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1. Introduction. Let H denote the complex upper half-plane. Let k be
an even integer and Mk be the space of modular forms of weight k on SL2(Z).
The Eisenstein series of weight k ≥ 4 for SL2(Z) is defined by

Ek(τ) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn,

where q = e2πiτ with τ ∈ H, σk−1(n) =
∑

d|n d
k−1 and t

et−1 =
∑∞

k=0Bk
tk

k! .
It is well known that Ek ∈Mk for all k ≥ 4. The Ramanujan delta function
is given by

∆(τ) = q

∞∏
n=1

(1− qn)24.

The function ∆ ∈ M12 is the unique normalized cusp form of the smallest
weight for SL2(Z). For any integer k ∈ 2Z, a weakly holomorphic modular
form of weight k on SL2(Z) is a meromorphic modular form whose poles (if
any) are at i∞. The function

j(τ) =
E3

4(τ)

∆(τ)
= q−1 + 744 +

∞∑
n=1

c(n)qn

is a fundamental weakly holomorphic modular form of weight 0. In 1918,
the “circle method” was invented by G. H. Hardy and S. Ramanujan [7] to
derive the well known asymptotic formula for the partition function p(n):

(1) p(n) ∼ eπ
√

2n/3

4
√

3n
as n→∞.
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Using the circle method, H. Petersson [8] and later H. Rademacher [9] inde-
pendently derived the asymptotic formula for the Fourier coefficients c(n)
of the j-function:

(2) c(n) ∼ e4π
√
n

√
2n3/4

as n→∞.

H. Rademacher and H. S. Zuckerman [10, 11, 12] subsequently obtained
exact formulas for the coefficients of generic weakly holomorphic modular
forms of negative weight.

In a recent article [4], M. Dewar and M. R. Murty gave a new proof
of (1) without using the circle method. Subsequently in [5], they derived
an asymptotic formula for the Fourier coefficients of any weakly holomor-
phic modular form of integral weight for SL2(Z) by using the asymptotic
formula (1) derived in [4] and without using the circle method.

Inspired by the method of Dewar and Murty, in this article we first de-
rive an asymptotic formula for the Fourier coefficients of a certain class of
weakly holomorphic Jacobi forms. Using this asymptotic formula we esti-
mate the growth of the Fourier coefficients of two important weak Jacobi
forms of index 1. Secondly, we derive an asymptotic formula for the Fourier
coefficients of a certain class of weakly holomorphic modular forms which
includes the functions θk/ηl for all integers k, l ≥ 1, where θ is the weight
1/2 modular form and η is the Dedekind eta function. Since we apply the
method of Dewar and Murty, our proof does not use the circle method.

We now describe our results more precisely. Let k ≥ 4 be an even integer
and m be any positive integer. We define the Jacobi–Eisenstein series of
weight k and index m as

Ek,m(τ, z) =
1

2

∑
c,d∈Z
(c,d)=1

∑
λ∈Z

(cτ + d)−ke2πim(λ2 aτ+b
cτ+d

+2λ z
cτ+d

− cz2

cτ+d
),

where a, b ∈ Z are chosen so that
(
a
c
b
d

)
∈ SL2(Z). Let

θ(τ) =
∑
n∈Z

qn
2

be the usual theta function, which is a modular form of weight 1/2 for Γ0(4).
We prove the following theorem.

Theorem 1.1. Let
f(τ) =

∑
n≥0

af (n)qn

be any q-series with non-negative real coefficients af (n) such that

af (n) ∼
cfe

A
√
n

nα
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for positive real numbers cf , A and α. For any positive integers k and m with
k ≥ 4 even, define the complex numbers bfEk,m(N, r) by the Fourier series

fEk,m(τ, z) = f(τ)Ek,m(τ, z) =
∑

N≥0, r∈Z
N≡−r2 (mod 4m)

bfEk,m(N, r)e2πi
N+r2

4m
τe2πirz.

Also, for any positive integer k define the real numbers afθk(n) by the Fourier
series

fθk(τ) = f(τ)θk(τ) =
∑
n≥0

afθk(n)qn, q = e2πiτ .

Then

(i) bfEk,m(N, r) ∼ cf ik
(

4π

A

)k−1/2
(2m)−1/2(4m)α−k/2+1/4 e

A
2
√
m

√
N

Nα−k/2+1/4

for any sequence {(N, r) ∈ Z× Z : N ≡ −r2 (mod 4m)} as N →∞, and

(ii) afθk(n) ∼ cf
(

2π

A

)k/2 eA
√
n

nα−k/4
as n→∞.

