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Explicit upper bounds for |L(1, χ)| for
primitive even Dirichlet characters
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Stéphane Louboutin (Marseille)

1. Introduction. Let p1, . . . , pr be r ≥ 0 given positive distinct rational
primes and let χ range over the primitive (even or odd) Dirichlet characters
of conductors fχ > 1. In [Lou1] we explained how to compute a reasonable
constant κr, depending on the pi’s only, such that

∣∣∣∣
r∏

i=1

1− χ(pi)
pi

∣∣∣∣|L(1, χ)| ≤ 1
2

( r∏

i=1

(
1− 1

pi

))
log fχ + κr.

More explicitly, a careful analysis of our proof shows that we may take

κr = Rr(1) +Rr(χ) +

∣∣∣∣
r∏

i=1

1− χ(pi)
pi

∣∣∣∣

where Rr(1) and Rr(χ) are computed inductively from the formulae

R0(1) = R0(χ) = 0,

Rr+1(1) =
εχ + log pr+1

pr+1
+
(

1− 1
pr+1

)
Rr(1),

Rr+1(χ) = |χ(pr+1)|εχ + log pr+1

pr+1
+
∣∣∣∣1−

χ(pr+1)
pr+1

∣∣∣∣Rr(χ),

where εχ = (χ(1)− χ(−1))/2 ∈ {0, 1}. In particular, Rr(χ) = 0 if χ(pi) = 0
for all the r primes pi. Moreover, Rr(1) ≤∑r

i=1(εχ + log pr)/pr. For a given
set of r primes pi, one needs a little time to determine which ordering of
the pi’s will yield the least values for Rr(1) and Rr(χ). For example, if we
let χ range over the primitive even Dirichlet characters such that χ(2) = 0
and χ(3) = −1, then the choice p1 = 2 and p2 = 3 yields R2(1) = 1

6 log(36)
and R2(χ) = 1

3 log 3, whereas the choice p1 = 3 and p2 = 2 yields R2(1) =
1
6 log(24) and R2(χ) = 1

3 log 3. Therefore, we obtain

|L(1, χ)| ≤ 1
8

(log fχ + κ) with κ = log(216) + 8 = 13.375278 . . .(1)
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2 S. Louboutin

for any primitive even Dirichlet character of conductor fχ satisfying χ(2) = 0
and χ(3) = −1. This is the bound quoted in [Le, Lemma 3].

The aim of this paper is to provide the reader with better values for these
constants κr for even characters. It must be pointed out that neither of the
two methods we develop here for improving upon these constants κr’s apply
to odd characters (see [Lou3] and [Ram] for explicit bounds for |L(1, χ)| for
odd primitive characters).

2. Statement of the results. We let γ = 0.5772156649 . . . denote
Euler’s constant.

2.1. Bounds in the case that χ(pi) = 0 for all i’s

Theorem 1. Set κ0 = 2 + γ − log(4π) = 0.046 . . . Fix k=
∏r
i=1 pi ≥ 1,

a square-free integer , and let χ range over the primitive even Dirichlet char-
acters χ whose conductors fχ > 1 are divisible by k. We have

|L(1, χ)| ≤ 1
2

{ r∏

i=1

(
1− 1

pi

)}(
log fχ + κ0 + 2

r∑

i=1

log pi
pi − 1

)
+ o(1)(2)

where o(1) is an explicit error term which tends rapidly to zero when fχ
goes to infinity. Moreover ,

1. For any primitive even Dirichlet character of conductor fχ > 1 we
have

|L(1, χ)| ≤ 1
2(log fχ + κ0).(3)

2. For any given prime p ≥ 2 and for any primitive even Dirichlet char-
acter of conductor fχ ≥ fp := 3

2π2 p
2 divisible by p we have

|L(1, χ)| ≤ 1
2

(
1− 1

p

)(
log fχ + κ0 + 2

log p
p− 1

)
.(4)

3. For any given primes p > q ≥ 2 and for any primitive even Dirichlet
character of conductor fχ ≥ fp,q := log 4

3π p
2q2 divisible by p and q we have

|L(1, χ)| ≤ 1
2

(
1− 1

p

)(
1− 1

q

)(
log fχ + κ0 + 2

log p
p− 1

+ 2
log q
q − 1

)
.(5)

Corollary 2. Let χ be a primitive even Dirichlet character of conduc-
tor fχ > 1. We have

|L(1, χ)| ≤ Aχ(log fχ + κχ)(6)

where Aχ and κχ which depend only on the value of fχ modulo 6 are given
in the following table:
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2 | fχ? 3 | fχ? Aχ κχ

No No 1/2 2 + γ − log(4π) = 0.046191 . . .

No Yes 1/3 2 + γ − log(4π/3) = 1.144803 . . .

Yes No 1/4 2 + γ − log π = 1.432485 . . .

Yes Yes 1/6 2 + γ − log(π/3) = 2.531098 . . .

Proof. f2 = 0.6 . . . , f3 = 1.36 . . . and f2,3 = 5.29 . . .

