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The universality theorem for Hecke L-functions
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Hidehiko Mishou (Nagoya)

1. Introduction. Let s ∈ C be a complex number and ζ(s) be the
Riemann zeta-function. In 1975 S. M. Voronin [12] proved the following
remarkable result, which is now called the universality theorem for ζ(s).

Voronin’s Theorem. Let 0 < r < 1/4 and f(s) be a continuous func-
tion on the disk |s| ≤ r such that f(s) 6= 0 on |s| ≤ r and f(s) is holomorphic
in |s| < r. Then for every ε > 0, we have

lim inf
T→∞

m({τ ∈ [0, T ] | max|s|≤r |ζ(s+ 3/4 + iτ)− f(s)| < ε})
T

> 0

where m is the Lebesgue measure on R.

Roughly speaking, this theorem asserts that any analytic function can
be uniformly approximated by vertical translation of ζ(s) and the set of all
real numbers which give such approximation has a positive lower density.

After Voronin’s work, many mathematicians studied the universality
property of other zeta-functions. In particular, concerning number fields,
A. Reich [11] proved the property for Dedekind zeta-functions and the au-
thor [7] proved it for L-functions associated with ideal class characters. The
aim of this paper is to prove the universality theorem for Hecke L-functions,
which are defined more generally.

Let K be a finite extension of the rational number field Q and f be an
ideal of K. Hecke [2] introduced the notion of Grössencharacters χ modulo
f̃ (we state the definition in Section 2). For <s > 1 the Hecke L-function
with Grössencharacter χ is defined by the series

L(s, χ) =
∑

a

χ(a)
(N(a))s

where a runs through all integral ideals in K except 0 and N(a) is the norm
of the ideal a.
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Theorem. Let K be a finite extension of Q, n = [K : Q] and χ be a
Grössencharacter modulo f̃. Set

σK =
{

1/2 if K = Q,
1− 1/n otherwise.

Let C be a compact subset in the strip σK < <s < 1 with connected comple-
ment and f(s) be a continuous function on C such that f(s) 6= 0 on C and
f(s) is holomorphic in the interior of C. Then for every ε > 0,

lim inf
T→∞

1
T
m({τ ∈ [0, T ] | max

s∈C
|L(s+ iτ, χ)− f(s)| < ε}) > 0.

It is known that there are two methods for the proof of universality:
one is Voronin’s original proof, which is presented in [3] in detail, and the
other is a probabilistic proof due to Bagchi, detailed in [4]. They are quite
different, but conditions and lemmas which are necessary are almost the
same. In this paper we employ Bagchi’s method. The proof is divided into
two parts. One is the limit theorem (Proposition 1), and the other is the
denseness lemma (Proposition 2). We can easily prove the limit theorem by
applying the general limit theorem due to Laurinčikas [5].

On the other hand, to prove the denseness lemma, we need to consider
the character sum

αp =
∑

p

χ(p)

where p runs through prime ideals with degree 1 which divide the prime
number p. It is essential that there exist infinitely many primes p such that
|αp| ≥ C for some positive constant C > 0 (actually the set of such primes
has a positive lower density). We can prove this by using the prime number
theorem in algebraic number fields due to T. Mitsui [9]. In the case that χ
are ideal class characters, by applying the class field theory, we can prove it
more easily. See [7] for details.

The reason why there is the restriction <s > σK in our theorem is that
we can prove the mean square estimate

T�
0

|L(σ + it, χ)|2 dt = O(T )

only for σ > σK . This estimate is necessary to prove the limit theorem.
The organization of this paper is as follows. In Section 2 we give the

definition of Hecke characters and basic facts on Hecke L-functions. We
state Proposition 1 (limit theorem) in Section 3. In Section 4 we prove our
theorem under the assumption that Proposition 2 holds. The deduction of
our theorem from Proposition 2 is essentially the same as Bagchi’s argument.
In Section 5, we show that Proposition 2 follows from Proposition 5, and we
prove Proposition 5 in Section 6.



Universality theorem for Hecke L-functions 47

The author would like to express his sincere gratitude to Professor Kohji
Matsumoto and Professor Yoshio Tanigawa for their encouragement. He
would like to express his sincere thanks to Professor Ryutaro Okazaki who
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2. Background for L-functions. In this section we state the definition
of Grössencharacters and basic results on Hecke L-functions. See Mitsui
[8] or [9] for details. Before we define Grössencharacters, we describe some
notations and basic facts about number fields for the convenience of the
reader.

Let K be a finite extension of Q of degree n. There are exactly n iso-
morphisms of K into C:

K 3 α 7→ α(i) ∈ K(i), i = 1, . . . , n.(1)

Among these there are r1 real embeddings, denoted by K(1), . . . ,K(r1), and
2r2 complex embeddings which are pairwise complex conjugate, which we
denote by

K(r1+1), . . . ,K(r1+r2),K(r1+r2+1) = K(r1+1), . . . ,K(n) = K(r1+r2).

For an integral ideal f in K, define the unit group modulo f̃ by

U (̃f) = {ε : units of K | ε ≡ 1 (mod f̃)}
where ε ≡ 1 (mod f̃) means both ε ≡ 1 (mod f) and that ε is totally positive.
Dirichlet’s unit theorem asserts that there exist r = r1+r2−1 units η1, . . . , ηr
and a root of unity % in K such that any ε ∈ U (̃f) can be written uniquely
as the product

ε = %aηn1
1 . . . ηnrr (a, ni ∈ Z).

These η1, . . . , ηr are called fundamental units of U (̃f). They are not uniquely
determined, but the absolute value of the determinant

det(ei log |η(i)
j |)

does not depend on the choice of ηj , where

ei =
{

1 (1 ≤ i ≤ r1),

2 (r1 + 1 ≤ i ≤ r1 + r2).

We call the absolute value of this determinant the regulator of U (̃f) and
denote it by R(̃f).

For an integral ideal f in K, we define the sets

If = {a : ideals of K | (a, f) = 1},
P

f̃
= {(α) : principal ideals | α ∈ K, α ≡ 1 (mod f̃)}.
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These are Abelian groups under ideal multiplication. In particular the factor
group If/Pf̃

is finite. We call it the ideal class group modulo f̃. We denote

the order [If, Pf̃
] by h(̃f).

Now we define the Hecke character. We take numbers vq, ap subject to
the following restrictions:





ap = 0, 1, 1 ≤ p ≤ r1,

ap ∈ Z, r1 + 1 ≤ p ≤ r1 + r2,

vq ∈ R, 1 ≤ q ≤ r1 + r2 such that
∑

q vq = 0.

Let K∗ = K − {0} and S1 = {s ∈ C | |s| = 1}. Define χ∞ : K∗ → S1 by

χ∞(α) =
r1+r2∏

q=1

|α(q)|ivq
r1+r2∏

p=1

(
α(p)

|α(p)|

)ap
.(2)

Since
∑
vq = 0, χ∞ is trivial on Q∗ = Q− {0}. We suppose that the kernel

of χ∞ contains the unit group modulo f̃, i.e.

