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1. Introduction. Mahler [7], in 1932, and Koksma [6], in 1939, intro-
duced two related measures of the degree of approximation of a complex
transcendental number ξ by algebraic numbers. For any integer n ≥ 1, we
denote by wn(ξ) the supremum of the exponents w for which

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in integer polynomials P (X) of degree at most
n. Here, H(P ) stands for the näıve height of the polynomial P (X), that
is, the maximum of the absolute values of its coefficients. Further, we set
w(ξ) = lim supn→∞(wn(ξ)/n) and, according to Mahler [7], we say that ξ is
an

• S-number if w(ξ) <∞;
• T -number if w(ξ) =∞ and wn(ξ) <∞ for any integer n ≥ 1;
• U -number if w(ξ) =∞ and wn(ξ) =∞ for some integer n ≥ 1.

In the sense of the Lebesgue measure, almost all numbers are S-numbers.
Liouville numbers are examples of U -numbers, but the existence of T -num-
bers remained an open problem during nearly forty years, until it was con-
firmed by Schmidt [10, 11].

Following Koksma [6], for any integer n ≥ 1, we denote by w∗n(ξ) the
supremum of the exponents w for which

0 < |ξ − α| < H(α)−w−1

has infinitely many solutions in complex algebraic numbers α of degree at
most n. Here, H(α) stands for the näıve height of α, that is, the näıve height
of its minimal defining polynomial. Koksma [6] defined S∗-, T ∗- and U∗-
numbers as above, using w∗n in place of wn. He proved that this classification
of numbers is equivalent to Mahler’s (see e.g. the book of Schneider [14]).
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For more information on the functions wn and w∗n, the reader is directed to
Wirsing [16] and Schmidt [13].

For any integer n ≥ 2 and any complex transcendental number ξ we have

(1) w∗n(ξ) ≤ wn(ξ) ≤ w∗n(ξ) + n− 1.

The first inequality in (1) is easy (see e.g. [12, p. 44]), and the second one
is due to Wirsing [16]. Thus, it is a natural question to ask whether there
are complex numbers ξ such that w∗n(ξ) < wn(ξ) for some integer n ≥ 2.
In 1976, R. C. Baker [1] gave a positive answer to this problem by proving
that for any integer n ≥ 2 the function wn − w∗n can take any value in the
interval [0, (n − 1)/n]. He even succeeded in constructing real numbers ξ
with prescribed values for wn(ξ) and w∗n(ξ) for all positive integers n.

In the present work, we improve upon Baker’s result: we show that for
any integer n ≥ 3 the set of values taken by the function wn − w∗n contains
the interval [0, n/4]. As in [1], our method of proof originates in two papers
by Schmidt [10, 11], where the existence of T -numbers is established. The
main novelty introduced here is the use of integer polynomials having two
zeros very close to each other.

Our results are stated in Section 2 and proved in Sections 5, 6 and 7.
Further related comments are made in Section 8. Section 4 is devoted to
auxiliary lemmas, and an independent remark on Koksma’s classification is
the purpose of Section 3.

Acknowledgements. I would like to thank the referee for his very care-
ful reading of the manuscript.

2. The main result. Theorem 1 asserts the existence of real numbers
with special properties.

Theorem 1. Let n ≥ 3 be an integer and set F (n) = 2n3 +2n2 +3n−1.
Let wn and w∗n be real numbers such that

(2) w∗n ≤ wn ≤ w∗n + n/4, wn > F (n).

Then there exists a real number ξ such that

w∗n(ξ) = w∗n and wn(ξ) = wn.

As in [1], ξ is obtained as the limit of a suitable sequence ξj = (cj+γj)/gj
of algebraic numbers, where the cj ’s and gj ’s are positive integers and the
γj ’s are real algebraic numbers of degree n. Thanks to a rather tedious and
complicated construction, the differences |ξ−ξj | are precisely controlled and
w∗n(ξ) satisfies

w∗n(ξ) = lim
j→∞

− log |ξ − ξj |
log H(ξj)

− 1.
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Our new idea is to take for the ξj ’s algebraic numbers having a complex
conjugate ξσj very close to them. It then follows that |ξ − ξσj | is very small
and that |Pj(ξ)| is much smaller than |H(ξj)|−w

∗
n(ξ), where Pj(X) denotes

the minimal defining polynomial of ξj . Consequently, wn(ξ) is larger than
w∗n(ξ). Since a few important changes are needed in the argument of [1],
we give the full details of the proof of Theorem 1. We point out that our
method is effective, which is not the case of that of [1]; see Section 8 for
explanations.

