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1. Introduction. For a function Ψ : R>0 → R>0, let

K(Ψ) :=
{
ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ < Ψ(q) for infinitely many rationals
p

q

}
denote the set of Ψ -approximable real numbers and let

Exact(Ψ) := K(Ψ) \
⋃
m≥2

K((1− 1/m)Ψ)

be the set of real numbers approximable to order Ψ and to no better order.
In other words, Exact(Ψ) is the set of real numbers ξ such that

|ξ − p/q| < Ψ(q) infinitely often

and
|ξ − p/q| ≥ c Ψ(q) for any c < 1 and any q ≥ q0(c, ξ),

where q0(c, ξ) denotes a positive real number depending only on c and on ξ.
If Ψ is non-increasing and satisfies Ψ(x) = o(x−2), Jarńık [11, Satz 6], used
the theory of continued fractions to construct explicitly real numbers in
K(Ψ) which do not belong to any set K(cΨ) with 0 < c < 1. His result can
be restated as follows.

Theorem J. Let Ψ : R>0 → R>0 be a non-increasing function satisfying
Ψ(x) = o(x−2). Then the set Exact(Ψ) is uncountable.

In 1924, Khintchine [12] (see also his book [13]) used the theory of con-
tinued fractions to prove that, if x 7→ x2Ψ(x) is non-increasing, then K(Ψ)
has Lebesgue measure zero if the sum

∑
x≥1 xΨ(x) converges and has full

Lebesgue measure otherwise. In the convergence case, his result was consid-
erably refined by Jarńık who established [11, Satz 5] that, if Φ : R>0 → R>0

is a positive continuous function such that Φ(x)/x tends monotonically to
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infinity with x, then the sets K(Ψ)\K(Ψ ◦Φ) and K(Ψ) have the same Haus-
dorff Hf -measure for a general dimension function f . We refer the reader
to [17, 8] for background on the theory of Hausdorff measure. As usual, we
denote by dim the Hausdorff dimension. Jarńık’s statement implies that

(1.1) dimK(Ψ) = 2/λ,

where λ denotes the lower order at infinity of the function 1/Ψ . Here the
lower order at infinity λ(g) of a function g : R>0 → R>0 is defined by

λ(g) = lim inf
x→+∞

log g(x)
log x

.

This notion arises naturally in estimating the Hausdorff dimension of the
sets K(Ψ) (see, e.g., Dodson [6] and Dickinson [5]).

Jarńık’s result is, however, not strong enough to imply that Exact(Ψ) and
K(Ψ) have the same Hausdorff dimension, a problem raised by Beresnevich,
Dickinson and Velani at the end of [1].

Problem 1. Let Ψ : R>0 → R>0 be a non-increasing function satisfying
Ψ(x) = o(x−2). Compute the Hausdorff dimension of Exact(Ψ).

Problem 1 was solved in [2] for a large class of functions Ψ .

Theorem B1. Let Ψ : R>0 → R>0 be such that x 7→ x2Ψ(x) is non-
increasing. Assume that the sum

∑
x≥1 xΨ(x) converges. If λ denotes the

lower order at infinity of the function 1/Ψ , then

dim Exact(Ψ) = dimK(Ψ) = 2/λ.

Up to the extra assumption on Ψ , namely that x 7→ x2Ψ(x) is non-
increasing (which implies that Ψ is decreasing), Theorem B1 provides a
very satisfactory strengthening of Theorem J when the sum

∑
x≥1 xΨ(x)

converges. When this sum diverges, Problem 1 was investigated in 1952
by Kurzweil [14], a student of Jarńık. Among other results, he established
that the set K(3Ψ) \ K(Ψ) has full Hausdorff dimension for a large class of
functions Ψ , but his method does not seem to yield any result on Exact(Ψ).
The following statement, established in [3] following the method introduced
in [2], answers Problem 1 for a class of functions Ψ such that the sum∑

x≥1 xΨ(x) diverges.

Theorem B2. Let Ψ : R>0 → R>0 be such that x 7→ x2Ψ(x) is non-
increasing. Assume that the sum

∑
x≥1 xΨ(x) diverges and that, for any

positive real number ε, we have
1

x2+ε
≤ Ψ(x) ≤ 1

100x2 log x
for any sufficiently large x. Then

dim Exact(Ψ) = dimK(Ψ) = 1.
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One of the purposes of the present note is to extend Theorem B2 to all
non-increasing functions Ψ : R>0 → R>0 such that Ψ(x) = o(x−2) and, for
every positive ε, there are arbitrary large values of x such that Ψ(x) ≥ x−2−ε

(hence, in particular, to all non-increasing functions Ψ : R>0 → R>0 such
that Ψ(x) = o(x−2) and the sum

∑
x≥1 xΨ(x) diverges). This is contained

in our Theorem 1.
The combination of Theorems B1 and 1 provides a satisfactory answer

to Problem 1, except that x 7→ x2Ψ(x) is assumed to be non-increasing
in Theorem B1. However, by combining the strategy developed in [2] with
the arguments used in the proof of Theorem 1, we are able to remove this
assumption. This is contained in our Theorem 3. Thus, we give a complete
answer to Problem 1 and strengthen Theorem J: see Theorem 4 below.