χ∞(ε) = 1 for ε ∈ U (̃f).(3)

Then we can identify χ∞ with a character on P
f̃
.

If the homomorphism χ : If → S1 is identified with χ∞ on Pf, that is,

χ(a) = χ∞(α), a = (α) ∈ Pf, α ≡ 1 (mod f̃),(4)

then we call χ a Grössencharacter modulo f̃.
In order to satisfy the condition (3), because of the unit theorem, it is

enough to satisfy

χ∞(ηj) = 1(5)

for j = 1, . . . , r, and χ∞(%) = 1. This is equivalent to
r1+r2∑

q=1

vq log |η(q)
j |+

r1+r2∑

p=r1+1

ap arg η(p)
j = 2πmj (j = 1, . . . , r)

for some integers m1, . . . ,mr. Adding the condition
∑
vq = 0 we have




1 . . . 1

log |η(1)
1 | . . . log |η(r1+r2)

1 |
. . . . . . . . . . . . . . . . . . . . . . . . . .

log |η(1)
r | . . . log |η(r1+r2)

r |







v1

v2
...

vr




=




0

2πm1 −
∑r1+r2

p=r1+1 apΘ
(p)
1

...

2πmr −
∑r1+r2

p=r1+1 apΘ
(p)
r




where Θ(p)
j = arg η(p)

j . Now we calculate the absolute value of the determi-
nant of the matrix on the left-hand side. Because the norm N(ηj) = ±1 for
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units ηj , we have
∣∣∣∣∣∣∣∣∣∣

det




1 . . . 1

log |η(1)
1 | . . . log |η(r1+r2)

1 |
. . . . . . . . . . . . . . . . . . . . . . . . . .

log |η(1)
r | . . . log |η(r1+r2)

r |




∣∣∣∣∣∣∣∣∣∣

=
1

2r2

∣∣∣∣∣∣∣∣∣∣

det




e1 . . . er
∑

j ej

e1 log |η(1)
1 | . . . er log |η(r)

1 |
∑

1≤j≤r1+r2 ej log |η(j)
1 |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e1 log |η(1)
r | . . . er log |η(r)

r |
∑

1≤j≤r1+r2 ej log |η(j)
r |




∣∣∣∣∣∣∣∣∣∣

=
1

2r2

∣∣∣∣∣∣∣∣∣∣

det




e1 . . . er n

e1 log |η(1)
1 | . . . er log |η(r)

1 | 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e1 log |η(1)
r | . . . er log |η(r)

r | 0




∣∣∣∣∣∣∣∣∣∣

=
n

2r2
R(f).

Since the regulator R(f) 6= 0, the matrix on the left-hand side is regular.
Hence if we denote the inverse of this matrix by




e1
n E

(1)
1 . . . E

(r)
1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
er1+r2
n E

(1)
r1+r2 . . . E

(r)
r1+r2


 ,(6)

then we have the expression

vq =
r∑

j=1

E(j)
q

(
2πmj −

r1+r2∑

p=r1+1

apΘ
(p)
j

)
, q = 1, . . . , r1 + r2.(7)

On the other hand, we assume that

1
2π

r1+r2∑

p=r1+1

ap arg %(p) ∈ Z(8)

for ap (r1 + 1 ≤ p ≤ r1 + r2). This is possible because χ(%) = 1. For
1 ≤ p ≤ r1, we can take the value ap = 0 or 1 arbitrarily. For ap and
vq which satisfy (7) and (8) there exists a Grössencharacter modulo f̃. In
particular, if ap = vq = 0, χ is an ideal class group character. If there exists
an ideal f1 ⊂ f and a Grössencharacter χ1 modulo f̃1 such that χ = χ1 on
If, then we say χ is induced by χ1. We call χ primitive, and f the conductor
of χ, if there does not exist such an f1.

Next we state basic facts on Hecke L-functions. In view of [2], the L-
function can be analytically continued to the whole s-plane, and is holo-
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morphic except at s = 1. Moreover if χ is primitive, we have the functional
equation. Let

γ(χ) =
r1+r2∏

p=r1+1

2ivp/2, A(f) =
(
DN(f)
πn

)1/2

2−r2 ,

Γ (s, χ) =
r1∏

q=1

Γ

(
s+ aq − ivq

2

) r1+r2∏

p=r1+1

Γ

(
s+
|ap|
2
− i vq

2

)
,

where D = |d|, d is the discriminant of K, and Γ (s) is the gamma function.
If χ is primitive, the function

ξ(s, χ) = γ(χ)A(f)sΓ (s, χ)L(s, χ)

satisfies the functional equation

ξ(1− s, χ) = W (χ)ξ(s, χ)

where W (χ) is a constant depending on χ only, with |W (χ)| = 1. This
fact is due to Hecke. Applying H. S. A. Potter’s classical result [10] to this
functional equation, we have the estimate

T�
−T
|L(σ + it, χ)|2 dt = O(T ) (σK < σ < 1).(9)

We note that this estimate also holds for non-primitive χ. Actually, if χ1 is
a primitive character which induces χ, then we have

L(s, χ) =
∏

p|f

(
1− χ1(p)

N(p)

)
L(s, χ1).

The finite product on the right-hand side can be estimated by a constant in
this region. Hence we have the estimate (9) for any χ.

For <s > 1 we have the Euler product expression

L(s, χ) =
∏

p

(
1− χ(p)

N(p)

)−1

.

Infinite product expressions over prime numbers play an important role in
the proof of universality. We rewrite the above formula as such an expression.
Let

p = px1
1 . . . p

xzp
zp , N(pi) = pyi ,(10)

be the decomposition of the prime p in K. Then we have

L(s, χ) =
∏

p

( zp∏

i=1

(
1− χ(pi)

pyis

)−1)
=
∏

p

fp

(
1
ps

)
,(11)
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say. We note that the functions fp(z) are rational functions of z which have

no poles in |z| < 1. If we expand fp(z) = 1 +
∑∞

m=1 a
(p)
m zm, we have

|a(p)
m | �ε p

mε for any prime p.(12)

3. A limit theorem for L(s, χ). Let D = {s ∈ C | σK < <s < 1}.
We denote by H(D) the space of analytic functions on D equipped with the
topology of uniform convergence on compacta. Let B(S) stand for the family
of Borel subsets of the space S. For T > 0, define on (H(D),B(H(D))) the
probability measure

PT (A) =
1
T
m({τ ∈ [0, T ] | L(s+ iτ, χ) ∈ A}), A ∈ B(H(D)).

For our purpose, we need a limit theorem which asserts that PT converges
weakly to an explicit probability measure as T tends to infinity.

Let γ = {s ∈ C | |s| = 1} and

Ω =
∏

p

γp

where γp = γ for all primes p. With the product topology and pointwise
multiplication, Ω is a compact Abelian group. So Ω has a unique probability
Haar measure on (Ω,B(Ω)). We denote it by mH . Let ω(p) be the projection
of ω ∈ Ω to the coordinate space γp. We set

L(s, χ, ω) =
∏

p

zp∏

i=1

(
1− ω(p)yiχ(pi)

pyis

)−1

.

