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1. Introduction. Let f(x) be a non-constant polynomial. Ayad’s pa-
per [1] and Beardon’s paper [2] deal with the possibility of expressing f(x)
as the composition of two polynomials g(x) and h(x) with degrees at least 2.
In this case f(x) is said to be composite, otherwise it is said to be prime. We
extend this concept to rational functions as follows. Let C[x] be the ring of
complex polynomials and let C(x) be its field of fractions. When we refer to
the complex rational function f(x), we mean the unique ratio f1(x)/f2(x)
of complex polynomials f1(x) and f2(x) where f2(x) is monic and no linear
factor divides both f1(x) and f2(x). We then define the degree of f(x) by

deg f(x) = max{deg f1(x), deg f2(x)}.
Let f(x) be a non-constant complex rational function. We call f(x) com-
posite if there exist complex rational functions g(x) and h(x), both with
degrees at least 2, such that f(x) = g(h(x)). Otherwise, we call f(x) prime.
In Section 2, we motivate these definitions of prime and composite rational
functions, and we make use of the set of units under function composition to
provide conditions on the multiplicities of the zeros and poles of a rational
function f(x) which are sufficient to conclude that f(x) is prime.

Beardon [2] proved that if a polynomial f(x) of degree n has more than
n/2 critical values, then f(x) is prime. Ayad [1] defined the multiplicity of a
critical value and proved that if a polynomial f(x) of degree n has more than
d simple critical values where d is the greatest proper divisor of n, then f(x)
is prime. Ayad also provided examples of prime polynomials by considering
the valencies of their critical points. In Section 3, we define the resultant of
two rational functions. Motivated by Ayad’s results in [1], we present con-
ditions on the critical values of a rational function f(x) under which f(x) is
prime and use these results to provide examples of prime rational functions.
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2. Units and composite rational functions. Let f(x) be a complex
rational function. Then f(x) can be expressed as the ratio of two complex
polynomials such that no linear factor divides both of the polynomials in
its numerator and its denominator, and we say that f(x) is in its most
reduced form. Since such a reduced form is useful when trying to determine
the degree of a rational function, we provide an expression for the reduced
form of a composition of two rational functions. The validity of the lemma
is easily verified.

Lemma 2.1. Let g(x) and h(x) be rational functions in their most re-
duced forms with

g(x) =
b
∏m1

i=1(x− αi)∏m2
j=1(x− βj)

and h(x) =
h1(x)

h2(x)
.

Then the expression for g(h(x)) given by

g(h(x)) =
bh2(x)deg g−m1

∏m1
i=1(h1(x)− αih2(x))

h2(x)deg g−m2
∏m2

j=1(h1(x)− βjh2(x))

is in its most reduced form.

We prove a proposition which will be essential for the rest of this paper.

Proposition 2.2. Let K be a field and let f(x) = f1(x)/f2(x) be a
rational function over K in its most reduced form. Then

deg f = [K(x) : K(f)].

Proof. We have K(f) ⊂ K(x) = K(f, x) where x is a primitive element
of K(x) over K(f). Then x is a root of the polynomial

F (y) = f1(y)− f · f2(y) ∈ K(f)[y]

and degF = max{deg f1, deg f2}. Since F is a linear polynomial in f , any
factorization of F in K[f, y] must be of the form

F (y) = u(y)(v1(y) + f · v2(y))

where u(y), v1(y), v2(y) ∈ K[f, y]. If u(y) has degree at least 1, this contra-
dicts the assumption that f(x) is a rational function in its most reduced
form since u(y) must divide both f1(y) and f2(y). Therefore F is irre-
ducible in K[f, y] and also in K(f)[y]. Then [K(x) : K(f)] = degF =
max{deg f1,deg f2} = deg f.

Proposition 2.3. Let K be a field and let f(x) = g(h(x)) where f(x),
g(x), and h(x) are rational functions over K. Then

deg f = deg g · deg h.

Proof. We have K(f) ⊂ K(h) ⊂ K(x) with [K(x) : K(f)] = deg f ,
[K(x) : K(h)] = deg h, [K(h) : K(f)] = deg g. The desired result follows.
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Corollary 2.4. Let f(x) be a complex rational function of degree p
where p is a prime number. Then f(x) is prime.

We recall that a rational function µ(x) is a unit under function composi-
tion if there exists another rational function µ−1(x) such that µ(µ−1(x)) =
µ−1(µ(x)) = x. Then degµ(x) · degµ−1(x) = deg x = 1, and it follows that
both µ(x) and µ−1(x) must have degree 1. We claim that the complex ratio-
nal functions of degree 1 form the group of units under function composition,
which is the motivation for the requirement that the composition factors of
a composite function have degree at least 2. One can verify that the function
µ(x) = ax+b

cx+d has degree 1 if and only if ad− bc 6= 0, and in this case it has

an inverse given by µ−1(x) = dx−b
−cx+a . When we refer to a unit µ(x), we mean

that µ(x) is a unit under function composition.

This group of units will be very useful in the study of whether a function
is prime, due to the following result.

Lemma 2.5. Let f be a complex rational function and let µ be a unit. If
either f ◦ µ or µ ◦ f is composite, then f is composite. Conversely, if f is
composite, then both f ◦ µ and µ ◦ f are composite.

Proof. If µ◦ f is composite, then µ◦ f = g ◦h for some complex rational
functions g and h with degrees at least 2, so that f = (µ−1 ◦ g) ◦ h is
composite. Similarly, if f ◦ µ is composite, then f ◦ µ = g ◦ h for complex
rational functions g and h with degrees at least 2, so that f = g ◦ (h ◦ µ−1)
is composite.

Conversely, if f is composite, then f = g◦h for complex rational functions
g and h with degrees at least 2, so that µ◦f = (µ◦g)◦h and f ◦µ = g◦(h◦µ)
are both composite.