Remark 3. Let us point out that lately Ramaré has been able to im-
prove slightly upon two of these bounds (see [Ram]):

2 | fχ? Aχ κχ κRamaré

No 1/2 2 + γ − log(4π) = 0.046191 . . . 0

Yes 1/4 2 + γ − log π = 1.432485 . . . log 4 = 1.38629 . . .

See also [Lou5] for slightly worse improvements.

2.2. Bounds in the case that χ(pi) 6= 0 for some i

Theorem 4. Set κ′0 = 2γ − 1 = 0.154 . . . Fix h =
∏s
i=1 pi ≥ 1 and

k =
∏r
i=s+1 pi ≥ 1, two coprime square-free integers. Set

κ = s log 2−
s∑

i=1

log
(

1− 1
pi

)
+

r∑

i=1

log pi
pi − 1

,

and let χ range over the primitive even Dirichlet characters of conductors
fχ > 1 such that k divides fχ. Then

∣∣∣∣
s∏

i=1

(
1−χ(pi)

pi

)∣∣∣∣|L(1, χ)| ≤ 1
2

{ r∏

i=1

(
1− 1

pi

)}
(log fχ+κ′0+2κ)+o(1)(7)

where o(1) is an error term which approaches zero as fχ goes to infinity.

Since κ′0 = 2γ − 1 = 0.154 . . . > 0.046 . . . = κ0 = 2 + γ − log(4π),
Theorem 1 provides us with slightly better bounds than Theorem 4 for
s = 0, r ≥ 0. Moreover, the error term o(1) in (2) is much smaller and easier
to handle than the one in (7). The error term o(1) in Theorem 4 is explicit
and depends on the pi’s. For example, we will prove:

Theorem 5. 1. Set κ′ = 2γ + 6 log 2− 1 = 4.313314 . . . and let χ range
over the primitive even Dirichlet characters of conductors fχ > 1. Then

∣∣∣∣
(

1− χ(2)
2

)
L(1, χ)

∣∣∣∣ ≤
1
4

(log fχ + κ′) + o(1)

and ∣∣∣∣
(

1− χ(2)
2

)
L(1, χ)

∣∣∣∣ ≤
1
4

(log fχ + 5).(8)
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In particular , if χ(2) = −1 then

|L(1, χ)| ≤ (log fχ + 5)/6.(9)

2. Set κ′′ = log(108) + 2γ − 1 = 4.836656 . . . and let χ range over the
primitive even Dirichlet characters of even conductors fχ > 1. Then

∣∣∣∣
(

1− χ(3)
3

)
L(1, χ)

∣∣∣∣ ≤
1
6

(log fχ + κ′′) + o(1)

and ∣∣∣∣
(

1− χ(3)
3

)
L(1, χ)

∣∣∣∣ ≤
1
6

(log fχ + 6).(10)

In particular , if χ(2) = 0 and χ(3) = −1 then

|L(1, χ)| ≤ (log fχ + 6)/8.(11)

Notice that (11) is better than (1) used in [Le, Lemma 3]. We also refer
the reader to [Pin] and [Toy] for asymptotic bounds for |L(1, χ)|. These
bounds are asymptotically better than our bounds (2), (3) and (7), but
they are not explicit and are of no practical use when applying bounds for
|L(1, χ)| to class number problems for CM-fields, as in the last section of
the present paper.

Corollary 6. Let N be a real abelian number field of degree n > 1.
Let

EN(p) =
∏

P|p
(1−N(P)−1)−1

denote the Euler factor of the Dedekind zeta function ζN of N related to
the rational prime p ≥ 2. Then

Ress=1(ζN) ≤ 1
2n
EN(2)

(
1

2(n− 1)
log dN + 2.5

)n−1

.(12)

Proof. Let XN be the group of order n of primitive even characters
associated with N. Then

Ress=1(ζN) =
∏

χ∈XN\{1}
L(1, χ), dN =

∏

χ∈XN\{1}
fχ

and

EN(p) =
∏

χ∈XN

(1− χ(p)p−1)−1 = 2
/ ∏

χ∈XN\{1}
(1− χ(p)p−1).

Since the geometric mean is less than or equal to the arithmetic mean, using
(8) we obtain the desired result.
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Since EN(2) ≤ 2n, (12) improves upon the bound

Ress=1(ζN) ≤
(

1
2(n− 1)

log dN +
1
2
κ0

)n−1

(13)

we would obtain by using (2) (instead of (8)). For example, if 2 is inert in
N then EN(2) = (1− 2−n)−1 and (12) is then a (2n − 1)-fold improvement
on (13).

3. Proof of Theorem 1. Our proof is based on the method introduced
in [Lou2]. Let x > 0. We set

g(x) =
∑

n≥1

e−πn
2x(14)

which satisfies the functional equation

g(1/x) =
√
x g(x) + (

√
x− 1)/2,(15)

from which we obtain the integral representation

π−s/2Γ
(
s

2

)
ζ(s) =

∞�

0

xs/2g(x)
dx

x
=
∞�

1

g(x)xs/2
dx

x
+
∞�

1

g

(
1
x

)
x−s/2

dx

x

and

π−s/2Γ
(
s

2

)
ζ(s) =

1
s
− 1
s− 1

+
∞�

1

(xs/2 + x(1−s)/2)g(x)
dx

x
.(16)

In the same way, set f = fχ and

g(x, χ) =
∑

n≥1

χ(n)e−πn
2x/f (x > 0),

which satisfies the functional equation g(1/x, χ) = Wχ
√
x g(x, χ) where

Wχ =
1√
f

f−1∑

a=0

χ(a)e2aπi/f .