The fact that the function n 7→ F (n) occurring in the statement of Theo-
rem 1 is of order of magnitude n3 is due to technical constraints. Presumably,
the same result holds true also when F is much smaller. Notice that Baker
[1] proved Theorem 1 with (2) replaced by

w∗n ≤ wn ≤ w∗n + (n− 1)/n, wn > n3 + 2n2 + 5n+ 1,

and that Theorem 1 also holds when (2) is replaced by

w∗n + (n− 1)/n ≤ wn ≤ w∗n + n/4, wn > 2n3 + n− 1,

as will be clear from the proof.
However, the upper bound in (1) can be lowered when wn(ξ) is close

to n. Namely, Wirsing [16] proved that for any integer n ≥ 2 and any real
transcendental number ξ we have

wn(ξ) ≤ w∗n(ξ)(wn(ξ)− n+ 1),

which is sharper than (1) for

wn(ξ) ≤ n+
√
n2 + 4n− 4

2
.

It turns out that our method allows us to construct real numbers ξ with
prescribed values for wn(ξ) and w∗n(ξ), for finitely many integers n. Suitable
modifications of the proof of Theorem 1 yield the following result.

Theorem 2. Let 3 ≤ n1 < . . . < nk be positive integers. Let w∗1 ≤ . . . ≤
w∗k and w1 ≤ . . . ≤ wk be real numbers satisfying

w∗j ≤ wj ≤ w∗j + nj/4, wj > 2n3
j + 2n2

j + 3nj − 1 (1 ≤ j ≤ k).

Then the set of real S-numbers ξ such that

w∗nj (ξ) = w∗j and wnj (ξ) = wj for any 1 ≤ j ≤ k,
has positive Hausdorff dimension.

Since the proof of Theorem 1 is already very technical, we do not give a
complete proof of Theorem 2. We merely describe and explain which changes
are to be done. This is the content of Section 7. For an introduction to the
theory of Hausdorff dimension, the reader is directed e.g. to the book of
Falconer [3].
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Finally, we would like to propose an open problem. For an S-number ξ,
we define its type t(ξ) and its ∗-type t∗(ξ) by t(ξ) = lim supn→∞ wn(ξ)/n and
t∗(ξ) = lim supn→∞ w∗n(ξ)/n, respectively. We infer from (1) that t∗(ξ) ≤
t(ξ) ≤ t∗(ξ) + 1.

Problem. Do there exist real numbers ξ with t∗(ξ) < t(ξ), that is, with

lim sup
n→∞

w∗n(ξ)
n

< lim sup
n→∞

wn(ξ)
n

?

3. A remark on Koksma’s classification. The number w∗n(ξ) is de-
fined by taking into account all the algebraic numbers which are close to ξ.
However, when ξ is a real transcendental number, it would be more natural
to consider only the real algebraic numbers which are close to ξ. The aim
of Lemma 1 below is to prove that this makes however no difference. For
integers n ≥ 1 and H ≥ 1, set

w∗rn (H, ξ) := min{|ξ − α| : α real algebraic, deg(α) ≤ n, H(α) ≤ H, α 6= ξ},
wn(H, ξ) := min{|ξ − α| : α algebraic, deg(α) ≤ n, H(α) ≤ H, α 6= ξ},

w∗rn (ξ) := lim sup
H→∞

− log(Hw∗rn (H, ξ))
logH

.

It is easy to check that

w∗n(ξ) = lim sup
H→∞

− log(Hw∗n(H, ξ))
logH

.

Further, we have the inequality

w∗rn (ξ) ≤ w∗n(ξ),

which turns out to be an equality, as stated in the next lemma.

Lemma 1. For any integer n ≥ 1 and any real transcendental number ξ,
we have w∗rn (ξ) = w∗n(ξ). Consequently , in order to determine w∗n(ξ), it is
enough to consider the real algebraic numbers which are close to ξ.

Proof. The idea of the proof is due to Maurice Mignotte. Let n ≥ 1
be an integer, H > 1 be a real number and ξ be a real transcendental
number. Let α1 be an algebraic number of height at most H and of degree
n1 ≤ n such that w∗n(H, ξ) = |ξ − α1|. We may assume that α1 is non-real,
otherwise the lemma is clearly true. Then the minimal defining polynomial
of α1, denoted by P1(X), has two distinct roots α1 and α1 very near to ξ.
Grace’s complex version of Rolle’s theorem (see e.g. [2, p. 25]) asserts that
its derivative P ′1(X) has a root α2 in the closed disk centered at (α1 +α1)/2
and of radius |α1 − α1| cot(π/n1)/2. Observe that this closed disk reduces
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to the point (α1 + α1)/2 if n1 = 2. Consequently, we have

|ξ − α2| ≤ |ξ − Reα1|+
|α1 − α1|

2
· n

2
≤
(
n

2
+ 1
)
|ξ − α1|,

deg(α2) ≤ n1 − 1 and H(α2) ≤ 2n H(P ′1) ≤ 2nnH.