One may, however, wish to strengthen Theorem J in another direction, by
relaxing the hypothesis that the function Ψ is non-increasing. This assump-
tion is needed to avoid the following situation. For a number ξ in Exact(Ψ),
there are rational numbers p/q with arbitrarily large denominators such that

(1.2)
∣∣∣∣ξ − p

q

∣∣∣∣ < Ψ(q).

Furthermore, by definition of the set Exact(Ψ), for every positive real num-
ber ε and every positive integer d, we have∣∣∣∣ξ − p

q

∣∣∣∣ =
∣∣∣∣ξ − dp

dq

∣∣∣∣ > (1− ε)Ψ(dq)

if q is sufficiently large in terms of ε. This gives a contradiction with (1.2)
when (1− ε)Ψ(dq) exceeds Ψ(q). Clearly, the latter cannot happen when Ψ
is non-increasing.

A second purpose of the present paper is to investigate whether The-
orem J extends to non-monotonic functions Ψ . As far as we are aware,
Problem 2 has not been studied yet.

Problem 2. Let Ψ : R>0 → R>0 be a function satisfying Ψ(x) =
o(x−2). Is the set Exact(Ψ) non-empty? Compute the Hausdorff dimension
of Exact(Ψ).

Let us note that the study of Exact(x 7→ cx−2) for a positive real num-
ber c amounts to the study of the Lagrange spectrum (see [15, 4, 3, 16]).
Concerning this, we just mention that, for every positive c, the Hausdorff
dimension of Exact(x 7→ cx−2) is strictly smaller than 1 (and this set can
even be empty; this is the case for many values of c, for instance for every c
in (1/

√
13, 1/

√
12)). This justifies the hypothesis Ψ(x) = o(x−2) of our main

results.
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Theorems 1, 2 and 3 give a partial answer to Problem 2. They are proved
in Section 4, while Section 3 gathers auxiliary lemmas. Theorem 4, which is
an immediate consequence of Theorems 1 and 3, gives a complete answer to
Problem 1.

2. Statements. Motivated by a theorem of Duffin and Schaeffer [7] (see
Corollary 1 on page 27 of [9]), for a function Ψ : R>0 → R>0, we say that Ψ
satisfies assumption (∗) if

(∗) Ψ(x) = o(x−2) and there exist real numbers c, c̃ and n0 with 1 ≤ c̃ < 4
such that if the positive integers m, n satisfy m > n ≥ n0, then
Ψ(m)mc ≤ c̃Ψ(n)nc.

We emphasize that the real number c occurring in (∗) may be negative.
Our main result is a first step towards the resolution of Problem 2.

Theorem 1. Let Ψ : R>0→R>0 be a function satisfying assumption (∗).
Suppose that, for every positive ε, there are infinitely many positive integers n
such that Ψ(n)>n−2−ε. Then the set Exact(Ψ) has full Hausdorff dimension.

By (1.1), for any given positive real number ε, the Hausdorff dimension of
the set K(x 7→ x−2−ε) is equal to 2/(2+ε). This explains the last assumption
on the function Ψ in Theorem 1.

The proof of Theorem 1 rests on an idea from [16], which was also used
in [18]. We construct a large subset of Exact(Ψ) by suitably modifying sets
of continued fractions with bounded partial quotients and arbitrarily large
(albeit less than 1) Hausdorff dimension.

With the same method as for the proof of Theorem 1, we are able to give
a partial answer to Problem 2 for every function Ψ : R>0 → R>0 satisfying
assumption (∗).

Theorem 2. Let Ψ : R>0 → R>0 be a function satisfying assump-
tion (∗). Then the set Exact(Ψ) is uncountable.

In the course of the proof of Theorem 1, it is apparent that Problem 2
is connected with a well-known conjecture of Zaremba claiming that there
exists a positive integer M such that, for every integer q ≥ 2, there is a
positive integer p coprime with q and such that the partial quotients of the
rational number p/q are all less than M .

A suitable combination of the strategy developed in [2] with the argu-
ments used in the proof of Theorem 1 allows us to extend Theorem B1 as
follows.

Theorem 3. Let Ψ : R>0 → R>0 be a function satisfying assump-
tion (∗). If λ denotes the lower order at infinity of the function 1/Ψ , then

dim Exact(Ψ) = dimK(Ψ) = 2/λ.
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The next theorem directly follows from Theorems 1 and 3, since every
non-increasing function Ψ with Ψ(x) = o(x−2) satisfies assumption (∗).

Theorem 4. Let Ψ : R>0 → R>0 be a non-increasing function satisfying
Ψ(x) = o(x−2). If λ denotes the lower order at infinity of the function 1/Ψ ,
then

dim Exact(Ψ) = dimK(Ψ) = 2/λ.