We can prove that for almost all ω ∈ Ω this product converges in H(D) the
same way as in the proof of [4, Lemma 5.1.6]. Hence this product can be
regarded as an H(D)-valued random element on Ω. We denote by PL the
distribution of L(s, ω), i.e.

PL(A) = mH({ω ∈ Ω | L(s, χ, ω) ∈ A}), A ∈ B(H(D)).

Now we apply Laurinčikas’s general limit theorem, which is proved in [6]
(see also [5]). Since the assumptions of Laurinčikas’s theorem are satisfied
by (9), (11) and (12), the following limit theorem for L(s, χ) holds:

Proposition 1. As T tends to infinity , PT converges weakly to PL, i.e.

PT ⇒ PL (T →∞).

By the theory of probability measures, this proposition implies that for
any open subset G in H(D),

lim inf
T→∞

PT (G) ≥ PL(G).(13)
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4. Outline of the proof of the Theorem. In view of the statement
of the limit theorem, we need to consider the product

L(s, χ, ω) =
∏

p

zp∏

i=1

(
1− χ(pi)ωp

pyis

)−1

(ω ∈ Ω).

For ap ∈ γ we set

fp(s, ap) = −
zp∑

i=1

log
(

1− ayip χ(pi)
pyis

)
.(14)

Then we have
logL(s, χ, ω) =

∑

p

fp(s, ωp).(15)

Proposition 2. The set of all series∑

p

fp(s, ap) (ap ∈ γ)

which are convergent in H(D) is dense in H(D).

Let us suppose that this proposition holds. Let SL be the support of the
probability measure PL, that is, the closure of the set

{g(s) ∈ H(D) | PL(G) > 0 (G : open neighbourhood of g)}.
Then we have the following lemma.

Lemma 1.

SL = {g(s) ∈ H(D) | g(s) 6= 0 (s ∈ D)} ∪ {0}.
The proof can be obtained from (15), Proposition 1 and Hurwitz’s lemma

([4, Theorem 3.4.5]). For the details, refer to the proof of [4, Lemma 6.5.5].

Now we prove the Theorem. Let f(s) satisfy the assumption of the The-
orem. First we suppose that f(s) is analytically continued to D and has no
zero in D. Then by Lemma 1, f(s) ∈ SL. Hence for the set

G = {g(s) ∈ H(D) | max
s∈C
|g(s)− f(s)| < ε}

we have PL(G) > 0. On the other hand, by (13) we have

lim inf
T→∞

PT (G) ≥ PL(G),

therefore

lim inf
T→∞

1
T
m({τ ∈ [0, T ] | max

s∈C
|L(s+ iτ, χ)− f(s)| < ε}) > 0.(16)

Next we consider the general case. We quote the following classical result.

Proposition 3 (Mergelyan, 1951). Let C be a compact subset of C with
connected complement , and let f(s) be a continuous function on C which is
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analytic in the interior of C. Then for any ε > 0 there exists a polynomial
p(s) such that

max
s∈C
|f(s)− p(s)| < ε.

The proof is given in [13]. Since f(s) 6= 0 on C, log f(s) can be de-
fined and is continuous on C and analytic in the interior of C. Hence by
Proposition 3 there exists a polynomial p(s) such that

max
s∈C
|log f(s)− p(s)| < ε.

Then we have

max
s∈C
|f(s)− ep(s)| ≤ max

s∈C
|f(s)|max

s∈C
|1− e|log f(s)−p(s)|| < cε.(17)

We note that ep(s) has no zero in D. Hence by the above argument

lim inf
T→∞

1
T
m({τ ∈ [0, T ] | max

s∈C
|L(s+ iτ, χ)− ep(s)| < ε}) > 0.

By this formula and (17), we obtain (16). Thus we have deduced the Theo-
rem from Proposition 2.

5. The proof of Proposition 2. The series expansion of fp(s, ap) in
(14) can be expressed as

fp(s, ap) = −
zp∑

i=1

log
(

1− χ(pi)a
yi
p

pyis

)
(18)

=
zp∑

i=1

∞∑

k=1

akyip χk(pi)
kpkyis

= ap
αp
ps

+ gp(s, ap)

where we have set

(19) αp =
zp∑

i=1
yi=1

χ(pi), gp(s, ap) =
∑

yi=1

∞∑

k=2

akpχ
k(pi)

pks
+
∑

yi>1

∞∑

k=1

akyip χk(pi)
pkyis

.

First we show that Proposition 2 follows from the next proposition.

Proposition 4. Fix a p0 > 0. Then the set of all series
∑

p>p0

ap
αp
ps

(ap ∈ γ)

which are convergent in H(D) is dense in H(D).

Let g ∈ H(D), C be a compact subset of D, and ε > 0. By the definition
of gp(s, ap), for arbitrary {ap} ⊂ γ,

∑

p

max
s∈C
|gp(s, ap)| �

∑

p

1
p2σ <∞(20)
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since σ > 1/2 for s ∈ D. Hence there exists a p0 > 0 such that
∑

p>p0

max
s∈K
|gp(s, ap)| < ε/2.(21)

The function g(s)−∑p≤p0
fp(s, 1) belongs to H(D). Thus by Proposition 4

we can take {ap}p>p0 such that

max
s∈K

∣∣∣∣g(s)−
∑

p≤p0

fp(s, 1)−
∑

p>p0

ap
αp
ps

∣∣∣∣ < ε/2.(22)

We set

ap =
{

1 (p ≤ p0),

ap (p > p0).

Then in view of (21) and (22) we have

max
s∈K

∣∣∣g(s)−
∑

p

fp(s, ap)
∣∣∣

= max
s∈K

∣∣∣∣g(s)−
∑

p≤p0

fp(s, 1)−
∑

p>p0

ap
αp
ps
−
∑

p>p0

gp(s, ap)
∣∣∣∣

≤ max
s∈K

∣∣∣∣g(s)−
∑

p≤p0

fp(s, 1)−
∑

p>p0

ap
αp
ps

∣∣∣∣+
∑

p>p0

max
s∈K
|gp(s, ap)|

< ε/2 + ε/2 = ε.

Therefore Proposition 2 follows from Proposition 4. In order to prove Propo-
sition 4, we apply the following general denseness lemma due to Bagchi ([1,
Theorem 6.5.10]).

Lemma 2. Let D be a connected domain and {fm} be a sequence in
H(D) which satisfies:

(a) If µ is a complex Borel measure on (C,B(C)) with a compact support
contained in D such that

∑∞
m=1 | � C fm dµ| < ∞, then � C sr dµ(s) = 0 for

any non-negative integer r.
(b) The series

∑
m fm converges in H(D).

(c) For any compact subset K ⊂ D,
∑∞

m=1 sups∈K |fm(s)|2 <∞.
Then the set of all convergent series

∞∑

m=1

amfm (am ∈ γ)

is dense in H(D).