We obtain
(
f

π

)s/2
Γ

(
s

2

)
L(s, χ) =

∞�

1

(g(x, χ)xs/2 +Wχg(x, χ)x(1−s)/2)
dx

x
.(17)

Noticing that |Wχ| = 1, the choice s = 1 yields

√
f |L(1, χ)| ≤

∞�

1

|g(x, χ)| dx√
x

+
∞�

1

|g(x, χ)| dx
x
.(18)

Since χ(n) = 0 whenever gcd(n, f) > 1, we have

|g(x, χ)| = |g(x, χ)| ≤
∑

n≥1
gcd(n,k)=1

e−πn
2x/f =

∑

d|k
µ(d)g(d2x/f),(19)
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where µ denotes the Möbius function. Set

I(X) =
∞�

1

(
√
x+ 1)g(x/X)

dx

x
.(20)

Using (18) and (19), we obtain
√
f |L(1, χ)| ≤

∑

d|k
µ(d)I(f/d2)(21)

(compare with [Lou2, (5)]).

Lemma 7. We have

I(X) = (
√
X − 1) log

√
X +

κ0

2
(
√
X + 1)− J(X)(22)

where

J(X) =
∞�

X

(
√
X +

√
x)g(x)

dx

x
=
√
X

∞�

1

(1 +
√
x)g(xX)

dx

x
(23)

decreases in the range X ≥ 1/(2π) and satisfies

J(X) ≤ 2√
X

∞�

X

g(x) dx =
2

π
√
X

∑

n≥1

1
n2 e

−πn2X ≤ 2

π
√
X(eπX − 1)

.(24)

Proof. To get (22) and (23), use (15) (see [Lou2]). For x > 0 the deriva-
tive of X 7→

√
Xg(xX) which is equal to 1

2
√
X

∑
n≥1(1 − 2πn2xX)e−πn

2xX

is less than 0 for X ≥ 1/(2πx). Hence, for any x ≥ 1 the function X 7→√
Xg(xX) decreases in the range X ≥ 1/(2π). Thus, X 7→ J(X) decreases

in the range X ≥ 1/(2π).

Using (21) and (22), we obtain

|L(1, χ)| ≤ 1√
f

∑

d|k
µ(d)

((√
f

d
−1
)

log
(√

f

d

)
+
κ0

2

(√
f

d
+ 1
)
−J
(
f

d2

))
,

which, upon using

∑

d|k
µ(d)

log d
d

= −
( r∏

i=1

(
1− 1

pi

)) r∑

i=1

log pi
pi − 1

,

yields

|L(1, χ)| ≤ 1
2

{ r∏

i=1

(
1− 1

pi

)}(
log f +κ0 +2

r∑

i=1

log pi
pi − 1

)
+

1√
f
R(f)(25)
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with

R(f) = Λ+ ε(κ0 − log f)/2−
∑

d|k
µ(d)J(f/d2)

(and J as in Lemma 7),

ε =
∑

d|k
µ(d) =

{
1 if r = 0,
0 if r ≥ 1,

Λ =
∑

d|k
µ(d) log d =

{
− log p1 if r = 1,
0 if r 6= 1.

Now, using (25), we are in a position to complete the proof of Theorem 1.

1. If r = 0 then R(f) = (κ0 − log f)/2− J(f) ≤ 0, and (25) yields (3).
2. If r = 1 and p = p1, then R(f) = − log p−J(f) +J(f/p2) ≤ − log p+

J(f/p2), and f ≥ fp := 3p2/(2π2) implies

R(f) ≤ − log 2 + J

(
3

2π2

)
≤ − log 2 +

2
√

2
√

3(e
√

3/2 − 1)
≤ 0

(by Lemma 7), and (25) yields (4).
3. Assume that r = 2 and k = pq with p > q ≥ 2. Set X = f/(p2q2) and

assume that f ≥ fp,q, i.e. X ≥ (log 4)/(3π). Then

R(f) = −J(f) + J(f/p2) + J(f/q2)− J(f/(p2q2))

≤ J(p2X) + J(q2X)− J(X) =
√
X

∞�

1

(1 +
√
x)gp,q(x)

dx

x

with gp,q(x) = pg(xp2X) + qg(xq2X)− g(xX) and g as in (14). We want to
prove R(f) ≤ 0, for (25) would yield (5). It suffices to prove gp,q ≤ 0 for
x ≥ 1. Now, for p ≥ 2, q ≥ 2, n ≥ 1, x ≥ 1 and X ≥ (log 4)/(3π) we have

p exp(−πn2x(p2 − 1)X) + q exp(−πn2x(q2 − 1)X)

≤ p exp
(
−p

2 − 1
3

log 4
)

+ q exp
(
−q

2 − 1
3

log 4
)

≤ 2 exp(− log 4) + 2 exp(− log 4) = 1

and

p exp(−πn2xp2X) + q exp(−πn2xq2X)− exp(−πn2xX) ≤ 0.

