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On the Birch and Swinnerton-Dyer conjecture
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1. Introduction. Let E be an elliptic curve defined over a number
field F . Then the Birch and Swinnerton-Dyer conjecture for elliptic curves
predicts that:

Conjecture 1.1 (Birch and Swinnerton-Dyer conjecture). The Tate–
Shafarevich group X(E/F ) of E over F is finite, the L-function L(s, E/F )
of E over F has a meromorphic continuation to the entire complex plane,
satisfies a functional equation s↔ 2− s, and:

1) The rank r(E/F ) of E over F equals the order of vanishing of the
function L(s, E/F ) at s = 1.

2)

lim
s→1

L(s, E/F )
(s− 1)r(E/F )

=
ΩE · |X(E/F )| ·R(E/F ) ·

∏
℘|N c℘(E)

|E(F )tors|2
,

where ΩE = the real period, E(F )tors is the subgroup of torsion points
of E(F ), R(E/F ) = the regulator of E(F )/E(F )tors, N is the conduc-
tor of E, and c℘(E) = [E(F℘) : Ens(F℘)] is the arithmetic component
group of E at ℘.

It is conjectured that an elliptic curve E defined over a totally real num-
ber field F is modular, i.e. the associated l-adic representation ρE := ρE,l of
ΓF := Gal(F̄ /F ), for some rational prime l, is isomorphic to the l-adic rep-
resentation ρπ := ρπ,l of ΓF associated to some automorphic representation
π of GL(2)/F (see §2 below for details). This conjecture was proved when
F = Q (see [BCDT], [W]).

In this paper we prove in particular the following result (see Remark 3.3
for a more general statement regarding the product of several elliptic curves):
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Theorem 1.2. Let E be an elliptic curve defined over a totally real num-
ber field F . Then the function L(s, E/F ) has a meromorphic continuation to
the entire complex plane and satisfies a functional equation s↔ 2− s. Also
if we assume that Conjecture 1.1 is true for all totally real number fields and
all modular elliptic curves, then it is true for all totally real number fields
and all elliptic curves.

We remark that there exists a statement for the Birch and Swinnerton-
Dyer conjecture for a general abelian variety A defined over a number field F ,
and Theorem 1.2 remains true if one replaces the elliptic curve E/F by
(E1×· · ·×Er)/F , where r ≤ 4 and E1, . . . , Er are elliptic curves defined over
the totally real field F (see Remark 3.3 for the reason). Also for general r,
we have a similar result, but when r > 4 we do not know the meromorphy
and the functional equation of L(s, (E1 × · · · × Er)/F ).

2. Potential modularity. Let F be a totally real number field. If π is
an automorphic representation which is discrete series at infinity of weight
2 of GL(2)/F , then there exists ([T]) a λ-adic representation

ρπ := ρπ,λ : ΓF → GL2(Oλ) ↪→ GL2(Ql),

which is unramified outside the primes dividing nl. Here O is the coefficient
ring of π, λ is a prime ideal of O above some prime number l, and n is the
level of π.

We say that an elliptic curve E defined over a totally real number field
F is modular if there exists an automorphic representation π of weight 2 of
GL(2)/F such that ρE ∼ ρπ.

We know the following result (Theorem 1.1 of [V]):

Theorem 2.1. Let F be a totally real number field, and for i = 1, . . . , r,
let Ei be an elliptic curve defined over F . Then there exists a totally real
Galois finite extension F ′ of F such that for i = 1, . . . , r, the elliptic curve
Ei/F

′ is modular.

3. The proof of Theorem 1.2. We fix an elliptic curve E defined
over a totally real number field F . Then from Theorem 2.1 we know that
there exists a totally real finite Galois extension F ′ of F such that E/F ′ is
modular.

From Theorem 15.10 of [CR] we know that there exist some subfields
Fi ⊆ F ′ such that Gal(F ′/Fi) are solvable, and some integers ni such that
the trivial representation

1F : Gal(F ′/F )→ Q̄×
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can be written as

(3.1) 1F =
u∑
i=1

ni IndGal(F ′/F )
Gal(F ′/Fi)

1Fi (a virtual sum),

from which we obtain

L(s, E/F ) =
u∏
i=1

L(s, E/Fi)ni .

Since E/F ′ is modular, and Gal(F ′/Fi) is solvable, from Langlands’ base
change for solvable extensions ([L]) one can deduce easily that E/Fi is mod-
ular. Hence the function L(s, E/F ) has a meromorphic continuation to the
entire complex plane and satisfies a functional equation s↔ 2−s because the
functions L(s, E/Fi) have meromorphic continuations to the entire complex
plane and satisfy functional equations s↔ 2− s.

We know (see [M1]):

Theorem 3.1. Let L/K be a finite separable extension, and A be an
abelian variety defined over L. Then the Birch and Swinnerton-Dyer conjec-
ture holds for A if and only if it holds for ResL/K A.

We know (Theorem 7.3 of [M2]):

Theorem 3.2. Let A and B be two isogeneous abelian varieties defined
over a number field L. Then the Birch and Swinnerton-Dyer conjecture holds
for A if and only if it holds for B.

Assume now that Conjecture 1.1 is true for modular elliptic curves.
Since the elliptic curve E/Fi is modular, the Birch and Swinnerton-Dyer
conjecture holds for E/Fi, and thus from Theorem 3.1, it holds for
ResFi/F E/Fi. Now from (3.1) we deduce that E/F×

∏
i′ −ni′ ResFi′/F

E/Fi′
and

∏
i′′ ni′′ ResFi′′/F

E/Fi′′ are isogenous (for details see the proof of Theo-
rem 2.3 of [D]), where i′ is such that ni′ is negative and i′′ is such that ni′′ is
positive. Using now Theorem 3.2 we find that the Birch and Swinnerton-Dyer
conjecture holds for E, which concludes the proof of Theorem 1.2.

Remark 3.3. There exists a statement for the Birch and Swinnerton-
Dyer conjecture for a general abelian variety A defined over a number field F ,
and Theorem 1.2 remains true if one replaces the elliptic curve E/F by
(E1×· · ·×Er)/F , where r ≤ 4 and E1, . . . , Er are elliptic curves defined over
the totally real field F . This is true because of Theorem 2.1, Theorem 3.1,
and the fact that the L-function L(s, π1 × · · · × πr), where π1, . . . , πr are
automorphic representations of GL(2)/F , has a meromorphic continuation
and satisfies a functional equation (see [JS] and [R]). The proof of this result
is similar to the one of Theorem 1.2.
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