We apply this lemma to {αp/ps}. We note that if the conditions hold
for p0 = 1 then they also hold for any p0 > 1. Hence it is enough to prove
Proposition 4 for p0 = 1.
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As we state in Section 3, L(s, ω) converges for almost all ω ∈ Ω. This
implies that there exists an element {ap} ∈ Ω such that

logL(s, ap) =
∑

p

fp(s, ap)

converges. Because of this and (20), the series
∑

p apαp/p
s converges in

H(D). It is sufficient to prove Proposition 4 for {apαp/ps} instead of {αp/ps}.
Hence the condition (b) holds. We note that σ > 1/2 for s ∈ D. Thus

∑

p

(
max
s∈K

∣∣∣∣
αp
ps

∣∣∣∣
)2

�
∑

p

1
p2σ <∞,

so the condition (c) holds.
It remains to verify the condition (a). We shall prove that if µ is a

complex Borel measure on (C,B(C)) with compact support in D such that
∑

p

∣∣∣∣
�
C

αp
ps
dµ(s)

∣∣∣∣ <∞,(23)

then �
C
sr dµ(s) = 0 for r ≥ 0.(24)

Putting

%(z) =
�
C
e−sz dµ(s) for z ∈ C,

we can rewrite (23) as
∑

p

|αp| |%(log p)| <∞.(25)

We note
%(r)(0) =

�
C
sr dµ(s).

Hence to prove (a), it is enough to show that

%(z) ≡ 0(26)

when (25) holds.
To verify (26), we apply two lemmas for entire functions of exponential

type. Recall that an entire function f(s) is of exponential type if

lim sup
T→∞

log |f(reiθ)|
r

<∞

uniformly in θ, |θ| ≤ π.
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Lemma 3. Let µ be a complex measure on (C,B(C)) with compact sup-
port contained in the half-plane σ > σ0. Let

f(s) =
�
C
esz dµ(z).

If f 6≡ 0 then

lim sup
r→∞

log |f(r)|
r

> σ0.

Lemma 4. Let f(s) be an entire function of exponential type and {λm}
a sequence of complex numbers. Let α, β and δ be positive numbers such that

(a) lim sup
y→∞

log |f(±iy)|
y

≤ α,

(b) |λm − λn| ≥ δ|m− n| (m,n ∈ N),

(c) lim
m→∞

λm
m

= β,

(d) αβ < π.

Then
lim sup
m→∞

log |f(λm)|
|λm|

= lim sup
r→∞

log |f(r)|
r

.

In the case of the Riemann zeta-function, we have∑

p

|%(log p)| <∞

instead of (25). We can prove (26) for the Riemann zeta-function from this
inequality by applying the above two lemmas and the classical estimate

∑

p<x

1
p

= log log x+O(exp(−c
√

log x)).(27)

But in the present case we need to consider the character sum αp defined
by (19). We can deduce the following proposition from the theory of Hecke
L-functions.

Proposition 5. Assume that K is a finite extension of Q with degree n
and χ is a Grössencharacter. For any ε > 0 there exists a certain condition
(∗) on primes such that

1. For a prime number p which satisfies (∗) we have

|αp| ≥ n− ε
where n = [K : Q].

2. The number of primes which satisfy (∗) and are less than x equals

c0

x�
2

dt

log t
+O(x exp(−c1

√
log x)),

where c0 and c1 are positive constants depending on ε and χ.
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Remark 1. In the case that K is totally real Galois, the condition (∗)
is the condition (∗6) in Section 6. In the case that K is totally imaginary
Galois, it is the condition (∗∗6). And in general case it is the condition (!5).

By Abel summation, Proposition 5 gives the formula
∑

p

∗ 1
p

= c0 log log x+ c2 +O

(
1

log2 x

)
(28)

where
∑∗ denotes the sum running over primes satisfying the condition (∗).

Now we show (26) under the assumption that Proposition 5 holds. We take
a sufficiently large N > 0 such that the support of µ is contained in the
region {s ∈ C | 1/2 < σ < 1, |=s| < N}. Then for any y > 0,

|%(±iy)| ≤ eNy
∣∣∣

�
C
dµ(s)

∣∣∣ = eNy.

We set α = N . We fix β > 0 such that β < π/N .
By (25) and Proposition 5 we have

∞ >
∑

p

|αp| |%(log p)| >
∑

p

∗|αp| |%(log p)| >
∑

p

∗|%(log p)|.

Consider the set

A =
{
m ∈ N

∣∣∣∣ |%(r)| ≤ e−r for some r ∈
((

m− 1
4

)
β,

(
m+

1
4

)
β

]}
.

Then we find that

∞ >
∑

p

∗|%(log p)| ≥
∑

m6∈A

∑

p,m

∗|%(log p)| >
∑

m6∈A

∑

p,m

∗ 1
p

where
∑∗

p,m denotes the sum over primes p satisfying (∗) and (m− 1/4)β <
log p ≤ (m+ 1/4)β. Using (27) we have

∑

p,m

∗ 1
p

= c0 log
{(

m+
1
4

)
β

}
− c0 log

{(
m− 1

4

)
β

}
+O

(
1
m2

)

=
c0

2m
+O

(
1
m2

)
.

From this it follows that ∑

m6∈A

1
m
<∞.(29)

Let A = {am | a1 < a2 < . . .}. Then, taking into account (29), we obtain

lim
m→∞

am
m

= 1.(30)
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By the definition of the set A, there exists a sequence {λm} such that
(
am −

1
4

)
β < λm ≤

(
am +

1
4

)
β

and

|%(λm)| ≤ e−λm .(31)

In view of (30),

lim
m→∞

λm
m

= β

and we can choose a sufficiently small δ > 0 such that |λm− λn| ≥ δ|m− n|
for any m,n. Since all hypotheses in Lemma 4 are valid for {λm}, α, β and δ,
by the inequality (31),

lim sup
r→∞

log |%(r)|
r

= lim sup
m→∞

log |%(λm)|
|λm|

≤ −1.(32)

We note that the support of µ is contained in the half-plane σ > 1/2. Hence
if f 6≡ 0, by Lemma 3 we have

lim sup
r→∞

log |%(r)|
|r| > −1.

This inequality clearly contradicts (32). Therefore (26) is valid. Thus we
have deduced Proposition 2 from Proposition 5.

6. The proof of Proposition 5. First we recall the definition of Grös-
sencharacters. From (2) and (4), for χ (mod f̃ ) and a = (α), α ≡ 1 (mod f̃ ),

χ(a) = χ∞(α) =
r1+r2∏

q=1

|α(q)|ivq
r1+r2∏

p=1

(
α(p)

|α(p)|

)ap
,

where ap are integers satisfying (8) and

vq =
r∑

j=1

E(j)
q

(
2πmj −

r1+r2∑

p=r1+1

apΘ
(p)
j

)
(q = 1, . . . , r1 + r2).