Hence, gp,q(x) ≤ 0 for x ≥ 1.
4. Assume that r ≥ 2 and f ≥ k2/(2π). Since there are 2r−1 divi-

sors d of k for which µ(d) < 0 and since f/d2 ≥ f/k2 ≥ 1/(2π) implies
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0 ≤ J(f/d2) ≤ J(f/k2) (use Lemma 7), we obtain

R(f) = −
∑

d|k
µ(d)J(f/d2) ≤ 2r−1J(f/k2) ≤ 2rk

π
√
f(eπ
√
f/k2 − 1)

= o(1),

by (24), and (25) yields (2).

4. Proof of Theorems 4 and 5

4.1. Notation. Recall that h =
∏s
i=1 pi and k =

∏r
i=s+1 pi are two given

coprime square-free integers, that r = s + t and that χ ranges over the
primitive even Dirichlet characters of conductors f = fχ > 1 such that k
divides f . We set

πh =
s∏

i=1

(
1− 1

pi

)
, πk =

r∏

i=s+1

(
1− 1

pi

)
, πhk = πhπk =

r∏

i=1

(
1− 1

pi

)
.

We also set π̃h =
∏s
i=1

(
1 + 1

pi

)
and

Shk(n) :=
n∑

a=1

a∑

b=1
gcd(b,hk)=1

1.(26)

Finally, we let ψ be the non-primitive Dirichlet character modulo F = hf
induced by χ. Notice that hk divides F and

L(1, ψ) =
( s∏

i=1

(
1− χ(pi)

pi

))
L(1, χ).(27)

4.2. Sketch of proofs. So, let ψ be a non-trivial (but not necessarily
primitive) even Dirichlet character modulo F > 1, assume that hk divides
F and set

S(n, ψ) :=
n∑

a=1

a∑

b=1

ψ(b).

Since ψ is even and non-trivial, n 7→ S(n, ψ) is F -periodic, hence bounded,
and we have the following expression for L(1, ψ) as an absolutely convergent
series:

L(1, ψ) =
∑

n≥1

2S(n, ψ)
n(n+ 1)(n+ 2)

.(28)

Now, since ψ(b) = 0 whenever gcd(b, hk) > 1 (for hk divides F ), we have
|S(n, ψ)| ≤ Shk(n) and we will prove in Lemmas 8 and 11 that

|S(n, ψ)| ≤





Shk(n) = 1
2n

2πhk +O(n) for n ≥ 1,

n2s−1πk
√
f +O(n) +O(

√
f) for 1 ≤ n < f/k,

n2s−1√f +O(n) for n ≥ 1.

(29)
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Since the first bound is better than the second for n < 2s
√
f/πh, and the

second is better than the third for n < f/k, it is natural to split (28) and
write that for any integers B > A > 1 (in fact, we will also be allowed to
choose B =∞) we have

|L(1, ψ)| ≤ Σ1(A, hk) +Σ2(A,B,ψ) +Σ3(B,ψ)(30)

where

Σ1(A, hk) :=
A−1∑

n=1

2Shk(n)
n(n+ 1)(n+ 2)

,(31)

Σ2(A,B,ψ) :=
B−1∑

n=A

2|S(n, ψ)|
n(n+ 1)(n+ 2)

,(32)

Σ3(B,ψ) :=
∑

n≥B

2|S(n, ψ)|
n(n+ 1)(n+ 2)

.(33)

Now, using (29), we will obtain explicit bounds on these Σi in Proposi-
tions 9 and 12. Then we will choose A = [2s−1√f/πk] and B = [f/k] to get
Theorem 4. To prove Theorem 5 we will prove in Lemma 11 that the second
bound |S(n, ψ)| ≤ n2s−1πk

√
f + O(n) + O(

√
f) is valid for all n ≥ 1 in the

special cases that t ≤ 1 and we will choose A = [2s
√
f/πh] and B =∞.

4.3. Bounds on the sum Σ1(A, hk)

Lemma 8. Let {x} ∈ [0, 1[ denote the fractional part of a real number x
and set

Fhk(n) :=
∑

d|hk
µ(d)

( n∑

a=1

{
a

d

})
.

Then

(34) Shk(n) = πhk
n(n+ 1)

2
− Fhk(n),

(35) Lhk :=
∑

n≥1

2Fhk(n)
n(n+ 1)(n+ 2)

=
∑

d|hk
µ(d)

log d
d

= −πhk
∑

p|hk

log p
p− 1

,

and if hk > 1, then n 7→ Ghk(n) := Fhk(n) + πhkn/2 is hk-periodic.