Theorem 4 gives a complete answer to Problem 1.

3. Auxiliary lemmas. The key auxiliary lemma for the proof of The-
orem 1 relates the Hausdorff dimension of a set and that of its image under
a Hölderian map. Below we reproduce Proposition 2.3 from [8].

Lemma 1. Let F be a subset of R. Let f : F → R be a map for which
there exist c > 0 and α with 0 < α ≤ 1 such that

|f(x)− f(y)| ≤ c|x− y|α for all x, y in F .

Then
dimF ≥ α dim f(F ).

For positive integers a1, . . . , an, the continuant K(a1, . . . , an) is the de-
nominator of the rational number [0; a1, . . . , an]. The next lemma is used in
the proofs of Theorems 1 and 4.

Lemma 2. For any δ > 0, there exists a positive constant K0 = K0(δ)
such that, for any positive integer N and any positive integers a1, . . . , an
such that K(a1, . . . , an) < N/K0, the interval (N/(1 + δ), N) contains at
least one integer q of the form

q = K(a1, . . . , an, an+1, . . . , an+m) with an+1, . . . , an+m ∈ {1, 2}.

Proof. We will choose two large positive integers r, s, and take m = r+s,
an+j = 1 for 1 ≤ j ≤ r and an+j = 2 for r + 1 ≤ j ≤ r + s = m. Let
qk = K(a1, . . . , ak) for 1 ≤ k ≤ n+m.

We have qk+1 = qk + qk−1, for n ≤ k ≤ n + r − 1, and so qn+j =
Fj+1qn + Fjqn−1 for 0 ≤ j ≤ r, where

Fj =
1√
5

((
1 +
√

5
2

)j
−
(

1−
√

5
2

)j)
=

1 + o(1)√
5

(
1 +
√

5
2

)j
is the jth term of Fibonacci’s sequence for j ≥ 1. So for large j,

qn+j = (1 + o(1))c
(

1 +
√

5
2

)j
qn where c =

1 +
√

5
2

+
qn−1

qn
.

On the other hand, qk+1 = 2qk + qk−1 for n + r ≤ k ≤ n + m − 1, and
so qn+r+j = uj+1qn+r + ujqn+r−1, where (uj)j≥0 is the sequence given by
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u0 = 0, u1 = 1 and uk+2 = 2uk+1 + uk for k ≥ 0. Since

uk =
1

2
√

2
((1 +

√
2)k − (1−

√
2)k) =

1 + o(1)
2
√

2
(1 +

√
2)k for k ≥ 0,

we get

qn+r+j =
1 + o(1)

2
√

2
((1 +

√
2)qn+r + qn+r−1)(1 +

√
2)j

=
1 + o(1)

2
√

2

(
1 +
√

2 +
√

5− 1
2

)
c(1 +

√
2)j
(

1 +
√

5
2

)r
qn

= (1 + o(1))
4 +
√

10 +
√

2
8

c(1 +
√

2)j
(

1 +
√

5
2

)r
qn,

provided that j and r are large.
Since log(1 +

√
2)/log

(
1+
√

5
2

)
is irrational, the statement of the lemma

follows (by taking logarithms) from the elementary fact that given α, β > 0
such that α/β is irrational, and ε, r > 0, there is x0 > 0 such that, for
every x ∈ R with x ≥ x0, there are positive integers m,n ≥ r such that
|mα+ nβ − x| < ε.

Under the notation of Lemma 2, with positive integers a1, . . . , an and a
positive real δ we associate integers an+1, . . . , an+m in {1, 2} in such a way
that

N/(1 + δ) < K(a1, . . . , an, an+1, . . . , an+m) < N.

There may be multiple choices, but we select one of them and define in this
way a map Θ.

Remark. Replacing (N/(1 + δ), N) by (N − δ(N), N) for a function δ
satisfying δ(N) = o(N) would allow us to weaken assumption (∗) in Theo-
rems 1 and 4. We may even hope that there exist positive integers M and
Q such that, under the assumption of Lemma 2, for every sufficiently large
integer q, at least one of the integers q, q + 1, . . . , q +Q is of the form

K(a1, . . . , an, an+1, . . . , an+m), an+1, . . . , an+m ∈ {1, . . . ,M}.
We cannot exclude that every sufficiently large integer can be written under
this form.

We also need the following elementary facts about continued fractions:

Lemma 3.

(i) Given an irrational real number α = [a0; a1, a2, . . . ], the sequence
of its convergents pn/qn = [a0; a1, . . . , an] (where we have qn =
K(a1, . . . , an)) satisfies

1
(an+1 + 2)q2n

<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1
an+1q2n

≤ 1
q2n
.
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(ii) For any finite sequences (a1, . . . , am), (b1, . . . , bn) of positive inte-
gers, we have

K(a1, . . . , am)K(b1, . . . , bn) ≤ K(a1, . . . , am, b1, . . . , bn)
< 2K(a1, . . . , am)K(b1, . . . , bn).