Indeed, the minimal defining polynomial of α2 is a divisor of P ′1(X), hence
its height is less than or equal to 2deg(P ′1)H(P ′1), by using the “Gelfond in-
equality”, as stated e.g. in [15, Remark 2, p. 81]. If α2 is non-real, we proceed
further in the same way in order to construct an algebraic approximant α3 of
ξ whose degree is strictly less than the degree of α2. We iterate this process
as soon as we end up with a real approximant. This always happens since
the degrees of the algebraic numbers we construct are strictly decreasing.
Consequently, there exists a real number α with

H(α) ≤ (2nn)(2n−1(n− 1)) . . . (2H) ≤ 2n
2
nnH

and

|ξ − α| ≤
(
n

2
+ 1
)
. . .

(
2
2

+ 1
)
|ξ − α1| ≤ nn|ξ − α1|.

Thus, for any real number H ≥ 1 we have

w∗rn (2n
2
nnH, ξ) ≤ nnw∗n(H, ξ)

and

w∗n(ξ) ≤ lim sup
H→∞

− log(Hn−nw∗rn (2n
2
nnH, ξ))

logH
≤ w∗rn (ξ),

as asserted.

Remark. The idea of the proof of Lemma 1 can also be applied to
approximation in the p-adic fieldQp. Recall that this field is not algebraically
closed, and denote by Qp an algebraic closure of it. We can show that for
any integer n ≥ 1 and any transcendental number ξ in Qp the supremum of
the exponents w for which

0 < |ξ − α| < H(α)−w−1

has infinitely many solutions in algebraic numbers α in Qp of degree at most
n is equal to the supremum of the exponents w for which the same inequality
has infinitely many solutions in algebraic numbers α inQp. Indeed, letH > 1
be a real number and let α1 be an algebraic number in Qp of height at most
H and degree n1 ≤ n, such that

|ξ − α1| = min{|ξ − α| : α algebraic in Qp, deg(α) ≤ n, H(α) ≤ H, α 6= ξ}.
We may assume that α1 is not inQp, otherwise there is nothing to do. Denote
by α(1)

1 := α1, α
(2)
1 , . . . , α

(n1)
1 the conjugates of α1, numbered in such a way
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that
|ξ − α1| ≤ |ξ − α(2)

1 | ≤ . . . ≤ |ξ − α
(n1)
1 |.

If |ξ−α1| < |ξ−α(2)
1 |, then Krasner’s Lemma (see e.g. [9, p. 130]) implies that

α1 lies in Qp, which we have excluded. Consequently, the minimal defining
polynomial P1(X) of α1 has two roots α1 and α(2)

1 with |ξ−α1| = |ξ−α(2)
1 |,

and we deduce from the p-adic version of Rolle’s theorem (see e.g. [9, p. 316])
that P ′1(X) has a root α2 with H(α2) ≤ 2nH(P ′1) ≤ 2nnH and |ξ − α2| <
p2|ξ−α1|. If α2 does not lie in Qp, we iterate this process, exactly as in the
proof of Lemma 1.

4. Auxiliary results. Lemma 2 below gives a version of the Liouville
inequality.

Lemma 2. Let α and β be distinct algebraic numbers of degree at most
m and n, respectively. Then there exists a positive constant c(m,n) < 1,
depending only on m and n, such that

|α− β| ≥ c(m,n)H(α)−nH(β)−m.

An admissible value for c(m,n) is (m+ 1)−n−1(n+ 1)−m−1.

Proof. This is a direct consequence of Theorems 6 and 7 of Güting [4].

In the next lemma we define a two-parameter infinite family of integer
polynomials (found by Mignotte [8]) having two zeros very close to each
other.

Lemma 3. Let n ≥ 3 and a ≥ 10 be integers. The polynomial

Pn,a(X) := Xn − 2(aX − 1)2

is irreducible and has two real roots very close to each other , namely

δ+(n, a) := a−1 + a−(n+2)/2/
√

2 + ε+(n, a),

δ−(n, a) := a−1 − a−(n+2)/2/
√

2 + ε−(n, a),

where |ε+(n, a)|, |ε−(n, a)| ≤ C(a/2)−n−1 for some absolute constant C.
Further , it follows from Rouché’s theorem that Pn,a(X) has no other roots
in the disk centered at the origin and of radius 1/2.

Proof. The irreducibility of Pn,a(X) follows from the Eisenstein crite-
rion, and Rouché’s theorem shows that Pn,a(X) has exactly two roots in
the disk centered at the origin and of radius 1/2. Studying the function
x 7→ Pn,a(a−1 + x) in a neighbourhood of the origin, we see that these two
roots can be expressed as stated above.
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Lemma 4. Let α be an algebraic number of degree n ≥ 1 and let a, b
and c be integers with c 6= 0. Then

H
(
aα+ b

c

)
≤ 2n+1H(α) max{|a|, |b|, |c|}n.