Proof. Since
∑

d|m µ(d) = 0 or 1 according as m = 1 or m > 1, we obtain

Shk(n) =
n∑

a=1

a∑

b=1
gcd(b,hk)=1

1 =
n∑

a=1

a∑

b=1

∑

d|gcd(b,hk)

µ(d) =
∑

d|hk
µ(d)

n∑

a=1

a∑

b=1
d|b

1

=
∑

d|hk
µ(d)

n∑

a=1

(
a

d
−
{
a

d

})
= πhk

n(n+ 1)
2

− Fhk(n).



10 S. Louboutin

To prove (35), notice that

Lhk =
∑

n≥1

2
n(n+ 1)(n+ 2)

∑

d|hk
µ(d)

( n∑

a=1

{
a

d

})

=
∑

d|hk
µ(d)

∑

a≥1

{
a

d

}∑

n≥a

2
n(n+ 1)(n+ 2)

=
∑

d|hk
µ(d)

∑

a≥1

{
a

d

}(
1
a
− 1
a+ 1

)

=
∑

d|hk

µ(d)
d

d−1∑

x=1

x
∑

y≥0

(
1

dy + x
− 1
dy + x+ 1

)

(write a = dy + x with 1 ≤ x ≤ d and y ≥ 0)

=
∑

d|hk

µ(d)
d

lim
N→∞

d−1∑

x=1

x

N∑

y=0

(
1

dy + x
− 1
dy + x+ 1

)

=
∑

d|hk

µ(d)
d

lim
N→∞

(( d∑

x=1

N∑

y=0

1
dy + x

)
− d

N∑

y=0

1
dy + d

)

=
∑

d|hk

µ(d)
d

lim
N→∞

( d(N+1)∑

z=1

1
z
−
N+1∑

z=1

1
z

)
=
∑

d|hk

µ(d)
d

log d.

Finally, assume that m > n ≥ 1 satisfy m ≡ n (modhk). Then

Ghk(m)−Ghk(n) = Fhk(m)− Fhk(n) +
m− n

2
πhk

=
∑

d|hk
µ(d)

(
m− n

2d
+

m∑

a=n+1

{
a

d

})
.

Now, d divides hk, hence divides m−n, and a 7→ {a/d} is d-periodic. Hence,

m∑

a=n+1

{
a

d

}
=
m− n
d

d∑

a=1

{
a

d

}
= (m− n)

d− 1
2d

and, for hk > 1, we obtain

Ghk(m)−Ghk(n) =
m− n

2

∑

d|hk
µ(d) = 0,

and so n 7→ Ghk(n) is indeed hk-periodic.
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Proposition 9. For A > 1 a rational integer , we have

Σ1(A, hk) ≤ πhk
(∑

p|hk

log p
p− 1

+ γ − 3
2

+ logA+
1

2A

)
+Rhk(A)

where

Rhk(A) =
∑

n≥A

2Ghk(n)
n(n+ 1)(n+ 2)

.

Moreover , for hk > 1 we have Rhk(A) = O(1/A2), and for hk ∈ {2, 3, 6} we
have Ghk ≤ 0 and Rhk(A) ≤ 0.

Proof. We have

Σ1(A, hk)

=
A−1∑

n=1

2Shk(n)
n(n+ 1)(n+ 2)

=
A−1∑

n=1

πhkn(n+ 1)− 2Fhk(n)
n(n+ 1)(n+ 2)

(by (34))

= πhk

(A−1∑

n=1

1
n+ 2

)
−
A−1∑

n=1

2Fhk(n)
n(n+ 1)(n+ 2)

= πhk

(
−3

2
+
A+1∑

n=1

1
n

)
− Lhk +

∑

n≥A

2Fhk(n)
n(n+ 1)(n+ 2)

= πhk

(
−3

2
+
A+1∑

n=1

1
n

)
+ πhk

∑

p|hk

log p
p− 1

− πhk
A+ 1

+
∑

n≥A

2Ghk(n)
n(n+ 1)(n+ 2)

(by (35))

= πhk

(∑

p|hk

log p
p− 1

− 3
2

+
A∑

n=1

1
n

)
+Rhk(A),

and the first result follows. The last assertion is easily proved by using the
hk-periodicity of Ghk.

4.4. Bounds on |S(n, ψ)|
4.4.1. On some previous mistakes in the literature. We point out a loop-

hole in the proof of [Hua1, Lemma 4] which asserts that |S(n, ψ)| ≤ 1
2n
√
d

for certain (not necessarily primitive) Dirichlet quadratic characters modulo
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d > 1. Indeed, lines 9 and 10 page 733 of the proof of [Hua1, Lemma 4] are

A∑

a=1

a∑

n=1

(
d

n

)
≤ 1

2

∑

r|m

∣∣∣∣
A∑

a=1

[a/r]∑

n=1

(
f

n

)∣∣∣∣

≤ 1
2

∑

r|m
r

∣∣∣∣
[A/r]∑

b=1

b∑

n=1

(
f

n

)∣∣∣∣.