We give two interesting applications of Theorem 1.1. The first one esti-
mates the growth of the Fourier coefficients of the weak Jacobi forms

ϕ0,1 =
E2

4E4,1 − E6E6,1

144∆
and ϕ−2,1 =

E6E4,1 − E4E6,1

144∆
.

These are weak Jacobi forms of index 1 and non-positive weight. They gen-
erate the ring of weak Jacobi forms of even weight freely over the ring of
modular forms on SL2(Z) [3, §4.3].

Corollary 1.2. For k = 0,−2, let

ϕk,1(τ, z) =
∑

N≥−1, r∈Z
N≡−r2 (mod 4), N+r2≥0

bk(N, r)e
2πiN+r2

4
τe2πirz.

Then

bk(N, r) = o

(
e2π
√
N

N1−k/2

)
for any sequence {(N, r) ∈ Z× Z : N ≡ −r2 (mod 4)} as N →∞.

Remark 1.3. Note that the Fourier coefficients of any weak Jacobi form
which is not a Jacobi form have exponential growth, and hence the above
corollary is not obvious.

Let η(τ) = q1/24
∏
n≥1(1−qn) denote the Dedekind eta function. Another

consequence of our theorem is the following corollary.
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Corollary 1.4. Let k and l be positive integers. Assume that

θk

ηl
(τ) =

∑
n≥0

ak,l(n)qn−l/24.

Then the coefficients ak,l(n) satisfy the asymptotic formula

ak,l(n) ∼ 1√
2

(
l

24

)(l+1)/24(√6

l

)k/2 eπ√2ln/3

n(l−k+3)/4
.

This article is organized as follows. In the next section, we define Ja-
cobi forms, weak Jacobi forms and weakly holomorphic Jacobi forms and
recall the theta decomposition at infinity of a Jacobi form. Then we recall
the Fourier expansion of the Jacobi–Eisenstien series and establish some
estimates for the coefficients, which is crucial in proving Theorem 1.1(i).
We divide Section 3 into two subsections. In Subsection 3.1 we obtain the
asymptotic formula for the coefficients bfEk,m(N, r), whereas the asymptotic
formula for the coefficients afθk(n) is established in the second subsection.
In Section 4, we obtain our applications by proving Corollaries 1.2 and 1.4.

2. Preliminaries. For any z ∈ C and any real number c we denote
e2πiz/c by ec(z). If c = 1, we simply write e(z) instead of e1(z). Let k be any
integer and m be any positive integer. Following [3, §4.1], we define Jacobi
forms, weak Jacobi forms and weakly holomorphic Jacobi forms.

Definition 2.1. A holomorphic function φ from H×C to C is said to
be a weakly holomorphic Jacobi form of weight k and index m if it satisfies
the following conditions:

(i) For any
(
a
c
b
d

)
∈ SL2(Z) we have

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

(
mz2

cτ + d

)
φ(τ, z).

(ii) For any (λ, µ) ∈ Z× Z we have

φ(τ, z + λτ + µ) = e
(
−m(λ2τ + 2λz)

)
φ(τ, z).

(iii) The function ϕ has a Fourier expansion of the form

φ(τ, z) =
∑
N,r∈Z

N≥N0, N≡−r2 (mod 4m)

bφ(N, r)e

(
N + r2

4m
τ + rz

)

for some N0 ∈ Z.

If φ also satisfies the condition bφ(N, r) = 0 unless N + r2 ≥ 0 then it is
called a weak Jacobi form of weight k and index m. Further, if φ satisfies
the even stronger condition that bφ(N, r) = 0 unless N ≥ 0 then it is called
a Jacobi form of weight k and index m.
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Let m be any positive integer. For any µ (mod 2m) we have the following
Jacobi theta functions:

(3) θm,µ(τ, z) =
∑
r∈Z

r≡µ (mod 2m)

e

(
r2

4m
τ + rz

)
.

As an application of the Poisson summation formula we obtain

θm,µ(τ + 1, z) = e4m(µ2)θm,µ(τ, z),

θm,µ

(
−1

τ
,
z

τ

)
=

√
τ

2mi
e

(
mz2

τ

) ∑
ν (mod 2m)

e2m(−µν)θm,ν(τ, z).
(4)

Property (ii) in the above definition of Jacobi form implies that bφ(N, r) =
bφ(N, r′) whenever r ≡ r′ (mod 2m). In particular any Jacobi form φ has
the following theta decomposition [6, §5]:

(5) φ(τ, z) =
2m−1∑
µ=0

hµ(τ)θm,µ(τ, z),

where

hµ(τ) =
∑

N≥0, N≡−µ2 (mod 4m)

bφ(N,µ)e

(
N

4m
τ

)
.

