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Almost perfect powers in arithmetic progression
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N. Saradha and T. N. Shorey (Mumbai)

1. Introduction. Let b, d, `, n and y be positive integers such that
gcd(n, d) = 1 and ` > 2 is a prime number. Let k ≥ 2, t ≥ 2 and r ∈ {0, 1}
be integers satisfying t = k − r. Thus k ≥ 2 if r = 0 and k ≥ 3 if r = 1. Let
d1 < . . . < dt be integers in the interval [0, k). We write

∆ = ∆(n, d, k, r, d1, . . . , dt) = (n+ d1d) . . . (n+ dtd).

For an integer ν > 1, we denote by P (ν) the greatest prime factor of ν and
we put P (1) = 1. For P (b) ≤ k, we consider the equation

(n+ d1d) . . . (n+ dtd) = by`(1.1)

in integers b, d, k, `, n, y, d1, . . . , dt. If r = 0, then di = i for 0 ≤ i < k and
the left hand side of (1.1) is n(n + d) . . . (n + (k − 1)d). If r = 1, the left
hand side of (1.1) is obtained by omitting a term n + id for some i with
0 ≤ i < k from {n, n + d, . . . , n + (k − 1)d}. When considering equation
(1.1), it is natural to suppose that

P (∆) > k if d = 1(1.2)

and
P (∆) > k if d > 1;

the latter inequality holds, by Theorem 4, unless

r = 1, k = 3, d > 1

or
(n, d, k) = (2, 7, 3) if r = 0

and
(n, d, k, d1, . . . , dt) ∈ {(1, 5, 4, 0, 1, 3), (2, 7, 4, 0, 1, 2), (3, 5, 4, 0, 1, 3),

(1, 2, 5, 0, 1, 2, 4), (2, 7, 5, 0, 1, 2, 4),

(4, 7, 5, 0, 2, 3, 4), (4, 23, 5, 0, 1, 2, 4)} if r = 1.
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The above tuples (n, d, k) and (n, d, k, d1, . . . , dt) are excluded throughout
the paper without reference. We have no contribution on equation (1.1)
with r = 1, k = 3, d > 1 and therefore we always suppose that k ≥ 4 if
r = 1 and d > 1. Thus P (∆) > k if d > 1. Theorem 4 is equivalent to the
statement that ∆ with r = 0, d > 1 and k ≥ 4 is divisible by at least two
distinct primes if (3.2) holds (see Theorem 4′). This sharpens earlier results
of Sylvester [26], Langevin [8] and Shorey and Tijdeman [23].

First, we consider equation (1.1) with r = 0 and d = 1. Erdős [3]
and Rigge [12], independently, proved that equation (1.1) with r = 0 and
b = d = 1 implies that k is bounded by a number C depending only on `.
Further, Erdős and Siegel (unpublished) showed that C can be replaced by
an absolute constant. The proofs of the preceding results were not elemen-
tary and they depend on a deep method of Thue for diophantine equations.
An elementary proof of the result of Erdős and Siegel was given by Erdős [4]
and this elementary method led Erdős and Selfridge [5] to establish a striking
theorem in the theory of exponential diophantine equations that (1.1) with
r = 0, d = 1, P (b) < k and (1.2) has no solution. The method of Erdős and
Selfridge is still elementary and it depends on graph theory. The assumption
P (b) < k has been relaxed to P (b) ≤ k for k ≥ 4 by Saradha [15] and for
k = 2, 3 by Győry [6]. Saradha’s proof depends on the method of Erdős and
Selfridge whereas Győry derived his results from the deep theorems of Ribet
[11] and Darmon and Merel [2] on generalised Fermat equations.

All the constants appearing in this paper from now onward are effectively
computable. We write C1, C2, . . . for effectively computable absolute positive
constants. It follows from a result of Shorey [17] that equation (1.1) with
r = d = 1 and (1.2) implies that k ≤ C1. Further Saradha [15] proved that
C1 can be taken to be 8 and we shall prove the following result.

Theorem 1. Equation (1.1) with r = d = b = 1 implies that

(n, k, d1, . . . , dt) ∈ {(2, 3, 0, 2), (1, 4, 0, 1, 3)}.
Theorem 1 answers a question of Erdős and Selfridge [5, p. 300]. Apart

from the method of Erdős and Selfridge, the proof of Theorem 1 depends
on the contributions of Wiles, Ribet and others on generalised Fermat equa-
tions. For equation (1.1) with d = 1, r > 1 and (1.2), we refer to Shorey [17]
and Shorey and Nesterenko [21].