Putting

(33) Wq(α) =
r1+r2∑

p=1

E(q)
p log |α(p)| (q = 1, . . . , r),

(34) Θp(α) =
1

2π

{
argα(p) −

r∑

j=1

Θ
(p)
j Wj(α)

}
(p = r1 + 1, . . . , r1 + r2),
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we have the expression

χ(a) = exp
{

2πi
r∑

q=1

mqWq(α) + 2πi
r1+r2∑

p=r1+1

apΘp(α)
}
.(35)

We call ω ∈ K a prime ideal number if the principal ideal (ω) is a prime
ideal. Concerning (35), Mitsui [8] showed a certain kind of prime number
theorem. In particular, if in Mitsui’s theorem we take %̂ = 1 (in his notation),
then we have the following proposition, which is essential to our proof.

Proposition 6. Let x > 0 and let f be an integral ideal such that N(f) ≤
(log x)A (A > 0). Let {αq}, {α′q}, {βp}, {β′p} be real sequences such that

0 < αq − α′q ≤ 1 (q = 1, . . . , r),

0 < βp − β′p ≤ 1 (p = r1 + 1, . . . , r1 + r2).

Fix fundamental units in U (̃f) and consider Wq and Θp for them. Denote by
π(x, αq, α′q, βp, β

′
p) the number of prime ideal numbers ω in K which satisfy

the conditions



ω ≡ 1 (mod f̃ ), |N(ω)| ≤ x,

α′q ≤Wq(ω) < αq (q = 1, . . . , r),

β′p ≤ Θp(ω) < βp (p = r1 + 1, . . . , r1 + r2).

Then

π(x, αq, α′q, βp, β
′
p)

=
r∏

q=1

(αq − α′q)
r1+r2∏

p=r1+1

(βp − β′p)
w(̃f)

h(̃f)

x�
2

dt

log t
+O(xe−c

√
log x)

where h(̃f) is the class number modulo f̃, w(̃f) is the number of roots of unity
in U (̃f) and the O-constant depends only on A.

First we suppose that K is Galois. The key point is that the prime ideals
pi in (10) are conjugate to each other for the action of the Galois group
Gal(K/Q) if K is Galois. In general case, by taking the Galois closure of K
instead of K, we can easily reduce the problem to the case that K is Galois.
The general case will be discussed later.

We further split the argument into two cases: K totally real and K
totally imaginary.

First we consider the case of K totally real Galois. Since r1 = n and
r2 = 0, for a = (α) with α ≡ 1 (mod f̃) we have

χ(a) =
n∏

q=1

|α(q)|ivq .(36)
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Suppose that a prime number p completely splits in K:

p = p1 . . . pn, N(pi) = p,

and p1 belongs to P
f̃
. Let ω ∈ K be such that ω ≡ 1 (mod f̃) and (ω) = p1.

Since K/Q is Galois, if we set G = Gal(K/Q), then any pi can be expressed
as

pi = (σ(ω)) for each σ ∈ G.

Hence for such p we have

αp =
∑

σ∈G
χ((σ(ω))).(37)

Here we note that χ((ω)) = χ∞(ω) since ω ≡ 1 (mod f̃). However the relation
σ(ω) ≡ 1 (mod f̃) does not always hold for any σ 6= 1. We put f′ = (N(f))
and assume

ω ≡ 1 (mod f̃′).(38)

Then σ(ω) ≡ 1 (mod f̃′) for any σ ∈ G. Since f | f′, χ can be regarded as a
character modulo f̃′. Hence for any σ ∈ G,

χ((σ(ω))) = χ∞(σ(ω)),

and they are expressed in the form (36).
In view of (1), ω corresponds to (ω(1), . . . , ω(n)). Similarly σ(ω) cor-

responds to (σ(ω(1)), . . . , σ(ω(n))). For any σ and i there exists a j such
that σ(ω(i)) = ω(j). We denote this j by σ(i). Then σ(ω) corresponds to
(ωσ(1), . . . , ωσ(n)) and σ can be regarded as an element of Sn. Thus

χ∞(σ(ω)) =
n∏

q=1

|ωσ(q)|ivq =
n∏

q=1

|ω(q)|ivσ−1(q) .(39)

Let p be a prime number which satisfies the condition

(∗1)
{
p completely splits in K as p = p1 . . . pn

and pi ∈ Pf̃
for 1 ≤ i ≤ n,

and let ω be a prime ideal number such that p1 = (ω) and ω ≡ 1 (mod f̃′).
Then, taking into account (37) and (39), we have

αp =
∑

σ∈G
χ∞(σ(ω)) =

∑

σ∈G

n∏

q=1

|ω(q)|ivσ(q)

=
∑

σ∈G
exp

{
i

n∑

q=1

vσ(q) log |ω(q)|
}
.
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Hence for such p,

|αp| =
∣∣∣1 +

∑

σ 6=1

exp
(
i

n∑

q=1

(vσ(q) − vq)xq
)∣∣∣,(40)

where we put log |ω(q)| = xq.
Now we find the conditions on ω under which the right-hand side of (40)

is sufficiently close to n. For any ε > 0 we can choose δ > 0 such that if

− δ ≤
n∑

q=1

(vσ(q) − vq)xq ≤ δ for σ 6= 1,(41)

then ∣∣|αp| − n
∣∣ < ε.(42)

Because of the definition of vq we have

vσ(n) = −(vσ(1) + . . .+ vσ(n−1)) (σ ∈ G).

Substituting this relation into (41) we have

− δ ≤
n−1∑

q=1

(vσ(q) − vq)yq ≤ δ for σ 6= 1,(43)

where we have put yq = xq − xn.
On the other hand, the definition (33) of Wq(ω) is

Wq(ω) =
n∑

p=1

E(q)
p xp (q = 1, . . . , n− 1).

By the definition (6) of (E(q)
p ) in Section 2, we have




1 . . . 1

log |η(1)
1 | . . . log |η(r1+r2)

1 |
. . . . . . . . . . . . . . . . . . . . . . . . . .

log |η(1)
r | . . . log |η(r1+r2)

r |







e1
n E

(1)
1 . . . E

(r)
1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
er1+r2
n E

(1)
r1+r2 . . . E

(r)
r1+r2




= Ir1+r2

where Ir1+r2 denotes the unit matrix. It follows that
∑

pE
(q)
p = 0 for any q

and the matrix (E(q)
p )rp,q=1 is regular. Substituting these relations into (33)

we have

Wq(ω) =
n−1∑

p=1

E(q)
p yp (q = 1, . . . , n− 1).

Moreover, since the matrix (E(q)
p ) is regular, if we take C1, . . . , Cn−1 > 0

sufficiently small then (43) holds for (y1, . . . , yn−1) which satisfy

0 ≤Wq(ω) < Cq (q = 1, . . . , n− 1).(44)
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In fact, all (y1, . . . , yn−1) which satisfy (43) form a region in Rn−1 which
contains 0. Since this region is not empty, it contains a neighbourhood U of 0.
On the other hand, since (E(q)

p ) is regular, the set of all (y1, . . . , yn−1) which
satisfy (44) is a bounded domain which touches 0. By taking C1, . . . , Cn−1
> 0 small enough, the region given by (44) can be contained in U . Therefore
(43) follows from (44) for such Cq. Without loss of generality we may suppose
that Cq < 1. Let us fix such a Cq.