Proof. Denoting by P (X) the minimal defining polynomial of α, we see
that Q(X) := anP (cX/a− b/a) is the one of (aα+ b)/c. Since the height of
Q(X) is bounded from above by 2n+1H(α) max{|a|, |b|, |c|}n, the lemma is
proved.

Lemma 5 ([1, Lemma 4]). Let n be a positive integer and let g be a
prime number with g > n. Let P (X) be a monic polynomial of degree n
with integer coefficients. Then there is no integer a such that g divides each
of P (a), P (a+ 1), . . . , P (a+ n).

Lemma 6. Let P (X) := an(X − α1) . . . (X − αn) be a polynomial with
complex coefficients of degree n and whose leading coefficient an is a positive
number. Let ψ > 0 and ξ be real numbers. Then there exist effective positive
constants c1(n, ξ, ψ) and c2(n, ξ, ψ), depending only on n, ψ and ξ, such
that

c1(n, ξ, ψ)
H(P )
an

≤
∏

|ξ−αj |≥ψ
|ξ − αj | ≤ c2(n, ξ, ψ)

H(P )
an

.

Proof. This follows from Hilfssatz 2 of Wirsing [16].

5. The inductive construction. Theorem 3 below gives an explicit
inductive construction of sequences (ξj)j≥1 of real algebraic numbers of de-
gree n. It will be proved in Section 6 that such sequences converge to real
numbers having the property stated in Theorem 1. We use in Theorem 3
the same notation as in Lemma 3, namely we denote by δ+(n, a) the root
of the polynomial Pn,a(X) defined in that lemma.

Theorem 3. Let n ≥ 3 be an integer and let µ, ν be real numbers with
0 ≤ µ ≤ (n − 2)/2 and ν > 1. Set G(n) = 2n3 + 1 and let χ > G(n) be
a real number. Then there exist a positive number λ < 1/2, prime numbers
g1 ≥ 11, g2, . . . and integers c1, c2, . . . such that the following conditions are
satisfied , where we have set γj := δ+(n, [gµj ]) for any integer j ≥ 1:

(Ij) gj does not divide the norm of cj + γj (j ≥ 1).
(II1) ξ1 = (c1 + γ1)/g1 ∈ ]1, 2[.
(IIj) ξj = (cj + γj)/gj belongs to the interval Ij−1 defined by

ξj−1 +
1
2
g−νj−1 < x < ξj−1 +

3
4
g−νj−1 (j ≥ 2).

(III1) |ξ1 − α| ≥ 2λH(α)−χ for any algebraic number α 6= ξ1 of degree
≤ n.
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(IIIj) |ξj − α| ≥ λH(α)−χ for any algebraic number α 6∈ {ξ1, . . . , ξj} of
degree ≤ n (j ≥ 2).

As will be seen in Section 6, Theorem 3 covers the range of values
[(n−1)/n, n/4] for the function wn − w∗n. For the interval [0, (n − 1)/n],
we need Theorem 3′ below.

Theorem 3′. Theorem 3 holds with the function G(n) replaced by H(n)
= 2n3 + 2n2 + 2n+ 1 and γj by 21/n[gµ

′

j ], where µ′ is any number in [0, 1].

We observe that the sequence (ξj)j≥1 obtained in Theorem 3 is strictly
increasing and bounded, hence it converges to a limit ξ. For any j ≥ 1, we
have cj ≤ 2gj , thus, by Lemma 4 and the definition of γj , the height of ξj
satisfies

H(ξj) ≤ c(n)g2n−2
j ,

for some constant c(n) depending only on n. Condition (IIj+1) then shows
that the order of approximation of ξ by the algebraic number ξj depends
only on ν and n. Further, conditions (IIIj) imply that the other algebraic
numbers of degree at most n are not too close to ξ. Hence, the precise order
of approximation of ξ by algebraic numbers of degree at most n is controlled
in terms of n, ν and χ.

The rôle of the parameter µ is to measure the gap between wn(ξ) and
w∗n(ξ), as will be shown in Section 5.

To simplify the notation, in what follows we denote by α a real algebraic
number of degree less than or equal to n. Let ε be a positive number such
that

(3) χ > 2n3 + 1 + 2n2ε.

In order to prove Theorem 3, we add three extra conditions (IVj), (Vj)
and (VIj), which should be satisfied by the numbers ξj . We denote by Leb
the Lebesgue measure on the real line.

Let Jj denote the subset of Ij consisting of the real numbers x ∈ Ij
satisfying

|x− α| ≥ 2λH(α)−χ

for any algebraic number α of degree ≤ n, distinct from ξ1, . . . , ξj , x and of
height H(α) sufficiently large, that is, satisfying

H(α) ≥ (λgνj )1/χ.