Now we suppose that equation (1.1) with r = 0 and d > 1 is satisfied.
Marszałek [9] showed that k is bounded by a number c depending only on d.
Saradha [15] proved that c can be 3 for d ∈ {2, 3, 4, 6} and 4 for d = 5. Shorey
[18] showed that c can be replaced by a number depending only on P (d).
Further, Shorey and Tijdeman [22] replaced c by a number depending only
on ` and ω(d) where ω(d) denotes the number of distinct prime divisors
of d. Shorey and Tijdeman [22] also improved the result of Marszałek by
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proving that
d ≥ kC1 log log k(1.3)

and Shorey [19] showed that

n ≥ kC2 log log k for ` ≥ 7.

The proof of the former inequality is elementary whereas the proof of the
latter depends on Baker’s theory of linear forms in logarithms, the best
possible estimates of Shorey replacing logA1 . . . logAn by logAn for linear
forms in logarithms with αi’s very close to 1 and also on the irrationality
measures of Baker by hypergeometric method.

It is clear from the proofs that the results in the previous paragraph
are also valid for equation (1.1) with r = 1 and d > 1. Further, Saradha
[15] proved that equation (1.1) with r = 1 and 2 ≤ d ≤ 6 is not valid for
k ≥ 9. For equation (1.1) with r > 1 and d > 1, we refer to Shorey and
Tijdeman [24]. It has been conjectured by Erdős that equation (1.1) with
r = 0 and d > 1 implies that k is bounded by an absolute constant. Shorey
[20] showed that the above conjecture for ` > 3 is a consequence of the
abc-conjecture and the proof depends on (1.3). For a survey of results on
equation (1.1), we refer to [20] and [25].

We write
d = D1D2(1.4)

where D1 is the maximal divisor of d such that all the prime divisors of D1
are congruent to 1 (mod `). Thus D1 and D2 are relatively prime positive
integers such that D2 has no prime divisor which is congruent to 1 (mod `).
Hence the assertion that d has no prime divisor congruent to 1 (mod `) is
equivalent to D1 = 1. Shorey [18] proved that equation (1.1) with r = 0 and
d > 1 implies that

D1 > 1 if k ≥ C3.(1.5)

The absolute constant C3 turns out to be large in the proof of Shorey and
we show that it can be replaced by 4. More generally, we prove

Theorem 2. Suppose that equation (1.1) with (1.2) is satisfied. Assume
that

k ≥ 4 if r = 0 and k ≥ 9 if r = 1.(1.6)

Then D1 > 1.

Thus, under the assumptions of Theorem 2, we see that d is divisible
by a prime congruent to 1 (mod `) and hence P (d) ≥ 2` + 1. Theorem 2
includes the results of Saradha stated above. The proof of Theorem 2 bases
on the method of Erdős and Selfridge. We combine Theorem 2 with a result
of Győry [7] that equation (1.1) with r = 0, k = 3, P (b) < k and d > 1 does
not hold to obtain the following result.
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Corollary 1. Assume equation (1.1) with r = 0 and d > 1. Then
D1 > 1 if either P (b) < k or 2 | d.

It follows from Corollary 1 that equation (1.1) with r = 0 and d > 1
implies that P (d) ≥ 7 if either P (b) < k or 2 | d. It is also clear from the
proof of Theorem 2 that the assumption (1.6) in Theorem 2 can be relaxed
to k ≥ 3 if r = 0 and k ≥ 4 if r = 1 whenever d > 1 with 2 | d or 3 | d.

Shorey and Tijdeman [22] sharpened (1.5) by showing that

D1 > C4k
`−2.

The constant C4 turns out to be small, and therefore the above inequality
is trivial for small values of k. We obtain the following sharpening of (1.5),
which improves the above estimate for small values of k. We put

θ =
{

1 if ` - d,
1/` if ` | d.(1.7)

Then we prove

Theorem 3. Suppose that equation (1.1) with (1.2) and (1.6) is satisfied.
Then

D1 > αθkβ(1.8)

where (α, β) are as follows:

(i) (1.59, `/2− 3− 5/(2`)) if ` ≥ 17,
(ii) (1.1, 43/13) if ` = 13,
(iii) (.93, 25/11) if ` = 11,
(iv) (.73, 9/7) if ` = 7,
(v) (.6, 7/5) if ` = 5, 5 | d,

(.65, 1/5) if ` = 5, 5 - d,
(vi) (.41, 1/3) if ` = 3.