Since any Jacobi form has property (i) and θm,µ satisfies (4), hµ (µ =
0, 1, . . . , 2m− 1) has the following transformation properties:

hµ(τ + 1) = e4m(−µ2)hµ(τ),

hµ

(
−1

τ

)
=

τk√
2mτ/i

2m−1∑
ν=0

e2m(µν)hν(τ).
(6)

Let k ≥ 4 be an even integer and m ≥ 1 be any integer. As in the
theory of modular forms, we obtain our first examples of Jacobi forms by
constructing Eisenstein series. The Jacobi–Eisenstein series Ek,m(τ, z) of
weight k and index m is defined before the statement of Theorem 1.1, and
it has the following Fourier series expansion:

Ek,m(τ, z) =
∑
N,r∈Z

N≥0, N≡−r2 (mod 4m)

ek,m(N, r)e

(
N + r2

4m
τ + rz

)

where ek,m(N, r) for N = 0 equals 1 if r ≡ 0 (mod 2m) and 0 otherwise,
while for N ≥ 1 we have

ek.m(N, r) = (−1)k/2
πk−1/2

2k−2Γ (k − 1/2)ζ(k − 1)mk−1N
k−3/2

∞∑
a=1

Na(QN,r)

ak−1
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where

Na(QN,r) = #

{
λ (mod a) : mλ2 + rλ+

N + r2

4m
≡ 0 (mod a)

}
.

Note that for any pair (N, r) ∈ N × Z such that N ≡ −r2 (mod 4m),
(−1)k/2ek,m(N, r) is always positive and ek,m(0, r) is either 1 or 0 (for more
details of the definition and Fourier expansion of Ek,m(τ, z) see [6, §2]).

The restriction of any Jacobi form φ(τ, z) to z = 0 gives a modular form
of the same weight. Since Ek,m(τ, 0) is a modular form of weight k and
ek,m(N, r) = ek,m(N, r′) for r ≡ r′ (mod 2m), there exist positive constants
C ′k,m and Ck,m depending on k,m such that

(7) C ′k,m ≤ (−1)k/2ek,m(N, r) ≤ Ck,mNk−1

for any pair (N, r) ∈ N× Z with N ≡ −r2 (mod 4m).

3. Proof of Theorem 1.1

3.1. Proof of Theorem 1.1(i). To derive the asymptotic formula (i)
for the coefficients of the function fEk,m(τ, z), we extend the method of
Dewar and Murty [5] to the case of Jacobi forms, which presents techni-
cal difficulties due to the nature of Jacobi forms. We construct a function
φk,m(τ, z) with positive Fourier coefficients by removing some terms from
the Fourier expansion of Ek,m(τ, z) and derive an asymptotic formula for
the coefficients of fφk,m(τ, z) by considering the lim sup and the lim inf
cases separately. We obtain the asymptotic formula for the coefficients of the
function fEk,m(τ, z) by handling suitably the combination of fφk,m(τ, z) and
fθm,0(τ, z), where θm,0 is one of the Jacobi theta series occurring in (3). The
proof of [5, Theorem 3] relies on the asymptotic for Ek(q) as q → 1 which
Dewar and Murty deduce by using the transformation properties of Ek(τ),
whereas to prove our theorem we use the transformation properties of the 2m
functions hµ(τ) which appear in the theta decomposition (5) of Ek,m(τ, z)
and hence deal with a certain combination of the functions hµ(τ).

Let us set

(8) φk,m(τ, z) = (−1)k/2
(
Ek,m(τ, z)−

∑
r∈2mZ

e

(
r2

4m
τ + rz

))
.

Then

φk,m(τ, z) =
∑
N,r∈Z

N≥1, N≡−r2 (mod 4m)

bφk,m(N, r)e

(
N + r2

4m
τ + rz

)
,

where

bφk,m(N, r) = (−1)k/2ek,m(N, r),
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and therefore bφk,m(N, r) is always positive. Suppose we have the following
lemma.

Lemma 3.1. For

fφk,m(τ, z) = f(τ)φk,m(τ, z)

=
∑
N,r∈Z

N≥1, N≡−r2 (mod 4m)

bfφk,m(N, r)e

(
N + r2

4m
τ + rz

)
,

we have

(9) bfφk,m(N, r) ∼ cf
(

4π

A

)k−1/2
(2m)−1/2(4m)α−k/2+1/4 e

A
2
√
m

√
N

Nα−k/2+1/4

for any sequence {(N, r) ∈ Z× Z : N ≡ −r2 (mod 4m)} as N →∞.