(iii) If α = [a0; a1, a2, . . . ], α′ = [a′0; a′1, a
′
2, . . . ] are such that aj = a′j,

0 ≤ j ≤ n and an+1 6= a′n+1, then

|α− α′| > 1
(an+1 + 1)(a′n+1 + 1)(max{an+2, a′n+2}+ 1)q2n

.

In particular, if an+1, a
′
n+1, an+2, a

′
n+2 ≤ m then

|α− α′| > 1
(m+ 1)3q2n

.

Proof. (i) and (ii) are well-known facts. In order to prove (iii), we use
the fact that

α =
αn+1pn + pn−1

αn+1qn + qn−1
, α′ =

α′n+1pn + pn−1

α′n+1qn + qn−1
,

where

αn+1 = [an+1; an+2, an+3, . . . ], α′n+1 = [a′n+1; a′n+2, a
′
n+3, . . . ].

So we have

|α− α′| =
∣∣∣∣(pnqn−1 − pn−1qn)(αn+1 − α′n+1)
(αn+1qn + qn−1)(α′n+1qn + qn−1)

∣∣∣∣
=
∣∣∣∣ αn+1 − α′n+1

(αn+1qn + qn−1)(α′n+1qn + qn−1)

∣∣∣∣
>

∣∣∣∣ αn+1 − α′n+1

(an+1 + 1)(a′n+1 + 1)q2n

∣∣∣∣.
On the other hand, assuming, without loss of generality, that an+1 > a′n+1,
we have α′n+1 < a′n+1 + 1 ≤ an+1 and αn+1 > an+1 + 1/(an+2 + 1), and so
|αn+1 − α′n+1| = αn+1 − α′n+1 > 1/(an+2 + 1) ≥ 1/(max{an+2, a

′
n+2}+ 1),

which implies the result.

4. Proofs

Proof of Theorem 1. Let Ψ be a function as in the statement of Theo-
rem 1 (in particular Ψ satisfies assumption (∗) for some real numbers n0, c
and c̃). We use a method, applied successfully in [16] (see also [18]), that
consists in slightly perturbing continued fractions with bounded coefficients
to construct many real numbers in Exact(Ψ).

For a given integer m ≥ 8, let Cm be the set of real numbers in (0, 1)
whose partial quotients are at most equal to m. Jarńık [10] established that
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dimCm > 1 − 1/(m log 2). We construct a map hm from Cm to Exact(Ψ)
such that, for any α with 0 < α < 1, we have |ξ−ξ′| = O(|hm(ξ)−hm(ξ′)|α).
By Lemma 1 and Jarńık’s aforementioned result, this implies that

dim Exact(Ψ) ≥ dimCm > 1− 1
m log 2

for every integer m ≥ 8, and so dim Exact(Ψ) = 1, which is the conclusion
of Theorem 1.

Let δ be a positive real number such that

(4.1) (1 + δ)|c|+2 ≤ 2/
√
c̃.

From now on, we fix an integer m ≥ 8. In all what follows, dxe denotes the
smallest integer greater than or equal to x.

We construct inductively a rapidly increasing sequence (nk)k≥1 of inte-
gers satisfying n1 = d(m + 1)K0(δ)e, where K0(δ) is the constant given by
Lemma 2,

nk > n3
k−1 (k ≥ 2),(4.2)

Ψ(nk) >
1

n
2+1/k
k

(k ≥ 2),(4.3)

and

(4.4) r2Ψ(r) < n2
kΨ(nk) for all r > nk (k ≥ 2).

In order to do this, for each k ≥ 2, we define ñk as the smallest positive
integer n such that n > n3

k−1 and Ψ(n) > n−2−1/k (which is possible since
for every positive ε, there are infinitely many positive integers n such that
Ψ(n) > n−2−ε), and then define nk as

nk := max{r ≥ ñk : r2Ψ(r) ≥ ñ2
kΨ(ñk)},

which is possible since Ψ(x) = o(x−2).
Notice that n2

kΨ(nk) ≥ ñ2
kΨ(ñk) > ñ

−1/k
k ≥ n

−1/k
k , so Ψ(nk) > n

−2−1/k
k

and, for every r > nk, we have r2Ψ(r) < ñ2
kΨ(ñk) ≤ n2

kΨ(nk).
Now we describe the map hm from Cm to Exact(Ψ).
Let ξ = [0; a1, a2, . . .] be in Cm. We will get hm(ξ) = [0; b1, b2, . . . ], where

the continued fraction [0; b1, b2, . . . ] is obtained from the continued fraction
[0; a1, a2, . . . ] of ξ by conveniently inserting in it a sequence of finite blocks
of coefficients, in order to create, for each positive integer k, a convergent
pmk

/qmk
of hm(ξ) with

(4.5) nk/(1 + δ) < qmk
≤ nk.