Thus equation (1.1) with r = 0, d > 1, k ≥ 4 and ` ≥ 17 implies that
d ≥ D1 ≥ 157. Further, we observe that (1.1) with d > 1, k ≥ 9 and ` ≥ 17
implies that d ≥ D1 ≥ 11993. The computations in this paper have been
carried out using MATHEMATICA. The proofs use several computational
ideas. We thank Dr. C. Khare for useful discussions on Lemma 13.

2. Notation and preliminaries. We follow the notation of Section 1
throughout the paper. This is also the case with the notation which we
introduce in this section. Let q1 < q2 < . . . be the sequence of all primes
coprime to d. We write πd(k) for the number of all primes ≤ k and coprime
to d. If d = 1, we write qi = pi for i ≥ 1 and πd(k) = π(k). We shall use the
estimates

pi ≥ i log i for i ≥ 1,(2.1)
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πd(x) ≤ π(x) ≤ x

log x
+

1.5x
log2 x

for x > 1(2.2)

and

π(2x)− π(x) ≥ 3x
5 log x

for x ≥ 20.5,(2.3)

(see [13, p. 69]). Further we write

qi(k) = qπd(k)+i for i ≥ 1,

pi(k) = pπ(k)+i for i ≥ 1,
χ =

{
2 if r = 0, d > 1, k ≥ 4,
1 otherwise,

and

δ =
n+ (k − 1)d

k`+1 .(2.4)

Further we put

α1 = α1(d, k) = (k − 1)!
∏

p|d
p−ordp(k−1)!,(2.5)

α2 = α2(d, k, `, r) = 1− logα1

k(` log qχ(k)− log k)
− πd(k) + r + 1

k
,(2.6)

α3 = α3(d, k, `, r)(2.7)

=
([α2k] + 1)

k

(
q1(k)
k

)`
≥ ([α2k] + 1)

k

(
1 +

1
k

)`
≥ α2.

We put

α4 = α4(d, k, `, r) = 1− logα1

k(` log k + logα3)
− πd(k) + r + 1

k
.

For 0 < δ′ < 1, we put

α5 = α5(d, k, `, r)(2.8)

=
(

1− δ′ − logα1

k(` log k + logα3)
− r + 1

k

)
(δ′ log(δ′k))`.

By (1.1), we write

n+ did = aix
`
i , P (ai) ≤ k, ai is `th power free for 1 ≤ i ≤ t,(2.9)

n+ did = AiX
`
i , P (Ai) ≤ k, gcd

(∏

p≤k
p,Xi

)
= 1 for 1≤ i≤ t.(2.10)

Let S = {A1, . . . , At}, T = {a1, . . . , at} and set |T | = t′. Let d and k be given.
Let m1 ≥ 1, m2 ≥ 0 and m3 ≥ 0 be integers such that m1 +m2 +m3 = πd(k)
and

q1 < . . . < qm1 < qm1+1 < . . . < qm1+m2 < . . . < qm1+m2+m3 ≤ k.(2.11)

Let H(d, k,m1,m2) denote the number of ai’s in T which are composed only
of q1, . . . , qm1 and divisible by at most one of the primes qm1+1, . . . , qm1+m2
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which divides at most to the first power. In particular, when m2 = 0,
H(d, k,m1, 0) represents the number of ai’s in T which are composed only
of q1, . . . , qm1 . Suppose βµ denotes the number of aj ’s in T divisible by qµ
and βµν denotes the number of aj ’s in T divisible by qµqν for 1 ≤ µ, ν ≤
m1 +m2 +m3. Then

H(d, k,m1,m2) ≥ t′ −
m1+m2+m3∑

µ=m1+m2+1

βµ −
∑

m1+1≤µ,ν≤m1+m2

βµν .(2.12)

In particular, when m2 = 0, we have

H(d, k,m1, 0) ≥ t′ −
m1+m3∑

µ=m1+1

βµ.(2.13)

We see from (2.9) and gcd(n, d) = 1 that

βµ ≤
[
k

qµ

]
+ εµ, βµν ≤

[
k

qµqν

]
+ εµν(2.14)

where

εµ =
{

0 if qµ | k or qµ > k,
1 if qµ - k,

εµν =
{

0 if qµqν | k,
1 if qµqν - k.

By (2.12)–(2.14), we have

(2.15) H(d, k,m1,m2)

≥ t′ −
m1+m2+m3∑

µ=m1+m2+1

([
k

qµ

]
+ εµ

)
−

∑

m1+1≤µ,ν≤m1+m2

([
k

qµqν

]
+ εµν

)

:= H0(d, k,m1,m2)

and

H(d, k,m1, 0) ≥ t′ −
m1+m3∑

µ=m1+1

([
k

qµ

]
+ εµ

)
= H0(d, k,m1, 0).