The following two lemmas will be frequently used. The first provides a
particular pair of composition factors for composite rational functions, and
the second relates the numerator and denominator degrees of a composite
rational function with those of its composition factors.

Lemma 2.6. Let f(x) be a complex composite rational function. There
exist complex rational functions g(x) and h(x) of degrees at least 2 such
that f(x) = g(h(x)) where the numerator degree of h(x) is larger than its
denominator degree.

Proof. Since f(x) is composite, there exist complex rational functions
G(x) and H(x) of degrees at least 2 such that f(x) = G(H(x)). We let
µ(x) be a complex rational function of degree 1. We consider the expres-
sion µ(H(x)) explicitly, and we will choose µ(x) so that µ(H(x)) has larger
numerator degree than denominator degree. Let H(x) = H1(x)/H2(x) and
consider two cases.
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(i) If degH1 > degH2, we let µ(x) = x.
(ii) If degH1 ≤ degH2, we write H1(x) = aH2(x) + r(x) where a ∈ C

and deg r < degH2. Then H(x) = a+r(x)/H2(x) and we let µ(x) =
1/(x− a).

In both cases, µ(H(x)) has numerator degree greater than its denominator
degree. Since µ(x) has degree 1, there exists µ−1(x) such that µ−1(µ(x)) = x.
We define g(x) = G(µ−1(x)) and h(x) = µ(H(x)). Then

f = G ◦H = G ◦ µ−1 ◦ µ ◦H = (G ◦ µ−1) ◦ (µ ◦H) = g ◦ h
is a decomposition of f such that f(x) = g(h(x)) where the numerator
degree of h(x) is larger than its denominator degree.

Lemma 2.7. Let f(x) be a composite complex rational function with
f(x) = g(h(x)). Let n1, m1, and k1 be the numerator degrees of f(x), g(x),
and h(x) respectively and let n2, m2, and k2 be the denominator degrees of
f(x), g(x), and h(x) respectively. If k1 > k2, then

n1 − n2 = (m1 −m2)(k1 − k2).

Proof. Let h(x) = h1(x)/h2(x) and let

g(x) =
b
∏m1

i=1(x− αi)∏m2
j=1(x− βj)

have degree m. Then

f(x) =
f1(x)

f2(x)
=
bh2(x)m−m1

∏m1
i=1(h1(x)− αih2(x))

h2(x)m−m2
∏m2

j=1(h1(x)− βjh2(x))
.

Since k1 > k2 by assumption, the numerator and denominator degrees of
f(x) satisfy n1 + (m−m2)k2 +m2k1 = n2 + (m−m1)k2 +m1k1. It follows
that n1 − n2 = (m1 −m2)(k1 − k2) as desired.

The following property extends the relationship between the degree of a
polynomial and that of its derivative to the case of a rational function.

Lemma 2.8. Let f(x) be a complex rational function with numerator
degree n1 and denominator degree n2, and let f ′(x) have numerator degree n′1
and denominator degree n′2. If n1 − n2 6= 0, then n′1 − n′2 = n1 − n2 − 1.

Proof. Let

f(x) =
axn1 + f1(x)

xn2 + f2(x)

where a 6= 0, deg f1(x) < n1, and deg f2(x) < n2. Then the reduced form of
f ′(x) can be obtained by simplifying the expression

(an1x
n1−1 + f ′1(x))(xn2 + f2(x))− (axn1 + f1(x))(n2x

n2−1 + f ′2(x))

(xn2 + f2(x))2
.
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We first expand the numerator and denominator to write it in the form

a(n1 − n2)xn1+n2−1 + g1(x)

x2n2 + g2(x)

where deg g1(x) < n1 + n2 − 1 and deg g2 < 2n2. The numerator and de-
nominator degrees of f ′(x) then satisfy n′1 + 2n2 = n′2 + n1 + n2 − 1, and it
follows that n′1 − n′2 = n1 − n2 − 1.

Theorem 2.9. Let f(x) be a complex rational function with numerator
degree n1 and denominator degree n2. Let d be the greatest proper divisor
of n = deg f . If |n1 − n2| > 0 is divisible by a prime number p > d, then
f(x) is prime. If |n1 − n2| > 0 is divisible by a prime number p = d and
f(x) = g(h(x)) is composite, then either g(x) or h(x) is a polynomial.

Proof. Suppose that f(x) is composite. There exist complex rational
functions g(x) and h(x) of degrees m, k ≥ 2 respectively such that f(x) =
g(h(x)) and h(x) has larger numerator degree than denominator degree. Let
m1 and k1 be the numerator degrees of g(x) and h(x) respectively, and let
m2 and k2 be the denominator degrees of g(x) and h(x) respectively. Assume
without loss of generality that n1 > n2. Then n1−n2 = (m1−m2)(k1−k2),
and it follows that m1 > m2.

To prove the first claim, we assume that p > d. Since p | (n1−n2) where
n1−n2 = (m−m2)(k−k2), we have either p | (m−m2) or p | (k−k2). Then
either p ≤ m −m2 ≤ m ≤ d < p or p ≤ k − k2 ≤ k ≤ d < p, both cases
yielding a contradiction. Therefore f(x) is prime.

To prove the second claim, we assume that p = d. Since p | (n1−n2), we
have either p | (m−m2) or p | (k−k2). Then either d = p ≤ m−m2 ≤ d−m2

so that m2 = 0 and g(x) is a polynomial, or d = p ≤ k− k2 ≤ d− k2 so that
k2 = 0 and h(x) is a polynomial.

Corollary 2.10. Let f(x) be a complex rational function of degree n
and let d be the greatest proper divisor of n. If f(x) has a zero or a pole
whose multiplicity is divisible by a prime number p > d, then f(x) is prime.

