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A remark on the Piatetski-Shapiro–Vinogradov theorem
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Yingchun Cai (Shanghai)

1. Introduction. In 1937 Vinogradov [7] proved the well known
Goldbach–Vinogradov theorem: Every sufficiently large odd integer N can
be represented as a sum of three primes. It can be stated in a more exact
quantitative form: Let T (N) denote the number of solutions of the equation

N = p1 + p2 + p3.

Then

T (N) =
C(N)N2

2 log3 N
+O

(
N2

logAN

)

for any A > 3, where C(N) denotes the singular series

C(N) =
∏

p|N

(
1− 1

(p− 1)2

) ∏

(p,N)=1

(
1 +

1
(p− 1)3

)
.

Motivated by earlier work of Erdős and Nathanson [2] on sums of squares,
some mathematicians considered the question of whether one could find
thin subsets of primes which were still sufficient to obtain the Goldbach–
Vinogradov theorem. In 1986, based on probability considerations, Wirsing
[8] proved that there exists a subset S of primes with the property

∑

p≤x
p∈S

1� (x log x)1/3,

which serves this purpose. Although Wirsing’s result is best possible apart
from the logarithmic factor, it does not lead to a subset of primes which is
constructive or recognizable.
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Primes of the form [nc], where 1 ≤ c < 2, are called Piatetski-Shapiro
primes. Let γ = 1/c and

Pγ = {p | p = [n1/γ ] = [nc]}.
In 1992 Balog and Friedlander [1] obtained a theorem which had two inter-
esting corollaries:

Corollary 1. For any fixed 20/21 < γ ≤ 1, the Goldbach–Vinogradov
theorem holds with primes in Pγ .

Corollary 2. For any fixed 8/9 < γ ≤ 1, the Goldbach–Vinogradov
theorem holds with one prime in Pγ .

In 1995 Jia [4] improved Corollary 1 to

Theorem 1. For any fixed 15/16 < γ ≤ 1, the Goldbach–Vinogradov
theorem holds with primes in Pγ .

The purpose of this note is to present an approach different from that
of Balog–Friedlander’s which leads to an improvement of Corollary 2.

Theorem 2. For any fixed 205/243 < γ ≤ 1, the Goldbach–Vinogradov
theorem holds with one prime in Pγ .

2. Proof of Theorem 2. In order to prove Theorem 2 we need the
following two lemmas.

Lemma 1 [6]. For any fixed 205/243 < γ ≤ 1,

Pγ(x) =
∑

x<p≤2x
p=[n1/γ ]

1� xγ

γ log x
.

Lemma 2 [3]. Let E(x) denote the number of even integers in the interval
[x/2, x] which cannot be represented as a sum of two primes. Then for any
A > 0,

E(x) = OA

(
x

logA x

)
.

In 1975 Montgomery and Vaughan [5] improved Lemma 2 by showing
that there exists an effective constant ∆ > 0 such that

E(x) = O(x1−∆),

but for our purpose Lemma 2 is sufficient.

Proof of Theorem 2. Let

A = {N − p | N/3 < p ≤ 2N/3, p ∈ Pγ}.
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Then by Lemma 1 we have

|A| � Nγ

γ logN
.

Let E(A) denote the number of even integers in A which cannot be
represented as a sum of two primes. Then by Lemma 2 we have

E(A)� Nγ

log3 N
,

and

|A \E(A)| � Nγ

γ logN
.

For any N − p ∈ A \E(A), there exist primes p1, p2 such that

N − p = p1 + p2,

hence
N = p+ p1 + p2, N/3 < p ≤ 2N/3, p ∈ Pγ ,

and Theorem 2 follows.
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