It follows immediately from the definition of H0(d, k,m1,m2) that

H0(d, k,m1,m2) ≥ H0(1, k,m1,m2).(2.16)

Further, we notice that whenever t′ = t we have

H0(1, k,m, 0) = f0(k,m)(2.17)

and
H0(1, k,m1,m2) ≥ F0(k,m1,m2)(2.18)

if m1 = π(k.3) and m2 = π(k.5) − π(k.3) where f0(k,m) and F0(k,m1,m2)
are given in [15, (19), (22)]. In [15, (35), Table 2], lower bounds, say X,
for f0(k,m) with 4 ≤ k ≤ 2238 and F ∗0 (m1,m2) for F0(k,m1,m2) with
2239 ≤ k ≤ 11379 are given. We shall give below the table of [15, (35),
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Table 2] which will be used later. We observe here that for k ≥ 9, the value
X has been calculated taking r = 1. Therefore, when we consider the case
r = 0 and k ≥ 9, we may replace X by X + 1.

(2.19)

f0(k, 2) ≥ 4, 4 ≤ k ≤ 22; f0(k, 3) ≥ 8, 23 ≤ k ≤ 102;

f0(k, 4) ≥ 16, 103 ≤ k ≤ 282; f0(k, 5) ≥ 22, 283 ≤ k ≤ 612;

f0(k, 6) ≥ 38, 613 ≤ k ≤ 1102; f0(k, 7) ≥ 66, 1103 ≤ k ≤ 1636;

f0(k, 8) ≥ 115, 1637 ≤ k ≤ 2238.

Table 1

m1 m2 k F ∗0 (m1,m2)

4 11 2239–2808 112
4 12 2809–2960 121
5 11 2961–3480 195
5 12 3481–3720 210
5 13 3721–4488 226
5 14 4489–5040 241
5 15 5041–5165 257
6 14 5166–5328 418
6 15 5329–6240 445
6 16 6241–6888 472
6 17 6889–7920 499
6 18 7921–9408 526
6 19 9409–10200 553
6 20 10201–10608 580
6 21 10609–11379 607

Finally, we conclude this section with the following fundamental result
of Erdős (see [5, Lemma 2]).

Lemma 1. For 1 ≤ i ≤ t, let n + did = BiB
′
i, where Bi and B′i are

positive integers such that P (Bi) ≤ k. Let S = {B1, . . . , Bt}. For every
prime p ≤ k with gcd(p, d) = 1, choose Bip ∈ S such that p does not appear
to a higher power in the factorisation of any other element of S. Let S1

be the subset of S obtained by deleting from S all Bip with p ≤ k and
gcd(p, d) = 1. Then ∏

Bi∈S1

Bi ≤ α1.

Proof. This follows by observing that the above product divides
∏

p<k
gcd(p,d)=1

p
[ k−1
p

]+[ k−1
p2

]+...
.

We shall apply Lemma 1 several times. Besides, we refer to Lemma 1 for
its argument at many places.
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3. A sharpening of a theorem of Sylvester. A well known theorem
of Sylvester [26] states that a product of k consecutive positive integers > k
is divisible by a prime exceeding k. Sylvester [26] extended his result by
proving that P (∆) > k if n ≥ d+k and r = 0. Further, Langevin [8] relaxed
the assumption n ≥ d + k to n > k. Finally, Shorey and Tijdeman [23]
proved that P (∆) ≤ k and r = 0 imply that (n, d, k) = (2, 7, 3). This is an
immediate consequence of the following analogous result for r = 1.

Theorem 4. Let r = 1, d > 1 and k ≥ 4. Suppose that

P (∆) ≤ k.(3.1)

Then
(n, d, k, d1, . . . , dt) ∈ {(1, 5, 4, 0, 1, 3), (2, 7, 4, 0, 1, 2), (3, 5, 4, 0, 1, 3),

(1, 2, 5, 0, 1, 2, 4), (2, 7, 5, 0, 1, 2, 4),

(4, 7, 5, 0, 2, 3, 4), (4, 23, 5, 0, 1, 2, 4)}.
We refer to Section 1 for the definition of ∆ and we recall that gcd(n, d)

= 1. The proof of Theorem 4 depends on Lemma 1 and estimate (2.2)
from prime number theory. We do not need the results on an analogue
of Bertrand’s postulate for certain arithmetic progressions as is the case
in [23]. Finally, we observe that Theorem 4 is equivalent to the following
sharpening of the result of Shorey and Tijdeman stated in this section and
it is of independent interest.