Proof. Let f(x) have numerator degree n1, denominator degree n2, and
let

f(x) =
c
∏m1

i=1(x− αi)
ai∏m2

j=1(x− βj)bj
.

We first consider when f(x) has a zero whose multiplicity is divisible by a
prime number p > d, and we assume without loss of generality that this
zero is α1 which has multiplicity a1. We define the unit µ(x) = (α1x+ 1)/x
where α1 · 0− 1 · 1 = −1 6= 0. Then
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f(µ(x)) =
cxn−n1

∏m1
i=1((α1x+ 1)− αix)ai

xn−n2
∏m2

j=1((α1x+ 1)− βjx)bj

=
cxn−n1

∏m1
i=2((α1 − αi)x+ 1)ai

xn−n2
∏m2

j=1((α1 − βj)x+ 1)bj

has numerator degree N1 and denominator degree N2 satisfying

N1 + (n− n2) + n2 = N2 + (n− n1) + (n1 − a1).
Then N2 − N1 = a1 is divisible by p > d, so that f(µ(x)) satisfies the
conditions of Theorem 2.9 and is prime. Therefore f(x) is also prime.

If f(x) has a pole with multiplicity divisible by p > d, we consider the
unit ν(x) = 1/x. Then ν(f(x)) will have a zero with multiplicity divisible
by p > d, so that ν(f(x)) and f(x) are prime.

The remainder of this section is primarily dedicated to providing ex-
amples of prime rational functions. We compose these prime rational func-
tions with units to obtain examples of prime polynomials.

Theorem 2.11. Let f(x) be a complex rational function with numerator
degree n1 and denominator degree n2, where n1 and n2 are relatively prime
integers such that n1 > n2. If the denominator of f(x) is of the form (x−γ)n2

for some γ ∈ C, then f(x) is prime.

Proof. Suppose for contradiction that f(x) is composite. There exist
complex rational functions g(x) and h(x) such that f(x) = g(h(x)), where
g(x) is prime and h(x) = h1(x)/h2(x) satisfies deg h1(x) > deg h2(x). We
assume without loss of generality that h2(x) is monic. Let k1 = deg h1 and
k2 = deg h2, and let

g(x) =
c
∏m1

i=1(x− αi)∏m2
j=1(x− βj)

.

Since n1 > n2 and k1 > k2, it follows from Lemma 2.7 that m1 > m2. Then
f(x) is given by the expression

f(x) =
c
∏m1

i=1(h1(x)− αih2(x))

h2(x)m1−m2
∏m2

j=1(h1(x)− βjh2(x))
.

Since the denominator of f(x) is (x− γ)n2 , there exists a non-zero constant
c′ such that

(x− γ)n2 = c′h2(x)m1−m2

m2∏
j=1

(h1(x)− βjh2(x)).

Consequently, the linear factor x − γ must divide either h2(x)m1−m2 or
c′
∏m2

j=1(h1(x)− βjh2(x)), but this factor cannot divide both as this implies
that x − γ will also divide h1(x) where h(x) has no linear factor divid-
ing both its numerator and its denominator. Thus we obtain two cases:
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(x − γ)n2 = h2(x)m1−m2 and c′
∏m2

j=1(h1(x) − βjh2(x)) is a non-zero con-

stant, or (x−γ)n2 = c′
∏m2

j=1(h1(x)−βjh2(x)) and h2(x)m1−m2 is a non-zero
constant.

(i) If h2(x)m1−m2 is constant, then h2(x) is constant since m1 > m2, and
h(x) is a polynomial. Then f(x) = g(h(x)) has numerator degree n1 = m1k1
and denominator degree n2 = m2k1, contradicting n1 and n2 being relatively
prime.

(ii) If c′
∏m2

j=1(h1(x) − βjh2(x)) is constant, then m2 = 0 or h1(x) −
βjh2(x) = cj ∈ C∗ for j = 1, . . . ,m2. We reject m2 = 0, as this would
imply that f(x) has numerator degree n1 = m1k1 and denominator degree
n2 = m1k2, contradicting n1 and n2 being relatively prime. We now consider
the remaining possibility by choosing any two values βj1 and βj2 where
1 ≤ j1, j2 ≤ m2. We solve the expressions h1(x) − βj1h2(x) = cj1 and
h1(x)− βj2h2(x) = cj2 for h1(x) to obtain

cj1 + βj1h2(x) = cj2 + βj2h2(x).

It follows that cj1 − cj2 = (βj2 − βj1)h2(x). Since h2(x) is not constant, we
have cj1 = cj2 and βj1 = βj2 for every pair j1 and j2. We set βj = β and
cj = c for all j = 1, . . . ,m2. Now h1(x) = c+ βh2(x), and we let

ν(x) = c+ βx, µ(x) =
ν(x)

x
, and G(x) =

G1(x)

G2(x)
= g(µ(x))

so that h1(x) = ν(h2(x)) and f(x) = G(h2(x)). We note that µ(x) is a unit
since β · 0− c · 1 = −c 6= 0.

If k2 > 1, then f(x) has numerator degree n1 = degG1 · k2 and denomi-
nator degree n2 = degG2 ·k2, contradicting n1 and n2 being relatively prime
integers. If k2 = 1, then h2(x) is a unit. Since g(x) is prime, it follows that
G(x) and f(x) are prime.

All possible cases have been considered, and we conclude that f(x) is
prime.

Corollary 2.12. Let f(x) = (x−α1)
e1(x−α2)

e2 be a complex polyno-
mial such that e1, e2 ≥ 1 and α1 6= α2. Then f(x) is prime if and only if e1
and e2 are relatively prime.