The supplementary conditions are the following:

(IVj) ξj ∈ Jj−1 (j ≥ 2).

(Vj) If H(α) ≤ g1/(n+1+ε)
j , then |ξj − α| ≥ 1/gj (j ≥ 1).

(VIj) The measure of Jj satisfies Leb(Jj) ≥ Leb(Ij)/2 (j ≥ 1).
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We construct the numbers ξ1, ξ2, . . . by induction. At the jth stage, there
are two distinct steps. Step (Aj) consists in building an algebraic number
ξj = (cj +γj)/gj of degree n satisfying conditions (Ij) to (Vj). In step (Bj),
we show that the number ξj constructed in (Aj) satisfies (VIj) as well,
provided that gj is chosen large enough in terms of

(4) n, µ, ν, χ, ε, λ, ξ1, . . . , ξj−1.

The symbols o, � and � used throughout steps (Aj) and (Bj) mean that
the numerical implicit constants depend (at most) on the quantities (4).
Furthermore, the symbol o implies “as gj tends to infinity”.

Step (A1) is rather easy. Let P (X) denote the minimal defining polyno-
mial of γ1 and observe that (I1) is satisfied if, and only if, g1 does not divide
P (−c1). Thus, by Lemma 5, if the prime number g1 is larger than n, then
there are � g1 numbers ξ1 = (c1 + γ1)/g1 in the interval ]1, 2[ satisfying
condition (I1). These� g1 numbers have mutual distances at least g−1

1 , and
since there are only o(g1) algebraic numbers α of degree at most n satisfying
H(α) ≤ g

1/(n+1+ε)
1 , one can choose ξ1 such that (V1) is satisfied. We point

out that there are � g1 choices for c1, where the constant implied in �
depends only on n. Further, by Lemma 2, we have

|ξ1 − α| ≥ 2λH(α)−n,

with λ = c(n, n)H(ξ1)−n/2, for any real algebraic numbers α 6= ξ1 of degree
at most n. Thus (I1), (II1), (III1) and (V1) are satisfied.

Let j ≥ 2 be an integer and assume that ξ1, . . . , ξj−1 have been con-
structed. Step (Aj) is much harder to verify, since we have no control on the
set Jj−1. Thus, it seems difficult to check that condition (IVj) holds. To over-
come this problem, we follow Schmidt’s argument [11], also used by Baker
[1]. We set ξj = (cj+γj)/gj for some positive integers cj and gj > 8gj−1 and
we introduce the set J ′j−1 formed by the real numbers x ∈ Ij−1 satisfying

|x− α| ≥ 2λH(α)−χ

for any algebraic number α of degree ≤ n, distinct from ξ1, . . . , ξj , x, and
whose height H(α) satisfies the inequalities

(5) (λgνj−1)1/χ ≤ H(α) ≤ (c2(n)−1g
2n(n−1)
j )1/(χ−n).

Since, by (3), we have

χ− n > 2n(n− 1)(n+ 1),

the exponent of gj in the right member of (5) is strictly less than 1/(n+ 1).
Thus, there are o(gj) algebraic numbers α satisfying (5), and we observe
that, unlike Jj−1, the set J ′j−1 is a finite union of intervals, and more pre-
cisely, a union of o(gj) intervals.
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We will prove that for gj large enough we have � gj choices for cj in
order that conditions (Ij) to (Vj) are satisfied.

Let α be an algebraic number of degree ≤ n. Since H(γj) ≤ 2gn−2
j and

cj ≤ 2gj , we infer from Lemmas 2 and 4 that there exist positive constants
c1(n) and c2(n) such that

(6) |ξj − α| ≥ c1(n)H(ξj)−nH(α)−n ≥ c2(n)g−2n(n−1)
j H(α)−n.

In particular, using 2λ < 1, we have

(7) |ξj − α| ≥ 2λH(α)−χ

as soon as

(8) H(α)χ−n ≥ c2(n)−1g
2n(n−1)
j .

By (VIj−1) and since J ′j−1 ⊃ Jj−1, we have Leb(J ′j−1)� 1. Since the set
J ′j−1 is the union of o(gj) intervals, if gj is a sufficiently large prime number,
then, using Lemma 5 as in step (A1), we find that there exist� gj numbers
ξj = (cj + γj)/gj in J ′j−1 such that (Ij) is satisfied. Such ξj ’s also belong to
Jj−1, since (8) implies (7), and condition (IVj) is satisfied.

Thus, we are left with � gj suitable algebraic numbers ξj , mutually
distant by at least g−1

j . Only o(gj) algebraic numbers α of degree at most
n satisfy

(9) H(α) ≤ g1/(n+1+ε)
j ,

thus one can choose ξj in such a way that |ξj −α| ≥ 1/gj for the numbers α
satisfying (9). Consequently, there are � gj algebraic numbers ξj satisfying
(Ij), (IIj), (IVj) and (Vj).