Each of these blocks will end by a term of the type bmk+1 =
⌈

1
q2mk

Ψ(qmk
)

⌉
,

which makes |hm(ξ)− pmk
/qmk

| very close to Ψ(qmk
).



Sets of exact approximation order 185

More precisely, we will put

hm(ξ) = [0; b1, b2, . . . ] = [0; a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , ar2 , c
(2)
1 , c

(2)
2 , . . . , c(2)

s2 , c
(2)
s2+1, ar2+1, ar2+2, . . . ],

where, for each j ≥ 1, rj is the smallest r such that

K(a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , arj−1+1, arj−1+2, . . . , ar) >
nj

(m+ 1)K0(δ)
.

By the minimality of rj and since arj ≤ m, it follows from Lemma 3 that

K(a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , arj−1+1, arj−1+2, . . . , arj ) < nj/K0(δ).

Now, we use Lemma 2 and the map Θ defined after the proof of that lemma
to find integers c(j)1 , c

(j)
2 , . . . , c

(j)
sj in {1, 2} such that nj/(1 + δ) < qmj ≤ nj ,

where mj := rj + sj +
∑

1≤i<j(si + 1).

Then we take c(j)sj+1 =
⌈

1
q2mj

Ψ(qmj )

⌉
, and we continue this construction for

each j.
Since Ψ(x) = o(x−2) and the only coefficients of the continued fraction

[0; b1, b2, . . . ] of hm(ξ) which can be larger than m are the coefficients c(j)sj+1,
the inequality |hm(ξ)−p/q| < Ψ(q), with q large, implies that p/q = pmk

/qmk

for some k.
Now, since we have, by Lemma 3,

√
c̃

2
Ψ(qmk

) <
1

(c(k)sk+1 + 2)q2mk

<

∣∣∣∣hm(ξ)− pmk

qmk

∣∣∣∣(4.6)

<
1

c
(k)
sk+1q

2
mk

=
1⌈

1
q2mk

Ψ(qmk
)

⌉
q2mk

≤ Ψ(qmk
)

for large k, it is enough to show that, for k large, the approximations dpmk
dqmk

of hm(ξ) for integers d ≥ 2 do not satisfy
∣∣hm(ξ)− dpmk

dqmk

∣∣ < Ψ(dqmk
) in order

to conclude that hm(ξ) is in Exact(Ψ).
Since 2qmk

exceeds nk, we infer from (4.4) that, for every integer d ≥ 2,
we have

(dqmk
)2Ψ(dqmk

) < n2
kΨ(nk),
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thus, using (4.1), (4.5) and assumption (∗), we get

Ψ(dqmk
) <

1
4

(
nk
qmk

)2

Ψ(nk) ≤
(1 + δ)2

4
c̃Ψ(qmk

)
(
qmk

nk

)c
≤ c̃

4
(1 + δ)|c|+2Ψ(qmk

) ≤
√
c̃

2
Ψ(qmk

).

So, for large k, we deduce from (4.6) that

Ψ(dqmk
) <
√
c̃

2
Ψ(qmk

) <
1

(c(k)sk+1 + 2)q2mk

<

∣∣∣∣hm(ξ)− pmk

qmk

∣∣∣∣,
which concludes the proof that hm(ξ) is in Exact(Ψ).

We will check now that, for any ξ, ξ′ in Cm and any α with 0 < α < 1,
we have

|ξ − ξ′| = O(|hm(ξ)− hm(ξ′)|α).

Let ξ = [0; a1, a2, . . . ] and ξ′ = [0; a′1, a
′
2, . . . ] be in Cm, and let ñ be the

least positive integer i such that ai 6= a′i. We have

hm(ξ) = [0; b1, b2, . . . ] = [0; a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , ar2 , c
(2)
1 , c

(2)
2 , . . . , c(2)

s2 , c
(2)
s2+1, ar2+1, ar2+2, . . . ]

and

hm(ξ′) = [0; b′1, b
′
2, . . . ] = [0; a′1, . . . , a

′
r′1
, c
′(1)
1 , c

′(1)
2 , . . . , c

′(1)
s′1
, c
′(1)
s′1+1

,

a′r′1+1, a
′
r′1+2, . . . , a

′
r′2
, c
′(2)
1 , c

′(2)
2 , . . . , c

′(2)
s′2
, c
′(2)
s′2+1

, a′r′2+1, a
′
r′2+2, . . . ].

Let j be the smallest index such that ñ ≤ rj+1. We have, for every i ≤ j,
a′k = ak for all k ≤ ri, ri = r′i, si = s′i for all i ≤ j and c

(i)
r = c

′(i)
r for

all i ≤ j, r ≤ si + 1 = s′i + 1 (recall that we have used the map Θ in the
construction of hm). This means that bi = b′i for all i ≤ mj + ñ− rj , where
mj = rj + sj +

∑
1≤i<j(si + 1), and we have bmj+1+ñ−rj = añ 6= a′ñ =

b′mj+1+ñ−rj .
Let k = 1, . . . , j. We infer from (4.1), (4.3), (4.5) and Ψ(qmk

)qcmk
≥

Ψ(nk)nck/c̃ that

Ψ(qmk
) ≥ 1

c̃
(1 + δ)−|c|Ψ(nk) ≥

Ψ(nk)
2
√
c̃
>

1

2
√
c̃ n

2+1/k
k

≥ 1

6q2+1/k
mk

.