First, we point out that the factor 1
2 should be omitted. Second, the only

obvious way to warrant the second inequality is to say that for any r we
have ∣∣∣∣

A∑

a=1

[a/r]∑

n=1

(
f

n

)∣∣∣∣ ≤ r
∣∣∣∣

[A/r]∑

b=1

b∑

n=1

(
f

n

)∣∣∣∣,(36)

which is false. Indeed, choose f such that
(f

2

)
=
(f

3

)
= −1 (e.g., f = 29),

assume that [A/r] = 3 and write A = 3r +RA with 0 ≤ RA < r. Then

A∑

a=1

[a/r]∑

n=1

(
f

n

)
=

[A/r]∑

n=1

(A+ 1−nr)
(
f

n

)
=

3∑

n=1

(A+ 1−nr)
(
f

n

)
= r−RA− 1

and
[A/r]∑

b=1

b∑

n=1

(
f

n

)
=

3∑

b=1

b∑

n=1

(
f

n

)
= 0

and if RA 6= r− 1 then (36) is false. For example, (36) is false for (f,A, r) =
(29, 9, 3).

It seems that Hua himself realised that there was a problem with his
proof, for in [Hua2, Th. 12.13.2] he gives a correct proof of a similar but
slightly worse result according to which |S(n, ψ)| ≤ n

√
d for the same kind

of characters. Unfortunaly, Hua’s wrong bound |S(n, ψ)| ≤ 1
2n
√
d is, for

example, used in [SSW, Section 3] (see formulae (3.1)–(3.3) of [SSW]). If
one uses the correct bound |S(n, ψ)| ≤ n

√
d then one gets an extra 1

2 log 2
factor in [SSW, bound (3.7)] and an extra 1

3 log 2 factor in [SSW, bound
(3.11)]. The problem is that the bound [SSW, bound (3.11)] is quoted in
[Le, Lemma 2] and used to prove the main result of [Le]. However, as the
proof of (8) is correct, the main results of [SSW] and [Le] are correct, even
though their proofs stem from a wrong proof of [SSW, bound (3.11)]. Lemma
11 below corrects the statement and proof of [Hua1, Lemma 4] and improves
upon [Hua2, Th. 12.13.2].

4.4.2. Bounds on |S(n, ψ)| for primitive even characters. Let us stick
to the notation we set in Subsection 4.1. In particular, t denotes the number
of prime factors of k.
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Lemma 10. Let χ be a primitive even Dirichlet character modulo f > 1.
Then

2|S(n, χ)| ≤ n
√
f for n ≥ 1.(37)

Moreover , if k divides f , then

2|S(n, χ)| ≤ πk(n+ 1)
√
f for

{
n ≥ 1 if t = 1,
1 ≤ n < f/k if t > 1.(38)

Proof. Recall that since χ is even and non-trivial, n 7→ S(n, χ) is
f -periodic and S(f, χ) = 0. Hence, we may assume that 1 ≤ n < f . Accord-
ing to the proofs of [Hua1, Lemma 3] and [Hua2, Theorems 7.9.2 and 12.13.1]
(see also the proofs of [Nar, Lemma 8.4] or [MP, Lemme 3.1]), we have

2
√
f |S(n, χ)| =

√
f
∣∣∣
n∑

a=0

a∑

b=−a
χ(b)

∣∣∣ ≤
f∑

x=1

|χ(x)|
n∑

a=0

a∑

b=−a
e2πibx/f .

First, since χ(f) = 0 and |χ(x)| ≤ 1 for 1 ≤ x ≤ f − 1 and since for
0 ≤ |b| < f we have

f−1∑

x=1

e2πibx/f =
{
−1 if b 6= 0,
f − 1 if b = 0,

we obtain 2
√
f |S(n, χ)| ≤ f(n+1)−(n+1)2. Now, f(n+1)−(n+1)2 < nf

if and only if n ≥ [
√
f ], whereas for 0 ≤ n ≤ [

√
f ]−1 we also have the trivial

bound 2
√
f |S(n, χ)| ≤ n(n+ 1)

√
f ≤ n[

√
f ]
√
f ≤ nf .

Second, if k > 1 divides f then χ(x) = 0 if gcd(x, k) > 1. Hence, using∑
d|m µ(d) = 1 or 0 according as m = 1 or m > 1, we obtain

2
√
f |S(n, χ)| ≤

f∑

x=1
gcd(x,h)=1

n∑

a=0

a∑

b=−a
e2πibx/f

=
∑

d|h
µ(d)

f∑

x=1
d|x

n∑

a=0

a∑

b=−a
e2πibx/f

≤
∑

d|k
µ(d)

f/d∑

x=1

n∑

a=0

a∑

b=−a
e2πibx/(f/d)

=
∑

d|k
µ(d)

n∑

a=0

a∑

b=−a
b≡0 mod f/d

f

d

= πk(n+ 1)f + 2f
∑

d|k

µ(d)
d

n∑

a=1

[
ad

f

]
,
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which is equal to πk(n + 1)f for 1 ≤ n < f/k (for we have 0 ≤ ad/f ≤
nk/f < 1) and is ≤ πk(n+ 1)f for 1 ≤ n < f if t = 1 (for in that case k = p
is prime, d = 1 or d = p, and if d = 1 then 0 ≤ ad/f ≤ nd/f = n/f < 1,
whereas if d = p we have µ(d) = −1 ≤ 0).