Theorem 4′. Let r = 0, d > 1 and k ≥ 4. Suppose that

(3.2) (n, d, k)

6∈ {(1, 5, 4), (2, 7, 4), (3, 5, 4), (1, 2, 5), (2, 7, 5), (4, 7, 5), (4, 23, 5)}.
Then ∆ is divisible by at least 2 distinct primes exceeding k.

We observe that the assumption (3.2) is necessary in Theorem 4′.

Proof of Theorem 4. We first show that (3.1) implies k ≥ 9. Let k = 4.
There are three terms composed only of 2 and 3. Out of these terms we delete
one in which 2 appears to a maximal power and one in which 3 appears to
a maximal power to see that either n + d ≤ 6 or n ≤ 6 such that at least
one of P (n(n+ id)(n+ jd)) ≤ 3 with 1 ≤ i < j ≤ 3. Suppose that n+d ≤ 6.
Let n = 1, d = 2. Then P (n + (k − 1)d) = 7, P (n + (k − 2)d) = 5, which
contradicts (3.1). All cases other than (n, d, k, d1, . . . , dt) = (1, 5, 4, 0, 1, 3)
and (3, 5, 4, 0, 1, 3) are excluded similarly. Now let n ≤ 6 with at least one
of P (n(n + id)(n + jd)) ≤ 3 with 1 ≤ i < j ≤ 3. By the case k = 3
of [23], we need to consider only the cases P (n(n + d)(n + 3d)) ≤ 3 and
P (n(n + 2d)(n + 3d)) ≤ 3. Let P (n(n + d)(n + 3d)) ≤ 3. Then n and d
are odd. If n = 1, then 1 + 3d = 2α, 1 + d = 2 · 3β, and if n = 3, then
3 + 3d = 2 · 3β, 3 + d = 2α. This implies that n = 1, d = 5 or n = 3, d = 5
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by the well known result on the Catalan equation that 9 and 8 are the only
powers of 3 and 2, respectively, that differ by 1. The details for the other
case are similar. Let k = 5. By a similar argument, we show that (3.1) is
not possible unless

(n, d, k, d1, . . . , dt)

= (1, 2, 5, 0, 1, 2, 4), (2, 7, 5, 0, 1, 2, 4), (4, 7, 5, 0, 2, 3, 4), (4, 23, 5, 0, 1, 2, 4).

Let k ∈ {6, 7, 8}. Then we have n ≤ 12 and n+ d ≤ 60. For these values of
n and d, we check that (3.1) is contradicted.

Thus we may suppose that k ≥ 9 from now onward. By (3.1), we see that
P (n+ did) ≤ k for 1 ≤ i ≤ t. Hence by Lemma 1 with Bi = n+ did,B

′
i = 1,

we have
k−πd(k)−2∏

i=0

(n+ id) ≤ α1.

On the other hand,
k−πd(k)−2∏

i=0

(n+ id) ≥
{

(k − πd(k)− 2)!dk−πd(k)−2,

(k − πd(k)− 1)!dk−πd(k)−1 if n ≥ d.
Therefore

dk−πd(k)−2 ≤ (k − 1) . . . (k − πd(k)− 1)
∏

p|d
p−ordp(k−1)!,(3.3)

dk−πd(k)−1 ≤ (k − 1) . . . (k − πd(k))
∏

p|d
p−ordp(k−1)! if n ≥ d.(3.4)

By using πd(k) ≤ π(k), we see that

dk−π(k)−2 ≤ (k − 1) . . . (k − π(k)− 1).(3.5)

By (3.3), we have

d < k(πd(k)+1)/(k−πd(k)−2)
∏

p|d
p−(ordp(k−1)!)/(k−πd(k)−2).(3.6)

Thus by (2.2),

d < exp
( 1 + 1.5

log k + log k
k

1− 1
log k − 1.5

log2 k
− 2

k

)∏

p|d
p
−( k−p−1

p−1 −
log(k−1)

log p )/(k−2)
,(3.7)

which implies that

d < exp
( 1 + 1.5

log k + log k
k

1− 1
log k − 1.5

log2 k
− 2

k

)
.(3.8)

First we claim that d < 4 for k ≥ 25. Suppose d ≥ 4 and k ≥ 25. Then
by (3.8), we have k ≤ 3615. Further we see from (3.8) that d ≤ 9 for k ≥ 67.
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By (3.5), we check that d ≤ 9 for every k with 25 ≤ k ≤ 66. Thus 4 ≤ d ≤ 9.
In fact k ≤ 91 if d = 4 by (3.7) and we use (3.8) to get k ≤ 399 if d = 5;
k ≤ 171 if d = 6; k ≤ 108 if d = 7; k ≤ 81 if d = 8; and k ≤ 66 if d = 9.
Now we use (3.3) to show that this is not possible and our claim is proved.