It remains to show that such a ξj also satisfies (IIIj). To this end, it
suffices to prove that

|ξj − α| ≥ λH(α)−χ

for the algebraic numbers α of degree ≤ n which are different from ξ1, . . . , ξj
and whose height H(α) satisfies

H(α) < (λgνj−1)1/χ.

Since the sequence (gt)t≥1 is increasing, either we have

(10) g−ν1 < λH(α)−χ,

or there exists an integer t with 2 ≤ t < j such that

(11) g−νt < λH(α)−χ ≤ g−νt−1.

In the former case, we infer from (III1) and (10) that

|ξj − α| ≥ |ξ1 − α| − |ξj − ξ1| ≥ 2λH(α)−χ − g−ν1 > λH(α)−χ.
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In the latter case, (IVt) and (11) yield

|ξj − α| ≥ |ξt − α| − |ξj − ξt| ≥ 2λH(α)−χ − g−νt > λH(α)−χ.

The upper estimates |ξj − ξ1| ≤ g−ν1 and |ξj − ξt| ≤ g−νt used above follow
from (IIj) and the assumption gl > 8gl−1, valid for any integer l with 2 ≤
l ≤ j. Consequently, condition (IIIj) holds and the proof of step (Aj) is
complete.

Let j ≥ 1 be an integer. For the proof of step (Bj), we first establish
that if gj is large enough and if x lies in Ij , then

(12) |x− α| ≥ 2λH(α)−χ

for any algebraic number α 6= ξj such that

(13) (λgνj )1/χ ≤ H(α) ≤ gν/(χ−n−1−ε)
j .

Let then α 6= ξj be an algebraic number of degree ≤ n satisfying (13) and
let x be in Ij , that is,

(14)
1
2
g−νj < x− ξj <

3
4
g−νj .

If gν/(χ−n−1−ε)
j ≤ g

1/(n+1+ε)
j , then H(α) ≤ g

1/(n+1+ε)
j and it follows from

(Vj), (13) and (14) that

(15) |x− α| ≥ |ξj − α| − |ξj − x| ≥ g−1
j − g−νj ≥ 2g−νj ≥ 2λH(α)−χ.

Otherwise, we have

(16) g
ν/(χ−n−1−ε)
j > g

1/(n+1+ε)
j ,

and, by (6), we get

|x− α| ≥ |ξj − α| − |ξj − x| ≥ c2(n)g−2n(n−1)
j H(α)−n − g−νj(17)

≥ c2(n)g−2n(n−1)
j H(α)−n/2.

To check the last inequality, we have to verify that

(18) 2g−νj ≤ c2(n)g−2n(n−1)
j H(α)−n.

In view of (13), (18) is true as soon as

2gnν/(χ−n−1−ε)
j ≤ c2(n)gνj g

−2n(n−1)
j ,

which, by (14), holds for gj large enough when

n

χ− n− 1− ε < 1− 2n(n− 1)
n+ 1 + ε

χ− n− 1− ε ,

in particular when χ satisfies (3).
Moreover, we have

(19) c2(n)g−2n(n−1)
j H(α)−n ≥ 4λH(α)−χ.
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Indeed, by (13), λ < 1 and (16), we get

H(α)χ−n ≥ (λgνj )(χ−n)/χ ≥ λg(χ−n)(χ−n−1−ε)/(χn+χ+χε)
j

≥ 4λc2(n)−1g
2n(n−1)
j ,

since we infer from (3) that

(χ− n)(χ− n− 1− ε) > 2χn(n+ 1 + ε)(n− 1).

Combining (17) and (19), we have checked that

|x− α| ≥ 2λH(α)−χ

when (16) holds; hence, by (15), (12) is true if α 6= ξj satisfies (13). Conse-
quently, if gj is large enough, then the complement J c

j of Jj in Ij is contained
in the union of the intervals

E(α) := ]α− 2λH(α)−χ, α+ 2λH(α)−χ[,

where α runs over the set of algebraic numbers of degree ≤ n and with
height greater than g

ν/(χ−n−1−ε)
j . The Lebesgue measure of Jc

j is then

�
∑

H>g
ν/(χ−n−1−ε)
j

Hn−χ = o(g−νj ) = o(Leb(Ij)).

Thus, we conclude that we can find gj large enough such that Leb(Jj) ≥
Leb(Ij)/2. This completes step (Bj) as well as the proof of Theorem 3.

The proof of Theorem 3′ follows the same lines as that of Theorem 3,
the only difference being that the estimate H(γj) ≤ 2gnj should replace
H(γj) ≤ 2gn−2

j . Thus, the assumption (3) should be modified and we have
to replace G(n) by H(n).