The formula in Proposition 6 is concerned with the number of prime
ideal numbers. But we need a formula for prime numbers. To deduce it from
Proposition 6, we prove two lemmas.

Lemma 5. If we take suitable {C(1)
q }, {C(2)

q } such that 0 < C
(1)
q < C

(2)
q <

Cq then for any σ ∈ G \ {1} there exists no ω ∈ K which satisfies

C(1)
q ≤Wq(ω) < C(2)

q (q = 1, . . . , n− 1)

and
C(1)
q ≤Wq(σ(ω)) < C(2)

q (q = 1, . . . , n− 1)

at the same time.

Proof. We consider the region given by

0 ≤
n∑

p=1

E(q)
p xp < Cq (q = 1, . . . , n− 1).(45)

Let (x(0)
1 , . . . , x

(0)
n ) be an inner point in this region such that x(0)

i 6= x
(0)
j

(i 6= j). Let m = maxi6=j |x(0)
i − x

(0)
j |. We fix δ > 0 such that δ < m/4 and

that the neighbourhood

Uδ = {(x1, . . . , xn) | |x(0)
q − xq| < δ}

is contained in the region defined by (45). For σ ∈ G, we set

Uσδ = {(xσ(1), . . . , xσ(n)) | (x1, . . . , xn) ∈ Uδ}.
By the definition of δ, we have Uδ ∩ Uσδ = ∅ for any σ 6= 1. Moreover, if we
set

Uδ(t) = {(x1 − t, . . . , xn − t) | (x1, . . . , xn) ∈ Uδ}
for t ∈ R, then for any σ ∈ G, σ 6= 1, we have

Uσδ ∩ Uδ(t) = ∅.
In fact if (x1, . . . , xn) ∈ Uσδ ∩ Uδ(t) then

xq ∈ Iq,δ = [x(0)
q − δ, x(0)

q + δ] and xq + t ∈ Iσ(q),δ.

By the definition of δ, it is impossible that more than two elements of {xq+t |
1 ≤ q ≤ n} belong to one Iσ(q),δ. Hence there exists a q0 (1 ≤ q0 ≤ n) such
that Iq0,δ contains no xσ(q) + t (1 ≤ q ≤ n). This is a contradiction.
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We set

Aδ = {(x1 + t, . . . , xn + t) | t ∈ R, (x1, . . . , xn) ∈ Uδ} =
⋃

t∈R
Uδ(t).

This is a tube generated by translating Uδ along the vector
−−−−−−→
(1, . . . , 1). By

the above argument Aδ ∩ Aσδ = ∅ for any σ ∈ G.
On the other hand consider the region given by

C(1)
q ≤

n∑

p=1

E(q)
p xq < C(2)

q (q = 1, . . . , n− 1).(46)

This is also a tube parallel to
−−−−−−→
(1, . . . , 1). By taking suitable 0 < C

(1)
q , C

(2)
q ≤

Cq, this region is contained in Aδ. Hence (46) gives the assertion.

Lemma 6. Let ω ∈ K be a prime ideal number which satisfies the con-
dition

(∗2)

{
ω ≡ 1 (mod f̃′),

C
(1)
q ≤Wq(ω) < C

(2)
q (q = 1, . . . , n− 1)

and p = (ω). If ω′ is a prime ideal number which satisfies (∗2) and (ω′) = p,
then ω′ = ω.

Proof. Since ω ≡ 1 (mod f̃′) and (ω′) = p, we have ω′ = εω for some
ε ∈ U (̃f′). We put ε = ηa1

1 . . . η
an−1
n−1 . By the definition (33) of Wq(ω) we have

Wq(εω) = Wq(ω) + a1Wq(η(1)) + . . .+ an−1Wq(η(n−1))

and

Wq(η(p)) =
{

1 (p = q),

0 (p 6= q).

Hence a1 = . . . = an−1 = 0. Thus ω′ = ω.

Now we deduce Proposition 5 from Proposition 6 and the above two
lemmas. In view of Proposition 6, the number of prime ideal numbers ω
satisfying the condition

(∗3)

{
|N(ω)| ≤ x, ω ≡ 1 (mod f̃′),

C
(1)
q ≤Wq(ω) < C

(2)
q (q = 1, . . . , n− 1)

is
n−1∏

q=1

(C(2)
q − C(1)

q )
1

h(f′)

x�
2

dt

log t
+O(xe−c

√
log x).(47)

By Lemma 6 there is a one-to-one correspondence between prime ideal num-
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bers which satisfy (∗3) and prime ideals p which satisfy the condition

(∗4)





N(p) ≤ x, p ∈ P
f̃′ ,

there exists an ω ∈ K such that (ω) = p, ω ≡ 1 (mod f̃′)

and C
(1)
q ≤Wq(ω) < C

(2)
q (q = 1, . . . , n− 1).

Hence (47) also gives the number of prime ideals which satisfy (∗4). The
number of prime ideals whose norm is less than x and degree is greater than
two is

�
∑

p2≤x
1 + . . .+

∑

pn≤x
1� π(

√
x)� O(xe−c

√
log x).

Hence we may add to (∗4) the condition that the degree is 1. We denote the
resulting condition by (∗5). Taking into account Lemma 5, if the prime num-
ber p completely splits in K as in (∗1) and p1 satisfies (∗5) then none of pj
satisfies (∗5). Thus there exists a one-to-one correspondence between prime
ideals which satisfy (∗5) and prime numbers which satisfy the condition

(∗6)
{
p ≤ x, p = p1 . . . pn, pi ∈ Pf̃′ ,

there exists only one pi which satisfies (∗5).

Hence the number of prime numbers satisfying (∗6) is given by (47). If p
satisfies (∗6), then by (42) and (44) we have |αp| ≥ n − ε. This completes
the proof for K totally real.

Next we consider the case of K totally imaginary Galois. Since n = 2r2

and r1 = 0, for a = (α) with α ≡ 1 (mod f̃),

χ(a) = χ∞(α) =
r2∏

q=1

|α(q)|ivq
r2∏

p=1

(
α(p)

|α(p)|

)ap
.(48)

Let f′ = (N(f)). If a prime number p satisfies the condition

(∗∗1)
{
p completely splits in K as p = p1 . . . pn,

pi ∈ Pf̃′ ,

then

αp =
∑

σ∈G
χ(σ(ω))(49)

where ω is a prime ideal number such that (ω) = p1, ω ≡ 1 (mod f̃′) and
G = Gal(K/Q).