Then we derive the asymptotic formula for the coefficients bfEk,m(N, r)
of the function fEk,m(τ, z). Using (8), we have

(10) f(τ)Ek,m(τ, z) = (−1)k/2f(τ)φk,m(τ, z) + f(τ)θm,0(τ, z),

where

θm,0(τ, z) =
∑
r∈2mZ

e

(
r2

4m
τ + rz

)
is one of the Jacobi theta functions defined by (3). We have

f(τ)θm,0(τ, z) =
∑

N∈4mZ, r∈2mZ
bfθm,0(N, r)e

(
N + r2

4m
τ

)
e(rz),

where
bfθm,0(N, r) = af (N/4m).

Therefore

(11) bfθm,0(N, r) ∼ cf (4m)α
e

A
2
√
m

√
N

Nα
= o

(
e

A
2
√
m

√
N

Nα−k/2+1/4

)
for any sequence {(N, r) ∈ 4mZ× 2mZ} as N →∞.

From (10), we have

bfEk,m(N, r) ∼ ikbfφk,m(N, r) + bfθm,0(N, r).

Using (9) and (11) in the above equation, we get

bfEk,m(N, r) ∼ cf ik
(

4π

A

)k−1/2
(2m)−1/2(4m)α−k/2+1/4 e

A
2
√
m

√
N

Nα−k/2+1/4

for any sequence {(N, r) ∈ Z× Z : N ≡ −r2 (mod 4m)} as N →∞.

Now we prove Lemma 3.1. The key step is to approximate a certain ex-
ponential term by using the following real valued functions F (x), G(x), and
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then use the modularity of the 2m functions hµ(τ): Consider the following
functions:

F (x) :=
√

1− x : (0, 1)→ R>0,(12)

G(x) :=
1

(1− x)α
: (0, 1)→ R>0,(13)

where α is any positive real number. For 0 < x ≤ δ < 1, Taylor’s theorem
gives

1− x

2
− δ2

8(1− δ)3/2
≤ F (x) ≤ 1− x

2
,

1 ≤ G(x) ≤ 1 + α
δ

(1− δ)α+1
.

(14)

Proof of Lemma 3.1. We have

bfφk,m(N, r) =
N∑

N ′≥1, N ′≡−r2 (mod 4m)

af

(
N −N ′

4m

)
bφk,m(N ′, r).

In order to derive the asymptotic formula for the coefficients bfφk,m(N, r) of
the function fφk,m(τ, z) we prove

(15)
lim sup

(N,r)∈Z×Z,N≡−r2 (mod 4m)
N→∞

bfφk,m(N, r)

cf (4πA )k−1/2(2m)−1/2(4m)α−k/2+1/4 e
A

2
√
m

√
N

Nα−k/2+1/4

≤ 1

and

(16)
lim inf

(N,r)∈Z×Z, N≡−r2 (mod 4m)
N→∞

bfφk,m(N, r)

cf
(
4π
A

)k−1/2
(2m)−1/2(4m)α−k/2+1/4 e

A
2
√
m

√
N

Nα−k/2+1/4

≥ 1.

For the proof of (15), choose any 0 < δ < 1 and write

bfφk,m(N, r) =

bδNc∑
N ′=1, N ′≡−r2 (mod 4m)

af

(
N −N ′

4m

)
bφk,m(N ′, r)(17)

+

N∑
N ′=bδNc+1, N ′≡−r2 (mod 4m)

af

(
N −N ′

4m

)
bφk,m(N ′, r).

Consider the sum

Sδ(N, r) :=

bδNc∑
N ′=1, N ′≡−r2 (mod 4m)

af

(
N −N ′

4m

)
bφk,m(N ′, r).

Using the given asymptotic formula for the coefficients of f(τ), for any ε > 0
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we have

af

(
N −N ′

4m

)
< (1 + ε)cf

eA
√
N−N′
4m(

N−N ′
4m

)α .
Therefore,

Sδ(N, r) < (1 + ε)
cf

(N/4m)α

×
bδNc∑

N ′=1, N ′≡−r2 (mod 4m)

1

(1−N ′/N)α
e

A
2
√
m

√
N
√

1−N ′/N
bφk,m(N ′, r).

Since e
A

2
√
m

√
Nx

is an increasing function of x, using the right hand inequality
of (14) for the function F (x) (defined by (12)), we have

(18) e
A

2
√
m

√
N
√

1−N ′/N ≤ e
A

2
√
m

√
N(1−N ′/2N)

.