Let d ≥ 4. Then 9 ≤ k ≤ 24. Now we use (3.5) and (3.3) to get d = 5, k ∈
{13, 19}; d = 11, k ∈ {9, 10}; d = 13, k ∈ {9, 11}; d = 17, k ∈ {9, 11, 13}; d =
19, k ∈ {11, 13}. Further we use (3.4) to conclude that n < d. For these
values of n, d and k, we check that at least two of P (n + (k − i)d) with
1 ≤ i ≤ 7 exceed k, which contradicts (3.1). Thus d < 4.

Let d = 3. Then k ≤ 357 by (3.7), k ≤ 24 by (3.3) and n < 3 by (3.4)
and we check that (3.1) is contradicted in these cases.

Let d = 2. Then k ≤ 3757 by (3.7). We reduce the value of k to 118 by
using (3.3) with exact value of πd(k) and ord2(k− 1)!. Further, we use (3.4)
to derive that n = 1 for 9 ≤ k ≤ 118 unless k ∈ {19, 23, 24, 31, 32, 47}. By
(3.1), we have

π(n+ 2k − 2) ≤ π(n− 1) + π(k) + 1,(3.9)

which implies that n > 1. Therefore, we conclude that k ∈ {19, 23, 24, 31,
32, 47}. If n ≥ 10, then (3.4) can be sharpened to

dk−πd(k)−1 ≤ 4!(k − πd(k) + 4) . . . (k − 1)2−ord2(k−1)!,

which is not possible for the above values of k. Thus n ≤ 9. Finally, we check
that (3.9) does not hold for n ≤ 9 and k ∈ {19, 23, 24, 31, 32, 47}.

4. Lemmas for the proof of Theorem 2. In this section, we shall
always assume equation (1.1) with (1.2). We recall that k ≥ 4 if r = 1, d > 1
and the tuples (n, d, k, d1, . . . , dt) given in Theorem 4 are excluded. Further,
equation (1.1) with r = 0 is not satisfied for tuples (n, d, k) appearing in
Theorem 4′. Hence we derive from Theorems 4 and 4′ that

n+ (k − 1)d ≥ (qχ(k))` ≥ (k + 1)`,(4.1)

which implies that

δ ≥ (qχ(k))`

k`+1 ≥ 1
k

(
1 +

1
k

)`
.(4.2)

Now we use (4.1) to show the distinctness of ai’s and Aj ’s.

Lemma 2. Suppose that equation (1.1) with (1.2) is satisfied.
(a) If

D1 ≤
`θ(qχ(k))`−1

k2−1/`
,(4.3)

then at least t− 1 elements of each of the sets S and T are distinct.
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(b) If

D1 ≤
θ(qχ(k))`−1

k2−1/`
,(4.4)

then the elements of each of the sets S and T are distinct.

Proof. (a) Let T ′ = T − {a0}. We show that the elements of T ′ are
distinct. Suppose ai = aj for some ai, aj ∈ T ′ with i 6= j. Then we see from
(2.9) that

(di − dj)d = (n+ did)− (n+ djd)(4.5)

= aj(x`i − x`j) = aj

(
x`i − x`j
xi − xj

)
(xi − xj).

We assume without loss of generality that xi > xj . We observe that all
the prime divisors of (x`i − x`j)/(xi − xj) are congruent to 1 (mod `) except
possibly ` which appears only to the first power if and only if ` | (xi−xj). Now
we see from (4.5), (1.4) and (1.7) that θD2 divides xi−xj since gcd(ai, d) = 1.
Thus xi − xj ≥ θD2 and

kd > (di − dj)d ≥ aj`θD2x
`−1
j .

Since j 6= 0, we have ajx`j ≥ n+ d. Thus

kD1 > `θ(ajx`j)
(`−1)/` ≥ `θ(n+ d)(`−1)/` > `θ

(
1
k

(n+ (k − 1)d)
)(`−1)/`

.

Now we use (4.1) to get D1 > (`θ(qχ(k))`−1)/k2−1/`, which contradicts (4.3).
Hence the elements of T ′ are distinct, which implies the assertion of Lemma
2(a). The proof that at least t− 1 elements of S are distinct is similar.