We note that the set {σ(ω) | σ ∈ G} consists of r2 pairs of complex
conjugates. We denote them by

σ(ω), σ(ω) (σ ∈ G′)
where G′ = G/〈τ〉 and τ denotes the complex conjugate isomorphism. The
prime ideal number ω corresponds to (ω(1), . . . , ω(r2), ω(1), . . . , ω(r2)). For



Universality theorem for Hecke L-functions 65

σ ∈ G′, σ(ω) corresponds to (ωσ(1), . . . , ωσ(r2), ωσ(1), . . . , ωσ(r2)) and σ(ω)
corresponds to (ωσ(1), . . . , ωσ(r2), ωσ(1), . . . , ωσ(r2)). Hence by (48), for σ ∈ G′
we have 




χ∞(σ(ω)) =
r2∏

q=1

|ω(q)|ivσ−1(q)

r2∏

p=1

(
α(p)

|α(p)|

)aσ−1(p)

,

χ∞(σ(ω)) =
r2∏

q=1

|ω(q)|ivσ−1(q)

r2∏

p=1

(
α(p)

|α(p)|

)−aσ−1(p)

.

(50)

Hence, taking into account (49) and (50), for a prime number p which sat-
isfies (∗∗1) and a prime ideal number ω which satisfies the above condition
for p we have

αp =
∑

σ∈G′
(χ∞(σ(ω)) + χ∞(σ(ω)))

=
∑

σ∈G′

r2∏

q=1

|ω(q)|ivσ(q)

{
exp
(
i

r2∑

p=1

aσ(p) argω(p)
)

+ exp
(
−i

r2∑

p=1

aσ(p) argω(p)
)}

=
∑

σ∈G′

r2∏

q=1

|ω(q)|ivσ(q)

{
2 cos

( r2∑

p=1

aσ(p) argω(p)
)}

=
r2∏

q=1

|ω(q)|ivq
{

2 cos
( r2∑

p=1

ap argω(p)
)

+
∑

σ 6=1

2 cos
( r2∑

p=1

aσ(p) argω(p)
)

exp
(
i

r2∑

q=1

(vσ(q) − vq)xq
)}
.

Hence for such p we have

(51) |αp| =
∣∣∣2 cos

( r2∑

p=1

ap argω(p)
)

+
∑

σ 6=1

2 cos
( r2∑

p=1

aσ(p) argω(p)
)

exp
(
i

r2∑

q=1

(vσ(q) − vq)xq
)∣∣∣

where we have set xq = log |ω(q)|.
Now we consider the conditions ω under which the right-hand side of

(51) is sufficiently close to n = 2r2.
By the definition of (E(q)

p )1≤p,q≤r2, we find that the matrix (E(q)
p ) is

regular and that
∑

pE
(q)
p = 0 for any q. Hence, as in the totally real case,
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for any sufficiently small ε > 0 there exist suitable Cq > 0 (q = 1, . . . , r2−1)
such that if we suppose

0 ≤Wq(ω) ≤ Cq (q = 1, . . . , r2 − 1)(52)

then
∣∣∣
r2∑

q=1

(vσ(q) − vq)xq
∣∣∣ < ε (σ ∈ G′, σ 6= 1),(53)

∣∣∣exp
{
i

r2∑

q=1

(vσ(q) − vq)xq
}
− 1
∣∣∣ < ε (σ ∈ G′, σ 6= 1).(54)

On the other hand, by (34),

Θp(ω) =
1

2π

{
argω(p) −

r∑

j=1

Θ
(p)
j Wj(ω)

}
(p = 1, . . . , r2).

For an ω which satisfies (52) we suppose that
∣∣∣∣Θp(ω)− 1

2π
argω(p)

∣∣∣∣ < ε (p = 1, . . . , r2).(55)

If
0 ≤ Θp(ω) < bp (p = 1, . . . , r2)(56)

for sufficiently small b1, . . . , br2 > 0, then by (55) we obtain |argω(p)| < ε
(p = 1, . . . , r2) and

∣∣∣2 cos
( r2∑

p=1

aσ(p) argω(p)
)
− 2
∣∣∣ < ε (σ ∈ G′).(57)

Therefore for any ω satisfying (52) and (56), in view of (51), (54) and (57),
we have ∣∣∣

∑

σ∈G
χ∞(σ(ω))− n

∣∣∣ < ε.(58)

We may suppose that Cq < 1 and bp < min{3/8, 1/w(̃f′)}.
Similarly to the previous case, we prove the following two lemmas:

Lemma 7. If we choose suitable C
(1)
q , C

(2)
q which satisfy 0 < C

(1)
q <

C
(2)
q < Cq then for any σ 6= 1 there is no ω ∈ K such that ω and σ(ω)

satisfy the condition

(∗∗2)

{
C

(1)
q ≤Wq(ω) < C

(2)
q (q = 1, . . . , r2 − 1),

bp/2 ≤ Θp(ω) < bp (p = 1, . . . , r2)

at the same time.
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Proof. Since Wq(ω) is stable under the complex conjugate τ , it is enough
to prove the lemma for σ ∈ G′ and τ . We take 0 < C ′q ≤ Cq such that

max
0≤Wq(ω)<C′q

∣∣∣
r2−1∑

j=1

Θ
(p)
j Wj(ω)

∣∣∣ < 2π
3
bp (p = 1, . . . , r2).(59)

Similarly to the proof of Lemma 5, if we choose suitable 0 ≤ C(1)
q < C

(2)
q <

C ′q (q = 1, . . . , r2 − 1) then for ω ∈ K satisfying

C(1)
q ≤Wq(ω) < C(2)

q (q = 1, . . . , r2 − 1),(60)

σ(ω) does not satisfy (60) for any σ 6= 1, τ .
Next we consider τ . Since Wq(ω) = Wq(ω), the first condition in (∗∗2) is

also valid for Wq(ω). We show that the second condition does not hold for
Wq(ω). Under (60) we suppose that

bp/2 ≤ Θp(ω) < bp (p = 1, . . . , r2).(61)

Then by (34) and (59) we obtain

bp
6
≤ 1

2π
argω(p) <

4
3
bp (p = 1, . . . , r2).

This and (58) give

−5
3
bp ≤ Θp(ω) ≤ bp

6
(p = 1, . . . , r2).

Since bp < 3/8, the intervals [bp/2, bp] and [−5bp/3, bp/6] do not intersect.
Therefore if ω satisfies (60) and (61) then ω does not satisfy (61).

Lemma 8. Let ω ∈ K be a prime ideal number which satisfies the con-
dition

(∗∗3)





ω ≡ 1 (mod f̃′),

C
(1)
q ≤Wq(ω) < C

(2)
q (q = 1, . . . , r2 − 1),

bp/2 ≤ Θp(ω) < bp (p = 1, . . . , r2)

and p = (ω). If ω′ is a prime ideal number which satisfies (∗∗3) and (ω′) = p,
then ω′ = ω.

Proof. Similarly to the proof of Lemma 6, we put

ω′ = εω, ε = %aηb11 . . . η
br2−1
r2−1 (a, bi ∈ Z)

where % = exp(2π/w(̃f′)). By the second condition above we have

b1 = . . . = br2−1 = 0.

By the definition of Θp(ω), we have

Θp(%aω) = aΘp(%) +Θp(ω)
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and

Θp(%) =
1

2π
arg %(p) − 1

2π

r2−1∑

j=1

Θ
(p)
j Wj(%) =

1
2π

arg %(p) =
kp

w(̃f′)
,

where kp ∈ Z− {0}, hence

|Θp(ω)| ≥ 1/w(̃f′) > bp.