Since the function G(x) defined in (13) is continuous, for any ε > 0 we can
fix 0 < δ < 1 such that for 0 < x ≤ δ we have G(x) ≤ 1 + ε. Using (18)
together with this observation, we have

Sδ(N, r)

< (1 + ε)2
cf

(N/4m)α
e

A
2
√
m

√
N

bδNc∑
N ′=1, N ′≡−r2 (mod 4m)

bφk,m(N ′, r)e
− A

2
√
m

N′
2
√
N

≤ (1 + ε)2
cf

(N/4m)α
e

A
2
√
m

√
N

∞∑
N ′=1, N ′≡−r2 (mod 4m)

bφk,m(N ′, r)e
− A

2
√
m

N′
2
√
N .

Choose µr ∈ {0, 1, . . . , 2m− 1} such that µr ≡ r (mod 2m). Let

hµr(τ) =
∑

N ′≥0, N ′≡−µ2r (mod 4m)

ek,m(N ′, µr)e

(
N ′

4m
τ

)
be the µrth component in the theta decomposition of the Eisenstein series
Ek,m. Then

(19) Sδ(N, r)< (1+ε)2
cf

(N/4m)α
e

A
2
√
m

√
N

(−1)k/2
(
hµr

(
i
A

2π

√
m

N

)
−Cµr

)
,

where Cµr is either 1 or 0 depending on µr. Using (6) we have

hµr

(
i
A

2π

√
m

N

)
= hµr

(
−1

i2πA

√
N
m

)

=
ik√
2m

(
2π

A

√
N

m

)k−1/2 2m−1∑
ν=0

e2m(µrν)hν

(
i
2π

A

√
N

m

)
.
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We also have

lim
N→∞

h0

(
i
2π

A

√
N

m

)
= 1, lim

N→∞
hν

(
i
2π

A

√
N

m

)
= 0, ν 6= 0.

Therefore for large enough N , we have

(−1)k/2
(
hµr

(
i
A

2π

√
m

N

)
− Cµr

)
< (1 + ε)(2m)−1/2

(
2π

A

√
N

m

)k−1/2
.

Using the above equation in (19), we get

(20) Sδ(N, r)< (1+ε)3cf

(
4π

A

)k−1/2
(2m)−1/2(4m)α−k/2+1/4 e

A
2
√
m

√
N

Nα−k/2+1/4
.

Since bφk,m(N, r) = O(Nk−1), we have

N∑
N ′=bδNc+1

N ′≡−r2 (mod 4m)

af

(
N −N ′

4m

)
bφk,m(N ′, r) = O

(
eA

√
(1−δ)N

4m Nk

)

= o

(
e

A
2
√
m

√
N

Nα−k/2+1/4

)
as N →∞.

Using the above bound and (20) in (17), we get (15).

Now we prove (16). Since all the coefficients of fφk,m are non-negative,
for any 0 < δ < 1 we have

(21) bfφk,m(N, r)

≥ Sδ(N, r) =

bδNc∑
N ′≥1, N ′≡−r2 (mod 4m)

af

(
N −N ′

4m

)
bφk,m(N ′, r)

> (1− ε)
cf

(N/4m)α

bδNc∑
N ′=1, N ′≡−r2 (mod 4m)

1(
1−N ′

N

)α e A
2
√
m

√
N
√

1−N′
N bφk,m(N ′, r).

Using the fact that the function e
A

2
√
m

√
Nx

is increasing together with the
left hand inequality of (14) for the function F (x), we have

Sδ(N, r) > (1− ε)
cf

(N/4m)α
e

A
2
√
m

√
N(1− δ2

8(1−δ)3/2
)

(22)

×
bδNc∑

N ′=1, N ′≡−r2 (mod 4m)

bφk,m(N ′, r)e
− A

4
√
mN

N ′
.
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Clearly

(23)

bδNc∑
N ′=1

N ′≡−r2 (mod 4m)

bφk,m(N ′, r)e
− A

4
√
mN

N ′

=

∞∑
N ′=1

N ′≡−r2 (mod 4m)

bφk,m(N ′, r)e
− A

4
√
mN

N ′−
∞∑

N ′=bδNc+1
N ′≡−r2 (mod 4m)

bφk,m(N ′, r)e
− A

4
√
mN

N ′
.

In order to handle the second sum on the right hand side of (23) we use the
following lemma, which we prove at the end of this subsection.

Lemma 3.2. For δ = N−1/3, we have

lim
(N,r)∈Z×Z, N≡−r2 (mod 4m)

N→∞

∑∞
N ′=bδNc+1, N ′≡−r2 (mod 4m) bφk,m(N ′, r)e

− A

4
√
mN

N ′∑∞
N ′=1, N ′≡−r2 (mod 4m) bφk,m(N ′, r)e

− A

4
√
mN

N ′

= 0.