The last inequality holds since

n
−2−1/k
k > (1 + δ)−2−1/kq−2−1/k

mk
≥ (1 + δ)−3q−2−1/k

mk

and (1 + δ)3 ≤ (2/
√
c̃)3/2 < 3/

√
c̃.
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In particular, we have

c
(k)
sk+1 =

⌈
1

q2mk
Ψ(qmk

)

⌉
< 6q1/kmk

+ 1,

and so
qmk+1 < (6q1/kmk

+ 2)qmk
≤ 8q1+1/k

mk
.

Furthermore, from the construction of hm(ξ), we infer that qmk
/qmk−sk

<
(m+ 1)K0(δ).

Moreover, using Lemma 3(ii), we can conclude that

qmk+1 < 8(m+ 1)K0(δ)q1/kmk
qmk−sk

< 8(m+ 1)K0(δ)n1/k
k qmk−sk

< 16(m+ 1)K0(δ)n1/k
k K(ark−1+1, ark−1+2, . . . , ark)qmk−1+1

for k ≤ j.
Finally, we have

qmj+ñ−rj < 2K(arj+1, arj+2, . . . , añ−1)qmj+1,

with the convention that K(arj+1, arj ) = 1.
Therefore, setting r0 = 0, we deduce from the preceding estimates that

qmj+ñ−rj is smaller than

(16(m+ 1)K0(δ))j
j∏

k=1

(n1/k
k ·K(ark−1+1, ark−1+2, . . . , ark))

×K(arj+1, arj+2, . . . , añ−1),

thus

qmj+ñ−rj ≤ (16(m+ 1)K0(δ))j
j∏

k=1

n
1/k
k ·K(a1, . . . , añ−1).

Since
∏j
k=1 n

1/k
k = exp(

∑j
k=1(log nk)/k), and lognk−1 ≤ (log nk)/3 for

k ≤ j, we get
∏j
k=1 n

1/k
k ≤ n3/(2j)

j . Using nj ≥ ((m+1)K0(δ))3
j−1

, we deduce
that

(16(m+ 1)K0(δ))j = (n1/j
j )o(1),

and so

(16(m+ 1)K0(δ))j
j∏

k=1

n
1/k
k ≤ n(3+o(1))/2j

j

= q(3+o(1))/2j
mj

= qo(1)
mj

= q
o(1)
mj+ñ−rj .

Summarizing, we have qmj+ñ−rj < q
o(1)
mj+ñ−rj ·K(a1, . . . , añ−1), and so

q
1−o(1)
mj+ñ−rj < K(a1, . . . , añ−1).



188 Y. Bugeaud and C. G. Moreira

From Lemma 3(i), we have

|ξ − ξ′| < 1
K(a1, . . . , añ−1)2

<
1

q
2(1−o(1))
mj+ñ−rj

,

and, by Lemma 3(iii),

|hm(ξ)− hm(ξ′)| ≥ 1
(m+ 1)3q2mj+ñ−rj

=
1

q
2+o(1)
mj+ñ−rj

.

We then conclude that |α − β| < |hm(α) − hm(β)|1−o(1). This finishes the
proof of Theorem 1.

Proof of Theorem 2. Let Ψ be a function satisfying assumption (∗) for
some real numbers n0 and c. Let N0 be such that Ψ(n) < 1/n2 for n ≥ N0.

We construct inductively a rapidly increasing sequence (n̂k)k≥1 of inte-
gers defined by n̂1 = max{N0, d3K0(δ)e}, where K0(δ) is the constant given
by Lemma 2, and

n̂k+1 = min{n positive integer : n > d1/Ψ(n̂k)e and

n2Ψ(n) > r2Ψ(r) for every r > n}
for k ≥ 1 (this is possible since Ψ(x) = o(x−2)). We construct a continuous
injective map ĥ from the set C2 of real numbers with partial quotients in
{1, 2} to the set Exact(Ψ), which implies the result. Let ξ = [0; a1, a2, . . .]
be in C2 and write

ĥ(ξ) = [0; b1, b2, . . . ] = [0; a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , ar2 , c
(2)
1 , c

(2)
2 , . . . , c(2)

s2 , c
(2)
s2+1, ar2+1, ar2+2, . . . ],

where, for each j ≥ 1, the integer rj is the smallest r such that

K(a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , arj−1+1, arj−1+2, . . . , ar) >
n̂j

3K0(δ)
.

By the minimality of rj and since arj ≤ 2, we have

K(a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , arj−1+1, arj−1+2, . . . , arj ) < n̂j/K0(δ).