6. Completion of the proof of Theorem 1. We first deal with the
range of values [(n− 1)/n, n/4]. Let ∆ be in [(n− 1)/n, n/4] and set

µ =
2(n∆− n+ 1)

n− 2
.

We observe that µ is in [0, (n− 2)/2]. Let wn > 2n3 + n − 1 and set w∗n =
wn −∆. The sequence (ξj)j≥1 obtained in Theorem 3 is strictly increasing
and bounded, thus it converges towards a real number denoted by ξ. Set
ν = n(w∗n + 1) and set χ = wn− n+ 2 so that χ > 2n3 + 1. Let ξ1, ξ2, . . . be
as in Theorem 3 and denote by ξ the limit of the strictly increasing sequence
(ξj)j≥1.

We write A � B if there exists a constant c(n), depending only on n,
such that |A| < c(n)B, and we write A � B if both A� B and B � A.

Our choice of γj implies that the minimal defining polynomial of ξj is

Qj(X) := (gjX − cj)n − 2([gµj ](gjX − cj)− 1)2.
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This polynomial is indeed irreducible and primitive by (Ij) and the first
statement of Lemma 3. Since µ ≤ (n− 2)/2, we have H(ξj) � gnj .

Moreover, for any j ≥ 1,

ξj + g−νj /2 < ξ < ξj + g−νj ,

and we deduce that

(20) |ξ − ξj | � H(ξj)−ν/n � H(ξj)−w
∗
n−1.

Further, if α is of degree ≤ n and is not one of the ξj ’s, then |ξ − α| ≥
λH(α)−χ, whence

(21) |ξ − α| ≥ H(α)−w
∗
n−1,

since χ ≤ w∗n + 1. It follows from (20), (21) and Lemma 1 that w∗n(ξ) = w∗n.
It now remains to prove that wn(ξ) = wn. Denote by ξj = βj1, . . . , βjn

the roots of Qj(X), numbered in such a way that |ξj −βj2| � g−µ(n+2)/2−1
j .

Denote by δ3, . . . , δk the roots of Pn,[gµj ](X) other than δ+(n, [gµj ]) and
δ−(n, [gµj ]). For k ≥ 3, we have

|ξj − βjk| �
|1/[gµj ]− δk|

gj
.

Consequently, we get

|Qj(ξ)| = gnj |ξ − ξj | |ξ − βj2|
∏

3≤k≤n
|ξ − βjk|

� g2
jH(ξj)−w

∗
n−1g

−µ(n+2)/2−1
j

∏

3≤k≤n
|1/a− δk|

� H(ξj)−w
∗
n−1g

−µ(n+2)/2+1
j [gµj ]2,

by Lemma 6 and the last statement of Lemma 3. Thus,

|Qj(ξ)| � H(Qj)−w
∗
n−1−µ(n−2)/(2n)+1/n,

and we see that

(22) wn(ξ) ≥ w∗n + 1 + µ(n− 2)/(2n)− 1/n;

hence, by definition of µ, we obtain

(23) wn(ξ) ≥ w∗n +∆.

In order to show that the inequalities in (22) and (23) are indeed equal-
ities, we argue exactly as in Baker [1]. Let P (X) be an integer polynomial
of degree ≤ n which is not a multiple of some Qj(X). Write

P (X) = aR1(X) . . . Rp(X),

where a is an integer and the polynomials Ri(X) are primitive and irre-
ducible. Since Ri(ξ) 6= 0, if k denotes the degree of the polynomial Ri(X),
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then, by [4, Theorem 4], this polynomial has a root θ satisfying

(24) |Ri(ξ)| � H(Ri)2−k|ξ − θ| � λH(Ri)−χ−k+2 � λH(Ri)−wn .

Consequently, it follows from (24) and the “Gelfond inequality” (see e.g. [15,
Remark 2, p. 81]) that

|P (ξ)| � (H(R1) . . .H(Rp))−wn � H(P )−wn ,

and we get wn(ξ) = wn, as claimed.
We now consider ∆′ in the range [0, (n− 1)/n] and set

µ′ =
n− 1− n∆′

n− 1
.

We argue as above except that we use Theorem 3′ instead of Theorem 3.
The polynomials Qj(X) are replaced by

Rj(X) := (gjX − cj)n − 2[gµ
′

j ]n,

which have been used by Baker [1], and, proceeding as above, we show that

|Rj(ξ)| � gnj |ξ − ξj |g(µ−1)(n−1)
j � H(Rj)−w

∗
n−(1−µ)(n−1)/n

and
wn(ξ) = w∗n(ξ) + (1− µ)

n− 1
n

= w∗n(ξ) +∆′.

The proof of Theorem 1 is now finished.