Thus by the third condition we obtain a = 0.

Now we deduce Proposition 5 from these two lemmas and Proposition 6.
In view of Proposition 6, the number of prime ideal numbers which satisfy
the condition

(∗∗4)





|N(ω)| ≤ x, ω ≡ 1 (mod f̃′),

C
(1)
q ≤Wq(ω) < C

(2)
q (q = 1, . . . , r2 − 1),

bp/2 ≤ Θp(ω) < bp (p = 1, . . . , r2)

is given by
r2−1∏

q=1

(C(2)
q − C(1)

q )
r2∏

p=1

bp
w(̃f′)

2r2h(̃f′)

x�
2

dt

log t
+O(xe−c

√
log x).(62)

By Lemma 8, there is a one-to-one correspondence between prime ideal
numbers ω satisfying (∗∗4) and prime ideals p which satisfy the condition

(∗∗5)





N(p) ≤ x, p ∈ P
f̃′ ,

there exists an ω ∈ K for p such that (ω) = p, ω ≡ 1 (mod f̃′),

C
(1)
q ≤Wq(ω) < C

(2)
q (q = 1, . . . , r2 − 1),

bp/2 ≤ Θp(ω) < bp (p = 1, . . . , r2).

Hence the formula (62) also gives the number of prime ideals satisfying
(∗∗5). Similarly to the previous case, we may add to (∗∗5) the condition
that the degree of p is 1.

Taking into account Lemma 7, if a prime p completely splits in K and p1
satisfies the condition (∗∗5) then none of the other pi satisfies (∗∗5). Thus
there is one-to-one correspondence between prime ideals which satisfy (∗∗5)
and prime numbers which satisfy the condition

(∗∗6)
{
p ≤ x completely splits as p = p1 . . . pn,

only one pi satisfies (∗∗5).

Hence the number of prime numbers satisfying (∗∗6) is given by (62). In
view of (52), (56) and (58), for p satisfying (∗∗6) we have |αp| ≥ n−ε. Thus
we have completed the proof of Proposition 5 for K Galois.

Now we consider the general case. The proof follows Professor Okazaki’s
idea. Let L/Q be the Galois closure of K, [L : K] = N , Gal(L/Q) = H, and
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Gal(L/K) = I; let R1 be the number of real embeddings of L into C, 2R2
be the number of imaginary embeddings and R = R1 + R2 − 1. We denote
these embeddings by

L 3 Ω 7→ Ω(q) ∈ L(q) = L (q = 1, . . . , nN).

For an ideal f in K we set fL = (NK/Q(f))L, where ( )L means a principal
ideal in L. Suppose that a prime number p completely splits in L as follows:

(!1)
{
p = P1 . . .PnN ,

P1 = (Ω)L, Ω ∈ L, Ω ≡ 1 (mod f̃L).

According to the above two cases, for any Pi there exists σ ∈ H such that

Pi = (σ(Ω))L, σ(Ω) ≡ 1 (mod f̃L).(63)

Let p1 be the norm of P1 over L/K, i.e.

p1 =
∏

σ∈I
Pσ

1 = (ω1), ω1 = NL/K(Ω) ∈ K.

Then p1 is a prime ideal in K and ω1 ≡ 1 (mod f̃′L) by (62). Let P2 be one of
the Pi’s which do not divide p1. We define p2 = (ω2) = NL/K(P2). Then p2

is also a prime ideal in K and satisfies ω2 ≡ 1 (mod f̃′L). Therefore a prime
p satisfying (!1) splits completely in K as follows:

(!2)
{ p = p1 . . . pn,

pi = (ωi) ∈ Pf̃′ , ωi ≡ 1 (mod f̃′).

By the definitions (2) and (4), for a prime p satisfying (!1) we have

αp =
n∑

i=1

χ(pi) =
n∑

i=1

χ∞(ωi)

=
n∑

i=1

r1+r2∏

q=1

|ω(q)
i |ivq

r1+r2∏

p=r1+1

(
ω

(p)
i

|ω(p)
i |

)ap

=
n∑

i=1

r∏

q=1

( |ω(q)
i |

|ω(r1+r2)
i |

)ivq r1+r2∏

p=r1+1

(
ω

(p)
i

|ω(p)
i |

)ap
.

Since |NK(ωi)| =
∏

1≤q≤n |ω
(q)
i | = p, if we take ε > 0 sufficiently small, then

|αp| is sufficiently close to n under the condition

(!3)

{
1− ε < |ω(q)

i |/ n
√
p < 1 + ε,

−ε < argω(p)
i < ε.
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We set ε′ = 1− (1− ε)1/N , ε′′ = (1 + ε)1/N − 1 and suppose that

(!4)





p = P1 . . .PnN ,

P1 = (Ω)L, Ω ≡ 1 (mod f̃L),

1− ε′ < |Ω(q)|/ nN
√
p < 1 + ε′′ (q = 1, . . . , R1 +R2),

−ε/N < argΩ(p) < ε/N (p = R1 + 1, . . . , R1 +R2).

We note that any ω(q)
i is a product of N conjugates of Ω. Hence

(1− ε′)N < ωi =
∏ |Ω(q)|

nN
√
p
< (1 + ε′′)N ,

thus

1− ε < |ω
(q)
i |
n
√
p
< 1 + ε

and
−ε < argω(p)

i =
∑

argΩ(q) < ε.

Therefore primes p satisfying (!4) also satisfy (!1) and (!2).
Let η1, . . . , ηR ∈ L be fundamental units of the unit group in L modulo

f̃L. We define Wq, Θp in (33) and (34) for them. If we set

Yq = log |Ω(q)| − log |Ω(R1+R2)| (q = 1, . . . , R)

then the third relation in (!4) means

−ε < Y (q) < ε.

Hence similarly to the second case, if we choose suitable Cq > 0 (q =
1, . . . , R) and Bp > 0 (p = R1 + 1, . . . , R1 + R2) then the third and fourth
relations in (!4) hold for prime ideal numbers Ω which satisfy

{
0 < Wq(Ω) < Cq (q = 1, . . . , R),

0 < Θp(Ω) < Bp (p = R1 + 1, . . . , R1 +R2).

By Proposition 6, Lemma 7 and Lemma 8, we can calculate the number of
primes p satisfying

(!5)





p ≤ x, p = P1 . . .PnN ,

only one Pi satisfies Pi = (Ω),

Ω ≡ 1 (mod f̃L),

C
(1)
q < Wq(Ω) < C

(2)
q (q = 1, . . . , R),

B
(1)
p < Θp(Ω) < B

(2)
p (p = R1 + 1, . . . , R1 +R2),

where 0 < C
(1)
q < C

(2)
q < Cq, 0 < B

(1)
p < B

(2)
p < Bp. By (!1) and (!2),

|αp| ≥ n− ε for such p.
This completes the proof of Proposition 5, and therefore, the proof of

the Theorem.
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