356 (1998),
781–791.

[7] —, On a variance associated with the distribution of general sequences in arithmetic
progressions. II , ibid., 793–809.

School of Mathematics
Mathematics Institute
Senghennydd Road
Cardiff CF24 4YH
S. Wales, U.K.

Received on 12.2.2001 (3972)