Proof. Suppose that e1 and e1 are not relatively prime. There exists an
integer b ≥ 2 such that e1 = a1b and e2 = a2b for some positive integers
a1 and a2. We can then write g(x) = xb and h(x) = (x − α1)

a1(x − α2)
a2 ,

where both g(x) and h(x) have degrees at least 2. Then f(x) = g(h(x)) is
composite.

Conversely, suppose that e1 and e2 are relatively prime. Then e2 and
e1 + e2 are relatively prime as well. We define the units ν(x) = 1/x and
µ(x) = (α1x+ 1)/x where α1 · 0− 1 · 1 = −1 6= 0. The function
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ν(f(µ(x))) = ν

(
((α1x+ 1)− α1x)e1((α1x+ 1)− α2x)e2

xe1+e2

)
=

xe1+e2

((α1 − α2)x+ 1)e2

is prime by Theorem 2.11 since e2 and e1+e2 are relatively prime. Therefore
f(x) is prime.

Theorem 2.13. Let f(x) = (x−α1)
e1(x−α2)

e2(x−α3)
e3 be a complex

polynomial of degree n such that α1, α2 and α3 are distinct complex numbers
and e1, e2, e3 ≥ 1. If e1, e2, and e3 are pairwise relatively prime integers all
relatively prime to n, then f(x) is prime.

Proof. Suppose for contradiction that f(x) is composite. Then there
exist rational functions g(x) and h(x) with degrees at least 2 such that
f(x) = g(h(x)), where

g(x) =
c
∏m1

i=1(x− αi)∏m2
j=1(x− γj)

and h(x) = h1(x)/h2(x) satisfies k1 = deg h1 > deg h2 = k2. We consider the
polynomial f(x) as a rational function whose denominator is the constant
polynomial 1. Since n > 0 and k1 > k2, it follows that m1 > m2. Then f(x)
is given by the expression

f(x) =
c
∏m1

i=1(h1(x)− αih2(x))

h2(x)m1−m2
∏m2

j=1(h1(x)− γjh2(x))
.

Since the denominator of f(x) is the constant 1, there exists a non-zero
constant c′ such that

1 = c′h2(x)m1−m2

m2∏
j=1

(h1(x)− γjh2(x)).

It follows that h2(x) is a non-zero constant. Thus h(x) is a polynomial. Since
h(x) is not a constant polynomial, we must have m2 = 0. Therefore g(x) is
also a polynomial.

We now assume without loss of generality that f(x) is the composition
of the polynomials g(x) and h(x) where h(x) is monic, and we write g(x) in
the form

g(x) = a
m∏
i=1

(x− βi)bi

where β1, . . . , βm are all of the roots of g(x). Then

f(x) = a

m∏
i=1

(h(x)− βi)bi .

Since f(x) and h(x) are monic, we obtain a = 1. Since h(x)−βi and h(x)−βj
do not have any roots in common when i 6= j, it follows that 1 ≤ m ≤ 3.
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If m = 1, then f(x) = (h(x) − β1)b1 , and hence we obtain h(x) − β1 =
(x−α1)

r1(x−α2)
r2(x−α3)

r3 for some integers r1, r2, and r3. Then e1 = r1b1,
e2 = r2b1, and e3 = r3b1 so that b1 divides the pairwise relatively prime
integers e1, e2, and e3. Thus b1 = 1 and deg g = 1, yielding a contradiction.

If m = 2, then f(x) = (h(x)−β1)b1(h(x)−β2)b2 . We assume without loss
of generality that h(x)−β1 = (x−α1)

r1 and h(x)−β2 = (x−α2)
r2(x−α3)

r3

for some integers r1, r2, and r3. Then r1 = deg h = r2 + r3, e1 = r1b1,
e2 = r2b2, and e3 = r3b2 so that b2 divides the relatively prime integers e2
and e3. Thus b2 = 1 and r1 = r2+r3 = e2+e3. It follows that r1 = deg h > 1
divides both e1 and n = e1 + e2 + e3, yielding a contradiction.

If m = 3, then f(x) = (h(x)−β1)b1(h(x)−β2)b2(h(x)−β3)b3 . We assume
without loss of generality that h(x)−β1 = (x−α1)

r1 , h(x)−β2 = (x−α2)
r2 ,

and h(x) − β3 = (x − α3)
r3 where r1 = r2 = r3 = deg h. Then e1 = r1b1,

e2 = r2b2, and e3 = r3b3, so that deg h > 1 divides the pairwise relatively
prime integers e1, e2, and e3, yielding a contradiction.

All of the possible values of m have been rejected. Therefore f(x) is
prime.

Theorem 2.14. Let f(x) be a complex rational function with numerator
degree n1 and denominator degree n2. Let d be the greatest proper divisor of
n = deg f . If n2−n1 > d and n2−n1 is relatively prime to n1 as well as to
the multiplicities of all zeros of f(x), then f(x) is prime.

Proof. Suppose for a contradiction that f(x) is composite. There exist
complex rational functions g(x) and h(x) such that f(x) = g(h(x)). Let

f(x) =
a
∏N

i=1(x− ai)ei
f2(x)

, g(x) =
b
∏m1

i=1(x− αi)∏m2
j=1(x− βj)

, h(x) =
h1(x)

h2(x)

where k1 = deg h1 > deg h2 = k2. Since n2 − n1 > d > 0, we conclude from
Lemma 2.7 that n2 − n1 = (m2 −m1)(k1 − k2) so that m2 > m1, and we
obtain

a
∏N

i=1(x− ai)ei
f2(x)

=
bh2(x)m2−m1

∏m1
i=1(h1(x)− αih2(x))∏m2

j=1(h1(x)− βjh2(x))
.