Using Lemma 3.2 in (23), for N large enough and δ = N−1/3, (22) gives
us

Sδ(N, r) > (1− ε)2
cf

(N/4m)α
e

A
2
√
m

√
N(1− δ2

8(1−δ)3/2
)

×
∞∑

N ′=1, N ′≡−r2 (mod 4m)

bφk,m(N ′, r)e
− A

4
√
mN

N ′
.

Now using the argument similar to the lim sup case for the series

∞∑
N ′=1, N ′≡−r2 (mod 4m)

bφk,m(N ′, r)e
− A

4
√
mN

N ′
,

we get

Sδ(N, r) > (1− ε)3
cf

(N/4m)α
e
A
√

N
4m

(1− δ2

8(1−δ)3/2
)
(2m)−1/2

(
4π

A

√
N

4m

)k−1/2
.

For δ = N−1/3, we have

lim
N→∞

√
N δ2

(1− δ)3/2
= 0.

Using this together with (21), we get the lim inf inequality (16). Next we
use the limits in (15) and (16) in order to get Lemma 3.1.
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Proof of Lemma 3.2. Let us set

F (N, r) :=

∑
N ′≥bδNc+1, N ′≡−r2 (mod 4m) bφk,m(N ′, r)e

− A

4
√
mN

N ′∑
N ′≥1, N ′≡−r2 (mod 4m) bφk,m(N ′, r)e

− A

4
√
mN

N ′
.

Since bφk,m(N, r) = (−1)k/2ek,m(N, r), using (7), we obtain

(24) F (N, r) ≤
Ck,m
C ′k,m

∑
N ′≥bδNc+1, N ′≡−r2 (mod 4m)N

′ke
− A

4
√
mN

N ′∑
N ′≥1, N ′≡−r2 (mod 4m) e

− A

4
√
mN

N ′
.

For all integers j ≥ 1 and all real 0 < β < 1, one has

jk ≤
(
k

β

)k
eβj .

Therefore for any 0 < β < 1, we have∑
N ′≥bδNc+1

N ′≡−r2 (mod 4m)

N ′ke
− A

4
√
mN

N ′ ≤
(
k

β

)k ∑
N ′≥bδNc+1

N ′≡−r2 (mod 4m)

e
(β− A

4
√
mN

)N ′
.

Using the above inequality and then writing N ′ = 4mn′− r2 in (24), we get

F (N, r) ≤
Ck,m
C ′k,m

(
k

β

)k e−(β− A

4
√
mN

)r2

e
A

4
√
mN

r2

∑
n′≥ bδNc+1+r2

4m

e
(β− A

4
√
mN

)4mn′

∑
n′≥ r2+1

4m

e
− A

4
√
mN

4mn′
.

If β − A
4
√
mN

< 0 then

F (N, r)≤
Ck,m
C ′k,m

(
k

β

)k e−(β− A

4
√
mN

)r2

e
A

4
√
mN

r2

e
4m(β− A

4
√
mN

)
bδNc+1+r2

4m

e
−4m A

4
√
mN

( r
2+1
4m

+1)

1− e−4m
A

4
√
mN

1−e4m(β− A

4
√
mN

)

≤
Ck,m
C ′k,m

(
k

β

)k eβ(bδNc+1)e
− A

4
√
mN
bδNc

e
−4m A

4
√
mN

1− e−4m
A

4
√
mN

1− e4m(β− A

4
√
mN

)
.

Choosing β = A
4
√
mN3/2 and δ = N−1/3, we get

F (N, r)

≤
Ck,m
C ′k,m

(
4
√
mk

A

)k N3k/2

e
A

4
√
m
N1/6(1−1/N)

e
A

4
√
mN

(1+4m+1/N) 1− e−4m
A

4
√
mN

1− e−4m
A

4
√
mN

(1−1/N)
.

The right hand side above goes to 0 as N →∞.

3.2. Proof of Theorem 1.1(ii). The proof of Theorem 1.1(ii) is quite
similar to that of [5, Theorem 3], and so we give only a sketch of the proof,
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highlighting the main points and steps which are different from the proof
of [5, Theorem 3]. Let us write

θk(τ) =
∑
n≥0

rk(n)qn,

where

rk(n) = #{(n1, . . . , nk) ∈ Zk : n21 + · · ·+ n2k = n}.

Since θ2k(τ) is a modular form of weight k, there exists a constant Ck such
that

(25) rk(n) ≤ r2k(n) ≤ Cknk−1, n ≥ 1.

For any n ≥ 0, we have

afθk(n) =
n∑
j=0

af (n− j)rk(j).