Notice that if k = 6, f = 12 and n = 2 then

2f
∑

d|k

µ(d)
d

n∑

a=1

[
ad

f

]
= 4 > 0.

Hence, our proof does not make it possible to get rid of the restriction
1 ≤ n < f/k for t ≥ 2.

4.4.3. Bounds on |S(n, ψ)| for non-primitive even characters. Let us
stick to the notation we set in Subsection 4.1. In particular, s denotes the
number of prime factors of h and t denotes the number of prime factors of k.

Lemma 11. Let χ be a primitive Dirichlet character of conductor f and
let ψ be the non-trivial even Dirichlet character modulo F = hf induced
by χ. Then

|S(n, ψ)| ≤ n(2s−1
√
f + 2s − π̃h),(39)

which yields

|S(n, ψ)| = O(n
√
f).(40)

Moreover , if t = 1 and n ≥ 1, or if t ≥ 2 and 1 ≤ n < f/k, then we have
the better bound

|S(n, ψ)| ≤ n(2s−1πk
√
f + 2s − π̃h) + 1

2πkπ̃hh
√
f,(41)

which yields

|S(n, ψ)| ≤ n2s−1πk
√
f +O(n) +O(

√
f).(42)

Proof. Since ψ(b) = χ(b) if gcd(b, h) = 1, and ψ(b) = 0 if gcd(b, h) > 1,
and since

∑
d|m µ(d) = 1 or 0 according as m = 1 or m > 1, we have

ψ(b) = χ(b)
∑

d|gcd(b,h) µ(d) and

S(n, ψ) =
n∑

a=1

a∑

b=1

χ(b)
∑

d|gcd(b,h)

µ(d)

=
∑

d|h
µ(d)

n∑

a=1

[a/d]∑

b=1

χ(db) =
∑

d|h
µ(d)χ(d)

n∑

a=1

[a/d]∑

b=1

χ(b).
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Now, writing n = d[n/d] +R with 0 ≤ R < d and a = dx+ y, we obtain

n∑

a=0

[a/d]∑

b=0

χ(b) =
[n/d]∑

x=0

d−1∑

y=0

x∑

b=0

χ(b)−
d−1∑

y=R+1

[n/d]∑

b=0

χ(b)

= d
( [n/d]∑

x=0

x∑

b=0

χ(b)
)
− (d−R− 1)

[n/d]∑

b=0

χ(b)

= dS([n/d], χ)− (d−R− 1)
[n/d]∑

b=1

χ(b)

and

|S(n, ψ)| ≤
∑

d|h
|µ(d)|(d|S([n/d], χ)|+ (d− 1)[n/d])

≤ n

2

∑

d|h
|µ(d)|

(√
f + 2

d− 1
d

)
(by (37))

= n(2s−1
√
f + 2s − π̃h).

Moreover if we use (38) instead of (37), then for 1 ≤ n < f/k we have
[n/d] ≤ n/d ≤ n < f/k and

|S([n/d], χ)| ≤ πk(n+ d)
√
f

2d
,

and we obtain

|S(n, ψ)| ≤
∑

d|h
|µ(d)|

(
πk(n+ d)

√
f

2
+ n

d− 1
d

)

= n(2s−1πk
√
f + 2s − π̃h) +

1
2
πkπ̃hh

√
f.

4.5. Bounds on the sums Σ2(A,B,ψ) and Σ3(B,ψ)

Proposition 12. Let χ be a primitive Dirichlet character of conductor
f divisible by the given k and let ψ be the non-trivial even Dirichlet character
modulo F = hf induced by χ. Then for 1 < A ≤ B ≤ f/k we have

Σ2(A,B,ψ) :=
B−1∑

n=A

2|S(n, ψ)|
n(n+ 1)(n+ 2)

≤ 2sπk
√
f

A+ 1
+O

(
1
A

)
+O

(√
f

A2

)

and

Σ3(B,ψ) :=
∑

n≥B

2|S(n, ψ)|
n(n+ 1)(n+ 2)

= O

(√
f

B

)
.

Proof. The bound on Σ3(B,ψ) is easy and follows from (40) and from∑
n≥B 1/((n+1)(n+2)) = 1/(B+1). In the same way, to obtain the bound
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for Σ2(A,B,ψ) we use (42),
∑B−1

n=A 1/((n+1)(n+2)) = 1/(A+1)−1/(B+1)
≤ 1/(A+ 1) and

∑B−1
n=A 2/(n(n+ 1)(n+ 2)) = 1/(A(A+ 1))− 1/(B(B+ 1))

≤ 1/(A(A+ 1)).

4.6. Proof of Theorem 4. According to Proposition 9 and to Proposi-
tion 12 with B = [f/k], we have

|L(1, ψ)| ≤ Σ1(A, hk) +Σ2(A,B,ψ) +Σ3(B,ψ)

≤ πhk
(∑

p|hk

log p
p− 1

+ γ − 3
2

+ logA
)

+
2sπk
√
f

A+ 1
+O

(
1
A

+
√
f

A2 +
1√
f

)
,

which for the almost optimal choice A = [2s
√
f/πh] yields

∣∣∣∣
s∏

i=1

(
1− χ(pi)

pi

)∣∣∣∣|L(1, χ)| = |L(1, ψ)| ≤ 1
2
πhk(log f + κhk) +O

(
1√
f

)

with

κhk = s log 4 + 2
∑

p|hk

log p
p− 1

+ 2γ − 1− 2 log πh = 2κ

(use (27)).