If m2 −m1 = 1, then n2 − n1 = k1 − k2 ≤ k1 ≤ d yields a contradiction to
n2 − n1 > d, so we have m2 −m1 ≥ 2. Since n1 and n2 − n1 are relatively
prime, so are n1 and n2. It follows that h2(x) cannot be constant, since if
h(x) is a polynomial, its degree must divide both n1 and n2. Then h2(x) has

degree at least 1 and h2(x)m2−m1 divides a
∏N

i=1(x− ai)ei , where m2 −m1

must then divide ei for some i = 1, . . . , N . The integer m2−m1 also divides
n2−n1, which contradicts n2−n1 being relatively prime to the multiplicities
of all of the zeros of f(x). Therefore f(x) is prime.
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The following example shows that the condition of n2 − n1 being relati-
vely prime to the multiplicities of all of the zeros of f(x) is necessary.

Example 2.15. Let

f(x) =
(x− 3)4(x3 − 3x2 + 2x+ 2)

(x− 1)15
.

The zeros of x3 − 3x2 + 2x + 2 all have multiplicity 1, so n2 − n1 = 8
is relatively prime to all of these multiplicities as well as to n1 = 7. The
condition n2 − n1 > d = 5 is also satisfied. The integer n2 − n1 = 8 is not
relatively prime to 4, and this is sufficient for the above theorem to fail, for
f(x) = g(h(x)) where g(x) = (x− 1)/x5 and h(x) = (x− 1)3/(x− 3).

Corollary 2.16. Let f(x) be a complex polynomial of degree n with at
least two distinct roots and let d be the greatest proper divisor of n. If there
exists a root of f(x) with multiplicity e > d such that e is relatively prime
to n as well as to the multiplicities of all other roots of f(x), then f(x) is
prime.

Proof. Let

f(x) = a

N∏
i=1

(x− αi)
ei

where N ≥ 2, and assume without loss of generality that α1 is the root
with multiplicity e1 > d which is relatively prime to n and to all other
multiplicities. Define the unit µ(x) = (α1x+ 1)/x where α1 · 0− 1 · 1 = −1
6= 0. Then the function

f(µ(x)) =
a
∏N

i=1((α1x+ 1)− αix)ei

xn
=
a
∏N

i=2((α1 − αi)x+ 1))ei

xn

has numerator degree n1 = n− e1 and denominator degree n2 = n. Since e1
and n are relatively prime, so are n1 and n2. Then n2 − n1 = e1 > d and
n2 − n1 is relatively prime to n1 as well as to ei for all i = 2, . . . , N . Then
f(µ(x)) satisfies the conditions of Theorem 2.14 and is prime. Therefore
f(x) is also prime.

3. Critical values of composite rational functions. Let f(x) be a
non-constant complex rational function. Let x0 ∈ C lie in the domain of the
function f(x). The smallest integer i ≥ 1 such that f (i)(x0) 6= 0 is called
the valency of f(x) at x0 and is denoted by vf (x0). If vf (x0) ≥ 2, then x0
is called a critical point of f(x). A number t0 ∈ C is a critical value of f(x)
if there exists a critical point x0 of f(x) such that f(x0) = t0.

Theorem 3.1. Let f(x) be a complex rational function of degree n and
let d be the greatest proper divisor of n. Suppose that f(x) has a critical
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point x0 ∈ C such that its valency vf (x0) is divisible by a prime number
p > d. Then f(x) is prime.

Proof. Let vf (x0) = e be the valency of some critical point x0 of f(x)

such that e is divisible by a prime number p > d. It follows that f (i)(x0) = 0
for all i = 1, . . . , e − 1 and f (e)(x0) 6= 0. Then f ′(x) has a zero of or-
der e − 1 at x0, so there exists a rational function q(x) such that f ′(x) =
(x− x0)e−1q(x) where q(x0) 6= 0. Then there exists a rational function y(x)
such that f(x) − f(x0) = (x − x0)

ey(x) where y(x0) 6= 0. We define the
unit µ(x) = x − f(x0). Then x0 is a zero of µ(f(x)) = (x − x0)ey(x) with
multiplicity e divisible by the prime number p > d. Thus µ(f(x)) is prime
by Corollary 2.10, and f(x) is prime as well.

A useful tool in the study of a polynomial’s critical values is the dis-
criminant, which can be described through the resultant of two polynomi-
als. Let R be an integral domain and let K be its field of fractions. Let
u(x) = anx

n + · · ·+ a1x+ a0 and v(x) = bmx
m + · · ·+ b1x+ b0 be polyno-

mials over R. Let α1, . . . , αn and β1, . . . , βm be all of the roots of u(x) and
v(x) respectively in an algebraic closure of K. The resultant of u(x) and
v(x) is given by

Resx(u(x), v(x)) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj).

We then define the discriminant of the polynomial u(x) by

D(u(x)) =
(−1)n(n−1)/2

an
Resx(u(x), u′(x)).

We extend this concept to rational functions as follows. Let K be a field,
and let u(x) = u1(x)/u2(x) and v(x) = v1(x)/v2(x) be rational functions
over K in their most reduced forms, where we assume without loss of gen-
erality that u2(x) and v2(x) are monic. We then define the resultant of u(x)
and v(x) by

Resx(u(x), v(x)) = Resx(u1(x), v1(x)).

From this definition, we may obtain information regarding the critical values
of rational functions similar to what can be obtained for polynomials from
the standard definition of the resultant. We require the following properties,
which are analogous to those for the resultant of two polynomials found
in [1]. The proof is omitted.

(1) Let u(x) and v(x) be rational functions as described above. Let
u1(x) = anx

n + · · ·+ a1x+ a0 and v1(x) = bmx
m + · · ·+ b1x+ b0 be

polynomials with roots α1, . . . , αn and β1, . . . , βm respectively in an
algebraic closure of K. Then

Resx(v(x), u(x)) = (−1)nm Resx(u(x), v(x)).
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(2) Under the same hypotheses as in (1),

Resx(u(x), v(x)) = amn

n∏
i=1

v1(αi).