(b) We show that the elements of T are distinct. We proceed as in (a).
Assuming ai = aj for some ai, aj ∈ T with i 6= j, we get (4.5). Further
xi > xj implies that n+ did > n + djd. Hence n + did ≥ n+ d. Thus from
(4.5) we get

kd > (di − dj)d ≥ aiθD2x
`−1
i ,

which implies that
kD1 > θ(aix`i)

(`−1)/` ≥ θ(n+ d)(`−1)/`.

Now as in Lemma 2(a), we obtain a contradiction implying |T | = t. The
proof for |S| = t is similar.

We apply Lemma 2 to improve the bound for δ in (4.2).

Lemma 3. Suppose that equation (1.1) with (1.2) and (4.4) is satisfied.
Then

(i) δ ≥ α3,
(ii) δ ≥ (q([α4k]+1)(k))`/k`+1,
(iii) δ ≥ α5 if 0 < δ′ < 1 is such that δ′k ≥ πd(k).
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Proof. (i) Suppose that equation (1.1) with (1.2) and (4.4) is satisfied.
Then |S| = t by Lemma 2(b). Let S1 be the set of all Ai ∈ S for which
Xi = 1 and write S2 for the complement of S1 in S. Put |S1| = h. By
Lemma 1, there exists a subset S3 of S1 such that |S3| ≥ h− πd(k) and

∏

Ai∈S3

Ai ≤ α1.

Now for any Ai ∈ S3 with i 6= 0, we see that Ai ≥ n+ d. Thus
∏

Ai∈S3

Ai ≥ (n+ d)h−πd(k)−1.

Since

n+ d >
1
k

(n+ (k − 1)d) ≥ (qχ(k))`

k

by (4.1), we get
∏

Ai∈S3

Ai >

(
(qχ(k))`

k

)h−πd(k)−1

.

Combining the above estimates for
∏
Ai∈S3

Ai, we have

h <
logα1

` log qχ(k)− log k
+ πd(k) + 1.

Therefore we derive from Lemma 2(b) and t = k − r that

|S2| > k − r − logα1

` log qχ(k)− log k
− πd(k)− 1 = α2k,

which implies that |S2| ≥ [α2k] + 1. Now we arrange the Ai’s belonging to
S2 in increasing order. Further we observe from (2.10) that Xi ≥ q1(k) if
Ai ∈ S2. Hence

n+ (k − 1)d ≥ ([α2k] + 1)(q1(k))` = α3k
`+1.(4.6)

Now (i) follows from (4.6) and (2.4).
(ii) We apply (4.6) in place of (4.1) to derive that n+ d > α3k

` and

h <
logα1

` log k + logα3
+ πd(k) + 1,

which implies that |S2| > α4k. We observe from (2.10) and gcd(n, d) = 1
that Xi’s with Ai ∈ S2 are pairwise coprime with all prime factors exceeding
k and coprime to d. Consider the set S4 of all prime factors of Xi’s with
Ai ∈ S2. Then |S4| ≥ |S2| > α4k. Therefore the largest element of S4 is
at least q([α4k]+1)(k). Now the assertion of Lemma 3(ii) follows immediately
from (2.4) and (2.10).

(iii) We may suppose that the Xi’s corresponding to the Ai’s in S2 are
primes, otherwise the assertion of Lemma 3(iii) follows from (2.10) and
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0 < δ′ < 1. As seen in (ii), |S2| > α4k. Further these primes are distinct. We
first arrange the Xi’s in increasing order, say X1 < . . . < X[α4k]+1 < . . . We
omit X1, . . . ,Xν where ν = [δ′k − πd(k)] ≥ 0 by our assumption. We may
assume that ν ≤ [α4k], otherwise the assertion is trivial. Then we are left
with Xν+1 < . . . < X[α4k]+1 < . . . Here each Xi ≥ qν+1(k). Now we take the
corresponding Ai’s and arrange them in increasing order. Then we conclude
from Lemma 2, (2.10) and (2.1) that

n+ (k − 1)d ≥ (α4k − ν)(qν+1(k))` ≥ (α4k − ν)p`π(k)+ν+1

≥ (α4k − ν)(π(k) + ν + 1)` log`(π(k) + ν + 1),

which implies the assertion.

The next result is due to Erdős and Selfridge [5] and it is fundamental
in their method.

Lemma 4. Let 1 ≤ `′ ≤ `−1. Suppose that equation (1.1) with d = 1 and
(1.2) is satisfied. Then for no distinct `′-tuples (i1, . . . , i`′) and (j1, . . . , j`′)
with i1 ≤ . . . ≤ i`′ and j1 ≤ . . . ≤ j`′ , the ratio of the two products ai1 . . . ai`′
and aj1 . . . aj`′ is an `th power of a rational number.