4.7. Proof of Theorem 5. To prove item 1 of Theorem 5, we choose h = 2
and k = 1. Hence, πh = 1/2, π̃h = 3/2, πhk = 1/2 and

∑
p|hk

log p
p−1 = log 2.

According to (39) of Lemma 11 we have 2|S(n, ψ)| ≤ n(2
√
f + 1) for any

n ≥ 1. Now, we may choose B =∞ to obtain Σ3(B,ψ) = 0 and

Σ2(A,∞, ψ) =
∑

n≥A

2|S(n, ψ)|
n(n+ 1)(n+ 2)

≤
∑

n≥A

2
√
f + 1

(n+ 1)(n+ 2)
=

2
√
f + 1

A+ 1
.

Hence, using (27), (30) and Proposition 9 we obtain
∣∣∣∣
(

1−χ(2)
2

)
L(1, χ)

∣∣∣∣ = |L(1, ψ)| ≤ 1
2

(
log 2+γ− 3

2
+logA+

1
2A

)
+

2
√
f + 1

A+ 1
,

which for the almost optimal choice A = [4
√
f ] yields logA + 1/(2A) ≤

log(4
√
f) + 1/(8

√
f), (2

√
f + 1)/(A+ 1) ≤ (2

√
f + 1)/(4

√
f),

∣∣∣∣
(

1− χ(2)
2

)
L(1, χ)

∣∣∣∣ ≤
1
4

(
log f + 6 log 2 + 2γ − 1 +

5
4
√
f

)

and the desired results (notice that f ≥ 5).
To prove item 2 of Theorem 5, we choose h = 3 and k = 2. Hence,

s= t= 1, πh = 2/3, π̃h = 4/3, πk = 1/2, πhk = 1/3 and
∑

p|hk
log p
p−1 = log 2 +

1
2 log 3. According to (41) of Lemma 11 we have 2|S(n, ψ)| ≤ (n+2)

√
f+4n/3
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for any n ≥ 1. Now, we may choose B =∞ to obtain Σ3(B,ψ) = 0 and

Σ2(A,∞, ψ) ≤
∑

n≥A

(n+ 2)
√
f + 4n/3

n(n+ 1)(n+ 2)
=
√
f

A
+

4/3
A+ 1

.

Hence, using (27), (30) and Proposition 9 we obtain
∣∣∣∣
(

1− χ(3)
3

)
L(1, χ)

∣∣∣∣

= |L(1, ψ)| ≤ 1
3

(
log 2 +

1
2

log 3 + γ − 3
2

+ logA+
1

2A

)
+
√
f

A
+

4/3
A+ 1

,

which for the almost optimal choice A = [3
√
f ] yields

∣∣∣∣
(

1− χ(3)
3

)
L(1, χ)

∣∣∣∣ ≤
1
6

(
log f + log(108) + 2γ − 1 +

3√
f

+
2

3
√
f − 1

)

and the desired result for f ≥ 12. Finally, if f < 12 then χ must be the only
primitive even quadratic character of conductor 8 for which we also have

∣∣∣∣
(

1− χ(3)
3

)
L(1, χ)

∣∣∣∣ =
(

1 +
1
3

)
log(1 +

√
2)

2
≤ (log 8 + 6)/6.

5. Applications. Using such explicit bounds on |L(1, χ)|, we can de-
duce explicit upper bounds on class numbers of real abelian number fields
or on the lengths of the periods of the continued fractional expansions of
real quadratic irrational numbers (see [Le], [MP]) and [SSW]), and lower
bounds on relative class numbers of imaginary abelian number fields (see
[LYK] where the use of Theorem 5 is of paramount importance to make it
possible to solve the exponent two class groups problem for some CM-fields
of 2-power degrees).

Let us only give here the following illustration of the use of our results
to get (in a special case) a 3-fold improvement on the lower bound given in
[Lou4, Theorem 5]:

Proposition 13. Let K be an imaginary cyclic quartic field of conduc-
tor fK. Let k denote the real quadratic subfield of K. Assume that the
relative class number h−K of K is odd and that fK 6= 16. Then fK = p ≡ 5
(mod 8) is prime, k = Q(

√
p), 2 is inert in k and

h−K ≥ εp
2p

eπ2(log p+ 5) log p
,

where εp = 1−(4πe1/2/p3/4). In particular , if h−K = 1 then p = fK < 1300.

Proof. Adapt the proof of [Lou4, Theorem 5], but instead of using
[Lou4, (9)] which gives Ress=1(ζk) = L(1, χk) ≤ (log p + 0.05)/2, use (9)
of our present Theorem 5 to obtain Ress=1(ζk) = L(1, χk) ≤ (log p+5)/6.
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