(3) u(x) and v(x) have a zero in common if and only if

Resx(u(x), v(x)) = 0.

(4) For an additional rational function w(x) = w1(x)/w2(x) over K,

Resx(u(x), v(x)w(x)) = Resx(u1(x), p(x)) Resx(u1(x), q(x)),

where p(x) is the quotient obtained from dividing v1(x) by the monic
greatest common divisor of v1(x) and w2(x), and q(x) is the quotient
obtained from dividing w1(x) by the monic greatest common divisor
of w1(x) and v2(x).

Let f(x) be a complex rational function and let f ′(x) be the derivative
of f(x). We write f(x) = f1(x)/f2(x) and f ′(x) = ϕ1(x)/ϕ2(x), where we
assume without loss of generality that ϕ2(x) is monic. This expression for
f ′(x) is the most reduced expression of

F (x) =
f ′1(x)f2(x)− f1(x)f ′2(x)

f2(x)2
,

and it follows that ϕ2(x) divides f2(x)2. Since the reduced expression for
f ′(x) is obtained by simplifying linear factors from the numerator and de-
nominator of F (x), where f1(x) and f2(x) share no common linear factors,
the only such linear factors which can be simplified must divide both f2(x)
and f ′2(x). We conclude that f2(x) divides ϕ2(x). Thus f(x) and f ′(x) have
the same domain.

Let β1, . . . , βm be all of the zeros of f ′(x). Then βi is in the domain of
f ′(x), and also in the domain of f(x), for i = 1, . . . ,m. Let t be a variable,
let b be the leading coefficient of ϕ1(x), and let n = deg f(x). Consider the
function R(t) = Resx(f(x)− t, f ′(x)). Using the properties of the resultant,
we have

R(t) = Resx

(
f1(x)− tf2(x)

f2(x)
,
ϕ1(x)

ϕ2(x)

)
= Resx

(
f1(x)− tf2(x), b

m∏
i=1

(x− βi)
)

= (−1)nmbn
m∏
i=1

(f1(βi)− tf2(βi)) = (−1)nmbn
m∏
i=1

f2(βi)
m∏
i=1

(f(βi)− t).

We remark that since βi is a zero of f ′(x), it is a critical point of f(x)
and f(βi) is a critical value of f(x) for i = 1, . . . ,m. It immediately follows
that R(t0) = 0 if and only if t0 is a critical value of f(x). Similarly to the
definition of the multiplicity of a critical value of a polynomial found in [1],
we define the multiplicity of the critical value t0 as the multiplicity of t0 as
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a root of R(t), and we call a critical value with multiplicity equal to one a
simple critical value.

Lemma 3.2. Let f(x) be a composite complex rational function of de-
gree n and let d be the greatest proper divisor of n. Let f(x) = g(h(x)) where
h(x) = h1(x)/h2(x) satisfies k = deg h1(x) > deg h2(x), and let n1 and n2
be the numerator and denominator degrees of f(x) respectively. Let R(t) be
the resultant of f(x)− t and f ′(x). Then there exists c ∈ C∗, a non-negative
integer `, and a polynomial p(x) dividing the numerator of h′(x) such that

R(t) = ct`
(
Resx(g(x)− t, g′(x))

)k
Resx(f(x)− t, p(x)),

where ` > 0 if n1 and n2 are relatively prime integers satisfying n2−n1 > d.

Proof. We will write u(t) ∼ v(t) to denote that the functions u(t) and
v(t) are equal up to multiplication by a constant. Let

g′(x) =
b
∏m1

i=1(x− αi)∏m2
j=1(x− βj)

, h′(x) =
h′1(x)h2(x)− h1(x)h′2(x)

h2(x)2
=

q1(x)

h2(x)q2(x)

where q1(x) and q2(x) share no common factor, and let m = deg g′(x). Then

f ′(x) =
bh2(x)m−m1q1(x)

∏m1
i=1(h1(x)− αih2(x))

h2(x)m−m2+1q2(x)
∏m2

j=1(h1(x)− βjh2(x))
.

The only linear factors which can be simplified in this expression for f ′(x) are
shared factors between h2(x)m−m1 and h2(x)m−m2+1q2(x) or shared factors
between q1(x) and

∏m2
j=1(h1(x) − βjh2(x)). We let H(x) be the quotient

obtained from dividing h2(x)m−m1 by the monic greatest common divisor of
h2(x)m−m1 and h2(x)m−m2+1q2(x), and we let p(x) be the quotient obtained
from dividing q1(x) by the monic greatest common divisor of q1(x) and∏m2

j=1(h1(x)− βjh2(x)). Letting R(t) be the resultant of f(x)− t and f ′(x),
we then have

R(t) = Resx

(
f1(x)− tf2(x), bH(x)p(x)

m1∏
i=1

(h1(x)− αih2(x))
)
.

We consider the above expression as a product of three factors.

The first factor is

R1 = Resx

(
f1(x)− tf2(x),

m1∏
i=1

(h1(x)− αih2(x))
)
.

For each i = 1, . . . ,m1, the equation h1(x) − αih2(x) = 0 has k solutions
si,1, . . . , si,k. For any index r, the solution si,r satisfies h1(si,r) − αih2(si,r)
= 0, so that h(si,r) = αi. Since αi is a zero of g′(x) for i = 1, . . . ,m1, each
of these zeros must also be in the domain of g(x) and g(αi) = g(h(si,r))
= f(si,r) for i = 1, . . . ,m1 and r = 1, . . . , k. We then have
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R1 ∼
m1∏
i=1

k∏
r=1

(f1(si,r)− tf2(si,r)) ∼
m1∏
i=1

k∏
r=1

(f(si,r)− t)

∼
m1∏
i=1

k∏
r=1

(g(αi)− t) ∼
(m1∏
i=1

(g(αi)− t)
)k
∼
(
Resx(g(x)− t, g′(x))

)k
.