Now, we use Lemma 2 to find c
(j)
1 , c

(j)
2 , . . . , c

(j)
sj in {1, 2} such that

n̂j/(1 + δ) < qmj ≤ n̂j ,

where mj := rj + sj +
∑

1≤i<j(si + 1). Then we take c(j)sj+1 =
⌈

1
q2mj

Ψ(qmj )

⌉
,

and we continue this construction for each j.
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By the construction, the map ĥ is clearly continuous and injective, and,
as in the proof of Theorem 1, we can show that ĥ(ξ) is in Exact(Ψ) for ξ
in C2. This establishes Theorem 2.

Proof of Theorem 3. Let Ψ be a function satisfying assumption (∗) for
some real numbers n0 and c, such that the function 1/Ψ has lower order λ at
infinity. In view of Theorem 1, we may assume without loss of generality that
λ > 2. A classical covering argument shows that the Hausdorff dimension of
the set K(Ψ) (which contains Exact(Ψ)) is at most equal to 2/λ. To prove
that this is the exact value of the dimension is more difficult. In order to do
this, we will combine the technique of the proofs of the previous theorems
with ideas of [2]. We will assume from now on that λ is finite.

Let N0 be such that Ψ(n) < 1/n2 for n ≥ N0. Let m ≥ 8 be an integer.
We construct inductively a rapidly increasing sequence (ňk)k≥1 of integers
defined by ň1 = max{N0, d(m + 1)K0(δ)e}, where K0(δ) is the constant
given by Lemma 2,

nk = min{n positive integer : n > max{d1/Ψ(ňk)e, ňkk}
and Ψ(n) > n−λ−1/k}

and
ňk+1 := max{r ≥ nk : r2Ψ(r) ≥ n2

kΨ(nk)}
for k ≥ 1 (this is possible since Ψ(x) = o(x−2)).

Let ξ = [0; a1, a2, . . .] be in Cm. We will construct continued fractions of
the type

ξ = [0; b1, b2, . . . ] = [0; a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , ar2 , c
(2)
1 , c

(2)
2 , . . . , c(2)

s2 , c
(2)
s2+1, ar2+1, ar2+2, . . . ],

where, for each j ≥ 1, the integer rj is the smallest r such that

K(a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , arj−1+1, arj−1+2, . . . , ar) >
ňj

(m+ 1)K0(δ)
.

By the minimality of rj and since arj ≤ m, we have

K(a1, . . . , ar1 , c
(1)
1 , c

(1)
2 , . . . , c(1)

s1 , c
(1)
s1+1,

ar1+1, ar1+2, . . . , arj−1+1, arj−1+2, . . . , arj ) < ňj/K0(δ).

Now, we use Lemma 2 to find c
(j)
1 , c

(j)
2 , . . . , c

(j)
sj in {1, 2} such that

ňj/(1 + δ) < qmj ≤ ňj ,

where mj := rj + sj +
∑

1≤i<j(si+ 1). Then we take for c(j)sj+1 an (arbitrary)
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integer between
⌈

1
q2mj

Ψ(qmj )

⌉
and

⌈(
1 + 1

j

)
1

q2mj
Ψ(qmj )

⌉
, and we continue this

construction for each j.
We can show as in the proof of Theorem 1 that any real number ξ

constructed in this way is in Exact(Ψ). The set Ĉ of possible real numbers ξ
constructed in this way is a Cantor set whose Hausdorff dimension will be
estimated below.

Let us recall the statement of Proposition 1 of [2] (which is Example 4.6
of [8]). Consider a decreasing sequence of sets [0, 1] = E0 ⊃ E1 ⊃ E2 ⊃ · · ·
such that each Ek is a finite disjoint union of closed intervals. Assume that
for each k ≥ 1, each interval of Ek−1 contains at least m̂k ≥ 2 intervals of
Ek which are separated by gaps of size at least εk, where 0 < εk+1 < εk.
Then the Hausdorff dimension of the Cantor set C :=

⋂∞
k=0Ek satisfies

dim C ≥ lim inf
k→+∞

log(m̂1 . . . m̂k−1)
− log(m̂kεk)

.

We will describe sets Êk, which are disjoint unions of closed intervals sat-
isfying Ĉ =

⋂∞
k=0 Êk, which allow us to use the above proposition to esti-

mate dim Ĉ. In order to do this, we will describe, for each ξ ∈ Ĉ, and each
k ≥ 1, the component interval Îk(ξ) of Êk which contains ξ. For each finite
sequence of positive integers b1, . . . , br, let J (m)(b1, . . . , br) be the interval{

[0; b1, . . . , br, x] : x ∈
[
m+2
m+1 ,m+ 1

]}
.