In order to get the asymptotic formula for afθk(n) we prove

lim sup
n→∞

afθk(n)

cf
(
2π
A

)k/2 eA
√
n

nα−k/4

≤ 1(26)

and

lim inf
n→∞

afθk(n)

cf
(
2π
A

)k/2 eA
√
n

nα−k/4

≥ 1.(27)

First we prove (26). Using the asymptotic formula of af (n), the inequality

eA
√
n−j ≤ eA

√
n− A

2
√
n
j

and continuity of the function G(x) = 1/(1− x)α, for
any ε > 0 we can fix 0 < δ < 1 such that

Sδ(n) :=

bδnc∑
j=0

af (n− j)rk(j) < (1 + ε)2
cf
nα
eA
√
n

bδnc∑
j=0

rk(j)e
− A

2
√
n
j

≤ (1 + ε)2
cf
nα
eA
√
n
∞∑
j=0

rk(j)e
− A

2
√
n
j ≤ (1 + ε)2

cf
nα
eA
√
nθk
(

iA

4π
√
n

)
.

Using the transformation property of the θ function, we get

θk
(

iA

4π
√
n

)
=

(
2π
√
n

A

)k/2
θk
(
πi
√
n

A

)
.

Since limn→∞ θ
k(πi
√
n/A) = 1, for n large enough we have

θk
(

iA

4π
√
n

)
< (1 + ε)

(
2π
√
n

A

)k/2
.
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Therefore for n large enough we have

(28) Sδ(n, r) < (1 + ε)3cf

(
2π

A

)k/2 eA
√
n

nα−k/4
.

Using (25), we have
n∑

j=bδnc+1

af (n− j)rk(j) = O
(
eA
√

(1−δ)nnk
)

= o

(
eA
√
n

nα−k/4

)
as n→∞.

Using the above bound together with (28), we get (26).
Now we prove (27). Choosing 0 < δ < 1, we have

afθk(n) ≥ Sδ(n) :=

bδnc∑
j=0

af (n− j)rk(j).

Using the asymptotic formula for af (n− j) and the inequality

eA
√
n−j ≥ e

A
√
n(1− j

2n
− δ2

8(1−δ)3/2
)
,

for any ε > 0 we get

(29) Sδ(n) > (1− ε)cf
eA
√
n

nα
e
−A
√
n δ2

8(1−δ)3/2
bδnc∑
j=0

rk(j)e
− A

2
√
n
j
.

Now we write

(30)

bδnc∑
j=0

rk(j)e
− A

2
√
n
j

=
∞∑
j=0

rk(j)e
− A

2
√
n
j −

∞∑
j=bδnc+1

rk(j)e
− A

2
√
n
j
.

We use the following lemma to finish the proof; the lemma will be proved
afterwards.

Lemma 3.3. For δ = n−1/3,

lim
n→∞

∑∞
j=bδnc+1 rk(j)e

− A
2
√
n
j∑∞

j=0 rk(j)e
− A

2
√
n
j

= 0.

If we use Lemma 3.3 in (30), then (29) gives us

Sδ(n) > (1− ε)2cf
eA
√
n

nα
e
−A
√
n δ2

8(1−δ)3/2
∞∑
j=0

rk(j)e
− A

2
√
n
j
.

Now we deduce (27) by using the transformation property of θk as used in
the lim sup case, and the fact that for δ = n−1/3 we have

lim
n→∞

√
n δ2

(1− δ)3/2
= 0.
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Proof of Lemma 3.3. Using (25) and the fact that rk(j
2) ≥ 1 for any

j ≥ 0, we have

(31) R(n) :=

∑∞
j=bδnc+1 rk(j)e

− A
2
√
n
j∑∞

j=0 rk(j)e
− A

2
√
n
j
≤ Ck

∑∞
j=bδnc+1 j

ke
− A

2
√
n
j∑∞

j=0 e
− A

2
√
n
j2

.

Since e
− A

2
√
n
x2

is a continuous decreasing positive function on [0,∞), com-
paring sum with integral we get

(32)
∞∑
j=0

e
− A

2
√
n
j2 ≥

∞�

0

e
− A

2
√
n
x2
dx =

√
π

2A
n1/4.

Using the inequality jk ≤ (k/β)keβj for any real number 0 < β < 1 such
that β − A

2
√
n
< 0 and (32) in (31), we have

R(n) ≤ Ck
(
k

β

)k√2A

π
n−1/4

(
e
(β− A

2
√
n
)(bδnc+1)

1− eβ−
A

2
√
n

)
.