The second factor is

R2 = Resx(f1(x)− tf2(x), H(x)).

If m1 ≥ m2, then H(x) is constant and this factor is constant. If m2 > m1,
H(x) will not be constant if h2(x) is not constant and m2−m1 > 2. In this
case, we let ` = degH and let s1, . . . , s` be all of the roots of H(x). Since
H(x) divides h2(x)m2−m1 , every such root s of H(x) satisfies h2(s) = 0, and
so |h(s)| is infinite. Since m2 > m1, the function f(x) = g(h(x)) has a value
of zero at x = sr for r = 1, . . . , `. Then we have

R2 ∼
∏̀
r=1

(f1(sr)− tf2(sr)) ∼
∏̀
r=1

(f(sr)− t) ∼ (−t)`.

In particular, if n2 − n1 > d where n1 and n2 are relatively prime integers,
from Lemma 2.7 we have d < n2−n1 = (deg g2−deg g1)(deg h1−deg h2) ≤
(deg g2 − deg g1)d, so that deg g2 − deg g1 > 1. From Lemma 2.8, we then
have m2 − m1 = −(deg g1 − deg g2 − 1) = deg g2 − deg g1 + 1 > 2. The
polynomial h2(x) cannot be constant, as this would imply that k = deg h1
would divide both n1 and n2, yielding a contradiction. It follows that H(x)
will not be constant in this case, and by our definition of the function H(x)
we have

` = degH ≥ (m2 −m1 − 1)k2 − deg q2

≥ (m2 −m1 − 2)k2 = (deg g2 − deg g1 − 1)k2.

The final factor is

R3 = Resx(f(x)− t, b · p(x)),

and we conclude that for some non-zero complex number c we have

R(t) = ct`
(
Resx(g(x)− t, g′(x))

)k
Resx(f(x)− t, p(x))

where ` is a non-negative integer such that ` > 0 when n1 and n2 are
relatively prime integers satisfying n2 − n1 > d.

Corollary 3.3. Let f(x) be a composite complex rational function of
degree n which has a right composition factor of degree k. Let R(t) be the
resultant of f(x)−t and f ′(x). Then there exists a non-negative integer ` and
polynomials A(t) and B(t) such that R(t) = t`[A(t)]kB(t) and degB(t) ≤
2k−1. Moreover, if d is the greatest proper divisor of n, if n1 and n2 are the
numerator and denominator degrees of f(x) respectively, and if n1 and n2
are relatively prime integers such that n2 − n1 > d, then ` > 0.
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Proof. Recall that we write u(t) ∼ v(t) to denote that the functions
u(t) and v(t) are equal up to multiplication by a constant. Since f(x) is
composite with a right composition factor of degree k, there exist complex
rational functions g(x) and h(x) = h1(x)/h2(x) such that f(x) = g(h(x))
and k = deg h1(x) > deg h2(x). Then there exists c ∈ C∗, a non-negative
integer `, and a polynomial p(x) which divides the numerator of h′(x), such
that

R(t) = ct`
(
Resx(g(x)− t, g′(x))

)k
Resx(f(x)− t, p(x)),

and where ` > 0 if n1 and n2 are relatively prime integers satisfying
n2 − n1 > d.

Setting A(t) = Resx(g(x) − t, g′(x)) and B(t) = cResx(f(x) − t, p(x))
yields the desired expression for R(t), so it only remains to show that
degB(t) ≤ 2k − 1. We let p(x) = b

∏r
i=1(x − αi). Since p(x) divides the

numerator of h′(x), it follows that p(x) must divide the numerator of

h′1(x)h2(x)− h1(x)h′2(x)

h2(x)2
,

so that r ≤ deg h1(x) + deg h2(x)− 1 ≤ 2k − 1. Writing B(t) explicitly, we
obtain

B(t) = cResx

(
f1(x)− tf2(x)

f2(x)
, p(x)

)
∼ Resx

(
f1(x)− tf2(x),

r∏
i=1

(x− αi)
)

∼
r∏

i=1

(f1(αi)− tf2(αi))

so that degB(t) ≤ r ≤ 2k − 1.

The following two results show that the polynomial R(t) obtained by
taking the resultant of a complex rational function f(x)−t and its derivative
can be useful in determining whether f(x) is prime. The first result concerns
the non-zero critical values of f(x), and its proof follows a similar method
to [1, proof of Theorem 1]. The second result concerns only the critical value
zero.

Theorem 3.4. Let f(x) be a complex rational function of degree n and
let d be the greatest proper divisor of n. Suppose that f(x) has at least 2d
non-zero simple critical values. Then f(x) is prime.

Proof. Suppose for contradiction that f(x) is composite. There exist
complex rational functions g(x) and h(x) of degrees m, k ≥ 2 respectively
such that f(x) = g(h(x)). We let R(t) be the resultant of f(x)− t and f ′(x),
and we write R(t) = t`[A(t)]kB(t) where ` is a non-negative integer and
degB(t) ≤ 2k − 1. Let δ be the number of non-zero simple critical values
of f(x). Since these critical values must be roots of the polynomial B(t), we
obtain
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2k − 1 ≥ degB(t) ≥ δ ≥ 2d ≥ 2k,

which is a contradiction. Therefore f(x) is prime.

Theorem 3.5. Let f(x) be a complex rational function of degree n, let d
be the greatest proper divisor of n, and let n1 and n2 be the numerator and
denominator degrees of f(x) respectively. If n1 and n2 are relatively prime
integers such that n2 − n1 > d, and if zero is a critical value of f(x) with
multiplicity e < (n2 − n1 − d)/d, then f(x) is prime. In particular, if zero
is not a critical value of f(x), then f(x) is prime.