Since
dimCm > 1− 1

m log 2
:= dm,

there is τm > 0 such that, for each η with 0 < η ≤ τm, we need at least
η−dm intervals of length at most 4η to cover Cm. For each j ≥ 0, we take
t
(j)
0 := 0, and, while

K(a1, . . . , c
(j)
sj+1, arj+1, . . . , arj+t

(j)
i

) <
τmňj

(m+ 1)4K0(δ)
,

we put

t
(j)
i+1 := min{t > t

(j)
i : K(a1, . . . , c

(j)
sj+1, arj+1, . . . , arj+t)

> (m+ 1)τ−1/2
m K(a1, . . . , c

(j)
sj+1, arj+1, . . . , arj+t

(j)
i

)}.

We define the positive integer `j as the largest integer i for which t
(j)
i was

defined above. We then have

τmňj
(m+ 1)4K0(δ)

≤ K(a1, . . . , c
(j)
sj+1, arj+1, . . . , arj+t

(j)
i

) <
τ

1/2
m ňj

(m+ 1)2K0(δ)
.

Let u0 = 0 and, for j ≥ 1, uj =
∑

0≤i<j(`i + 2). We take, for j ≥ 0,

Îuj (ξ) = J (m)(a1, a2, . . . , c
(j)
sj
, c

(j)
sj+1);
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for 1 ≤ i ≤ `j ,

Îuj+i(ξ) = J (m)(a1, a2, . . . , c
(j)
sj
, c

(j)
sj+1, arj+1, . . . , arj+t(j)i

)

and Îuj+`j+1(ξ) = J (m)(a1, . . . , arj+1).

Since n̂k = n̂
o(1)
k+1 for large k, we have, for large j,

m̂uj =
⌈(

1 +
1
j

)
1

q2mj
Ψ(qmj )

⌉
−
⌈

1
q2mj

Ψ(qmj )

⌉
= qλ−2+o(1)

mj
,

εuj = 1/q2λ−2+o(1)
mj

(which follows from the estimates of Lemma 3), and

m̂1 . . . m̂uj−1 > q2dm
mj

,

so
log(m̂1 . . . m̂uj−1)
− log(m̂ujεuj )

>
2dm
λ
− o(1).

On the other hand, for 1 ≤ i ≤ `j , we have

m̂uj+i = O(1), ε−1
uj+i

= O(q−2

mj+1+t
(j)
i

),

and

m̂1 . . . m̂uj+i−1 > qλ−2+2dm
mj

(q
mj+1+t

(j)
i

/qmj+1)2dm

= q2dm

mj+1+t
(j)
i

qλ−2+2dm−2dm(λ−1)−o(1)
mj

= q2dm

mj+1+t
(j)
i

q−(2dm−1)(λ−2)−o(1)
mj

> q
2dm−(2dm−1)(λ−2)/(λ−1)−o(1)

mj+1+t
(j)
i

= q
(2dm+λ−2)/(λ−1)−o(1)

mj+1+t
(j)
i

(the estimates of m̂uj+`j+1, εuj+`j+1 and m̂1 . . . m̂uj+`j are roughly the same
as those of m̂uj+`j , εuj+`j and m̂1 . . . m̂uj+`j−1), which gives

log(m̂1 . . . m̂uj+i−1)
− log(m̂uj+iεuj+i)

>
2dm + λ− 2

2(λ− 1)
− o(1).

By Proposition 1 of [2], it follows that

dim Ĉ ≥ min
{

2dm
λ
,
2dm + λ− 2

2(λ− 1)

}
=

2dm
λ
,

and, letting m tend to infinity, we conclude that dim Exact(Ψ) ≥ 2/λ, and
so dimK(Ψ) = dim Exact(Ψ) = 2/λ. This proves Theorem 3.

Remark. In the proof of Theorem 3, our aim was to construct a Can-
tor type set, whose Hausdorff dimension could be bounded from below by
means of the mass distribution principle, as in [2]. The basic strategy was to
construct real numbers ξ whose continued fraction expansion has scattered
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big partial quotients (which guarantee that ξ is in Exact(Ψ)) and whose
other partial quotients are at most equal to m. The method developed in
[2] is quite complicated and makes use of the assumption that x 7→ x2Ψ(x)
is non-decreasing, which is much stronger than our assumption (∗), to allow
the partial quotients to be unbounded, but “not too large”. The advantage
is that it also gives (see Theorem 2 of [2]) precise information on the Haus-
dorff measure of sets related to Exact(Ψ). In the present paper, our goal
is merely to compute the Hausdorff dimension of Exact(Ψ). To do this, it
was sufficient to take the “small” coefficients bounded, say by a large inte-
ger m. Comparing our result with the construction of [2], what we obtain
is analogous to showing, with the notation of [2, p. 182], that there exists
ε(m) which tends to 0 as m tends to infinity and is such that, at step k,
each interval Uj gives birth to Q2−ε(m)

k+1 Ψ(Qk) intervals, which are approxi-
mately evenly spaced. Letting then m tend to infinity gave us the expected
dimension. However, this approach is too crude to give any information on
the Hausdorff measure of Exact(Ψ).
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