7. Outline of the proof of Theorem 2. As pointed out at the end of
steps (A1) and (Aj), the integers cj occurring in the inductive construction
of Theorem 3 are far from being uniquely determined. Indeed, as stated by
Baker [1, p. 29], it turns out that, if gj is sufficiently large, we have at each
step (Aj) with j ≥ 2 at least

(25)
gjg
−ν
j−1

32n
suitable choices for ξj . Observe that g−νj−1/4 is the length of the interval Ij−1

and that the n occurring in the denominator of (25) is a consequence of
Lemma 5. No particular importance has to be attached to the constant 32.
This shows that we obtain an uncountable set of real numbers ξ with the
property stated in Theorem 1. Moreover, using the method described in
Section 5 of [1], it can be shown that they form a set with positive h-measure
for some function h : t 7→ tδ with δ > 0 (in [1], the νj ’s are unbounded, thus
h has to grow faster than any function t 7→ tδ in a neighborhood of the
origin), thus with positive Hausdorff dimension. Since the sets of T - and
U -numbers have Hausdorff dimension zero (see e.g. [5]), it follows that, for
any fixed integer n ≥ 2, there exist S-numbers ξ with the property stated
in Theorem 1.
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In order to control simultaneously finitely many wn(ξ) and w∗n(ξ), only
slight modifications of Theorem 3 are needed. Essentially, it is sufficient to
use at the jth inductive step the algebraic number γj := δ+(nl+1, [g

µ
j ]),

where l is the remainder in the Euclidean division of j by k.

8. Further remarks

• Comparison with the work of Baker. Let n ≥ 1 be an integer and let
w∗n be a given real number. Clearly, it is an easy matter to construct a real
number ξ with w∗n(ξ) ≥ w∗n, e.g. by using a nested interval construction.
However, it is much more difficult to get an upper bound for w∗n(ξ), and in
particular to ensure that w∗n(ξ) = w∗n.

Theorem 1 of Baker [1] depends on the following deep result of Schmidt
[11, 12].

Theorem S. Let β be a real algebraic number and let η > 0 be real.
Let n ≥ 1 be an integer. Then there exists an ineffective positive constant
C1(β, n, η), depending only on β, n and η, such that

(26) |β − α| ≥ C1(β, n, η)H(α)−n−1−η

for all real algebraic numbers α 6= β of degree at most n.

Wirsing [17] obtained a slightly weaker result (with −2n − η in the ex-
ponent of H(α)), which turns out to be sufficient to confirm the existence of
T -numbers (see [10, 11]). Indeed, the crucial point is that the exponent of
H(α) in (26) does not depend on β.

If we use Theorem S with η = 1 instead of Lemma 2 in (6), we deduce
that there exists a constant c(γj) such that

|ξj − α| =
1
gj
|γj − (gjα− cj)| ≥ c(γj)g−n

2−1
j H(α)−n−2.

However, γj depends on gj , and we do not have any estimate for c(γj). Thus
we cannot argue as in (7), (8), etc. Consequently, the method used in the
present paper does not allow us to construct real numbers ξ satisfying the
conclusion of Theorem 1 for every integer n ≥ 3.

In his paper, Baker used for γj the numbers 21/n[gµj ], where µ runs over
[0, 1] and allows him to control the difference between wn and w∗n. In this
case, Theorem S can be applied since

|ξj − α| =
1
gj
|21/n[gµj ]− (gjα− cj)| =

[gµj ]

gj

∣∣∣∣21/n − gjα− cj
[gµj ]

∣∣∣∣(27)

≥ c(21/n)g−n
2−2n−1

j H(α)−n−2.
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Here, c(21/n) does not depend on j, thus one can argue as in (7), (8), etc.
The exponent of gj in (27) is slightly larger than in (6), thus we get a better
lower bound for χ, whose order of magnitude is n3, however.

• Approximation in the complex field. It is possible to adapt the proof of
Theorem 1 to construct complex non-real numbers ξ with w∗n(ξ) < wn(ξ), as
Baker [1] did in his Theorem 2. Our method allows us to show that for any
integer n ≥ 3 the set of values taken by the function w2n − w∗2n evaluated
at complex non-real numbers contains the interval [0, n/8]. Presumably, it
should be possible to show that non-real numbers ξ with w∗n(ξ) < wn(ξ) for
some odd integer n ≥ 5 exist; the problem is to find suitable polynomials to
replace Pn,a(X).

• Approximation in p-adic fields. Presumably, the method can be carried
over to the p-adic field Qp without too much difficulty in order to prove
that there exist p-adic numbers ξ with wn(ξ) 6= w∗n(ξ). The polynomials
Xn−2(X−pa)2 would then play the rôle of the polynomials Pn,a(X) defined
in Lemma 3.
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