Proof. Suppose for contradiction that f(x) is composite. There exist
complex rational functions g(x) and h(x) such that f(x) = g(h(x)) and that
h(x) has larger numerator degree than denominator degree. Let m1 and k1
be the numerator degrees of g(x) and h(x) respectively, and let m2 and k2
be the denominator degrees of g(x) and h(x) respectively. Since we assume
that k1 > k2 and n2 > n1, we have n2−n1 = (m2−m1)(k1− k2). It follows
that m2 > m1 and

m2 −m1 − 1 =
n2 − n1
k1 − k2

− 1 ≥ n2 − n1
k1

− 1 ≥ n2 − n1
d

− 1 =
n2 − n1 − d

d
.

Since n1 and n2 are relatively prime, we know that h(x) cannot be a polyno-
mial as this would imply deg h divides both n1 and n2. Then k2 ≥ 1 and we
obtain (m2−m1− 1)k2 ≥ m2−m1− 1 ≥ (n2 − n1 − d)/d. We now let R(t)
be the resultant of f(x) − t and f ′(x), and we write R(t) = t`[A(t)]k1B(t).
From the arguments presented in the proof of Lemma 3.2, we have ` ≥
(m2 −m1 − 1)k2. It follows that zero is a critical value of f(x) of multiplic-
ity at least (m2 −m1 − 1)k2; but by assumption the multiplicity e of this
critical value satisfies e < (n2 − n1 − d)/d ≤ (m2 − m1 − 1)k2, yielding a
contradiction.

The following result provides some examples of prime functions.

Proposition 3.6. Let f(x) = (xn + a)/(xm + b) where a, b ∈ C are not
both zero, let d be the greatest proper divisor of deg f , and let n and m be
relatively prime positive integers such that |n−m| > d. Then f(x) is prime.

Proof. We assume without loss of generality that n ≤ m, and we consider
two cases.

Assume first that a 6= 0. Suppose for contradiction that f(x) is compos-
ite. Since m and n are relatively prime integers, it follows that n 6= m thus
n < m. Then zero must be a critical value of f(x) by Lemma 3.2. We show
that no critical point of f(x) yields zero as a critical value.

If b 6= 0, then

f ′(x) =
xn−1((n−m)xm + (−am)xm−n + (bn))

(xm + b)2
.
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Let ξ1, . . . , ξm+n−1 be all of the zeros of f ′(x). Then ξ1, . . . , ξm+n−1 are the
critical points of f(x), and for each i = 1, . . . ,m+n−1 we have either ξn−1i
= 0 or (n−m)ξmi +(−am)ξm−ni +(bn) = 0. A critical point ξ with ξn−1 = 0
satisfies ξ = 0 and f(ξ) = a/b 6= 0. For the second case we assume towards
a contradiction that a critical point ξ satisfies (n − m)ξm + (−am)ξm−n

+ (bn) = 0. From f(ξ) = 0 we have ξn + a = 0, so that ξn = −a 6= 0 and
(n −m)ξm + (m)ξm−nξn + (bn) = n(ξm + b) = 0. Then ξm + b = 0 yields
a contradiction, since f(x) has no linear factor dividing both its numerator
and its denominator.

If b = 0, then

f ′(x) =
(n−m)xn + (−am)

xm+1
.

Let ξ1, . . . , ξn be all of the zeros of f ′(x). Then ξ1, . . . , ξn are the critical
points of f(x), and for each j = 1, . . . , n we have ξnj = −am/(m− n). If
f(ξj) = 0, then −a = −am/(m− n) yields m−n = m, contradicting n > 0.

Therefore zero cannot be a critical value of the function f(x), and we
conclude that f(x) is prime.

Assume now that a = 0. Then by assumption we have b 6= 0, and f(x) =
xn/(xm + b) is prime if and only if F (x) = (xm + b)/xn is prime. Since
m and n are relatively prime integers such that m > n, we conclude by
Theorem 2.11 that F (x) is prime. Therefore f(x) is prime.

We conclude this section by providing some examples which show that,
in general, knowing whether the numerator and denominator polynomials of
a rational function f(x) are prime or composite is not sufficient to conclude
whether f(x) itself is prime or composite.

Example 3.7. Let

f(x) =
f1(x)

f2(x)
=

4x3 + 6x2 + 4x+ 1

x4 − 2x3 − x2
.

Then f1(x) is prime, f2(x) is prime by [1, Theorem 1] since all of its critical
values are simple, and f(x) is composite since it is the composition of g(x) =

−x2−1
x−2 and h(x) = x2+2x+1

x2 .

Example 3.8. Let

f(x) =
f1(x)

f2(x)
=
x5 + 1

x3
.

Then f1(x) and f2(x) are both prime, and f(x) is prime.

Example 3.9. Let

f(x) =
f1(x)

f2(x)
=
x2 + 1

x4
.

Then f1(x) is prime, f2(x) is composite, and f(x) is composite.
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Example 3.10. Let

f(x) =
f1(x)

f2(x)
=
x5 + 1

x4
.

Then f1(x) is prime, f2(x) is composite, and f(x) is prime.

Example 3.11. Let

f(x) =
f1(x)

f2(x)
=
x9 + 1

x6
.

Then f1(x), f2(x), and f(x) are all composite.

Example 3.12. Let

f(x) =
f1(x)

f2(x)
=
x9 + 1

x4
.

Then f1(x) and f2(x) are composite, and f(x) is prime by Theorem 2.11.

4. Concluding remark. It would be of interest to find other results
similar to Proposition 2.3 and Lemma 2.7. In particular, another mapping
ψ : C(x) → Z for which ψ(g ◦ h) = ψ(g) · ψ(h) is satisfied for rational
functions g and h could potentially provide many more examples of prime
functions.
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