Choose β = A
2n3/2 and δ = n−1/3; then we get

R(n) ≤ Ck
(

2k

A

)k√2A

π

(
n3k/2+1/4

e
An1/6

2
(1−1/n)

)(
n−1/2

1− e−
A

2
√
n
(1−1/n)

)
→ Ck ·

(
2k

A

)k
·
√

2A

π
· 0 · A

2

as n→∞. Thus R(n) goes to 0 as n→∞.

4. Proof of the corollaries

4.1. Proof of Corollary 1.2. Set
∞∑
n=0

p(j)(n)qn =
∞∏
n=0

(1− qn)−j .

In [5], Dewar and Murty have the following asymptotic formula for p(j)(n):

(33) p(j)(n) ∼ cjnαjeAj
√
n,

where

cj =
1√
2

(
j

24

)(j+1)/4

, αj = − j
4
− 3

4
, Aj = π

√
2j

3
.

Let us set

f(τ) :=
1

144
q∆−1(τ) =

∞∑
n=0

p(24)(n)qn.
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Using (33), we have the following asymptotic formula for the coefficients
p(24)(n) of the function f(τ):

p(24)(n) ∼ 1

144
√

2

e4π
√
n

n27/4
.

Denote fk := (−1)k/2(Ek − 1), k = 4, 6, 8. Set

f f k(τ) =

∞∑
n=1

aff k(n)qn.

In the proof of [5, Theorem 3], Dewar and Murty have shown that the Fourier
coefficients aff k(n) of the function f f k satisfy the following asymptotic for-
mula:

aff k(n) ∼ 1

144
√

2

e4π
√
n

n27/4−k/2
.

Since the Fourier coefficients of f and fk are non-negative, aff k(n) ≥ 0 for
all n ≥ 1. Also 27/4 − k/2 > 0 for k = 4, 6, 8. Using Theorem 1.1(i) we
get the following asymptotic formula for the coefficients bff kEl,1(N, r) of the
functions f f kEl,1, l = 4, 6:

bff kEl,1(N, r) ∼ 1

144
√

2
il427/4−(k+l)/2

e2π
√
n

N27/4−k/2−l/2+1/4

for any sequence {(N, r) ∈ Z× Z : N ≡ −r2 (mod 4)} as N →∞. Now

fEkEl,1 = f((−1)k/2fk + 1)El,1 = (−1)k/2f f kEl,1 + fEl,1.

Therefore

bEkEl,1
144∆

(N, r) ∼ ikbff kEl,1(N, r) + bfEl,1(N, r)

∼ 1

144
√

2
ik+l427/4−(k+l)/2

e2π
√
N

N27/4−k/2−l/2+1/4

+
1

144
√

2
il427/4−l/2

e2π
√
N

N27/4−l/2+1/4

∼ 1

144
√

2
ik+l427/4−(k+l)/2

e2π
√
N

N27/4−k/2−l/2+1/4
.

From the expressions for the weak Jacobi forms ϕ0,1 and ϕ−2,1 and the above
asymptotic formula, we get

lim
(N,r)∈Z×Z, N≡−r2 (mod 4m)

N→∞

bk(N, r)

e2π
√
N/N1−k/2

= 0.

4.2. Proof of Corollary 1.4. By (33), the coefficients of the function

f(τ) = ql/24
1

ηl
(τ) =

∑
n≥0

p(l)(n)qn
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satisfy the following asymptotic formula:

p(l)(n) ∼ cle
A
√
n

nα
,

where

cl =
1√
2

(
l

24

)(l+1)/24

, A = π

√
2l

3
, α =

l + 3

4
.

Now applying Theorem 1.1(ii) in this situation we get the following asymp-
totic formula for the coefficients ak,l(n) of the function θk/ηl:

ak,l(n) ∼ 1√
2

(
l

24

)(l+1)/24(√6

l

)k/2 eπ√2ln/3

n(l−k+3)/4
.

5. Further remarks. In [1], Bringmann and Richter have provided ex-
act formulas for the Fourier coefficients of harmonic Maass–Jacobi Poincaré
series. In some cases the harmonic Maass–Jacobi Poincaré series are weak
Jacobi forms. For example the weak Jacobi form ϕ−2,1 is such a Poincaré
series, which can be seen from Example 1 of [2]. In [2], the authors provide
explicit formulas for the Fourier coefficients of holomorphic parts of har-
monic Maass–Jacobi forms, and in particular, for the Fourier coefficients of
weakly holomorphic Jacobi forms. These explicit formulas might give a dif-
ferent approach to obtain the asymptotic behavior of the Fourier coefficients
of certain weak Jacobi forms and weakly holomorphic Jacobi forms.
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