For a proof of Lemma 4, see also Saradha [15, Lemma 4]. The following
result extends and improves Lemma 4 considerably.

Lemma 5. Let 1 ≤ `′ ≤ `− 1, κ > 0 and

κ0 = min
(

`

`′(κ+ 1)(`−`′)/` ,
κ

(κ+ 1)`′1/`

)
.

Assume equation (1.1) with (1.2) and

D1 ≤ κ0θδ
(`−`′)/`k`−`

′−`′/`.(4.7)

Then the assertion of Lemma 4 is valid.

Proof. Let (i1, . . . , i`′) and (j1, . . . , j`′) with i1 ≤ . . . ≤ i`′ and j1 ≤ . . . ≤
j`′ be distinct `′-tuples. Suppose that

ai1 . . . ai`′ = aj1 . . . aj`′ (t1/t2)`(4.8)

where t1 and t2 are positive integers. There is no loss of generality in as-
suming that t1 and t2 are relatively prime. We claim

(n+ di1d) . . . (n+ di`′d) 6= (n+ dj1d) . . . (n+ dj`′d).(4.9)

Suppose

(n+ di1d) . . . (n+ di`′d) = (n+ dj1d) . . . (n+ dj`′d).

Then we cancel any term on the left hand side which equals some term on
the right hand side. Thus there exists at least one term different from n say,
n+ di1d, on the left hand side. Since gcd(n, d) = 1, we have

n+ d ≤ n+ di1d ≤ gcd(n+ di1d, n+ dj1d) . . . gcd(n+ di1d, n+ dj`′d) ≤ k`′ .
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Thus n + (k − 1)d < k(n + d) ≤ k`, which contradicts (4.1). This proves
(4.9). Now we may assume without loss of generality that the left hand side
of (4.9) is greater than the right hand side. By (2.9) and (4.9), we have

(4.10) (n+ di1d) . . . (n+ di`′d)− (n+ dj1d) . . . (n+ dj`′d)

= ai1 . . . ai`′x
`
i1 . . . x

`
i`′
− aj1 . . . aj`′x`j1 . . . x`j`′

=
aj1 . . . aj`′

t`2
((t1xi1 . . . xi`′ )

` − (t2xj1 . . . xj`′ )
`)

=
aj1 . . . aj`′

t`2
(x` − y`)

where x = t1xi1 . . . xi`′ and y = t2xj1 . . . xj`′ . We see from (4.8) that
ai1 . . . ai`′/t

`
1 and aj1 . . . aj`′/t

`
2 are positive integers since gcd(t1, t2) = 1.

We put A = aj1 . . . aj`′/t
`
2. Further we observe that the left hand side of

(4.10) is divisible by d and the first factor on the right hand side is rel-
atively prime to d since gcd(n, d) = 1. Therefore we see from (1.4) and
(1.7) that θD2 divides x − y. Hence x ≥ y + θD2 and the left hand side
of (4.10) is

≥ A
((

`
1

)
θD2y

`−1 +
(
`
2

)
(θD2)2y`−2 + . . .+ (θD2)`

)

≥
(
`

1

)
θD2(Ay`)(`−1)/` +

(
`

2

)
(θD2)2(Ay`)(`−2)/` + . . .+ (θD2)`

≥
(
`

1

)
θD2n

`′(`−1)/` +
(
`

2

)
(θD2)2n`

′(`−2)/` + . . .+ (θD2)`,

since Ay` = (aj1x
`
j1

) . . . (aj`′x
`
j`′

) ≥ n`
′
. On the other hand, the left hand

side of (4.10) is

<

(
`′

1

)
kdn`

′−1 +
(
`′

2

)
(kd)2n`

′−2 + . . .+ (kd)`
′
.

By comparing the above two estimates, we obtain

(4.11)
{(

`

1

)
θD2n

`′(`−1)/` −
(
`′

1

)
kdn`

′−1
}

+
{(

`

2

)
(θD2)2n`

′(`−2)/` −
(
`′

2

)
(kd)2n`

′−2
}

+ . . .+
{(

`

`′

)
(θD2)`

′
n`
′(`−`′)/` − (kd)`

′
}

+ . . .+ (θD2)` < 0.

Now we divide the proof into two cases.
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Case (i). Let n > δ
κ+1k

`+1. For 1 ≤ i ≤ `′, the ith term in the curly
bracket of (4.11) is(

`
i

)
(θD2)in`

′(`−i)/` −
(
`′

i

)
(kd)in`

′−i

= n`
′−iDi

2

{(
`
i

)
θini(`−`

′)/` −
(
`′

i

)
kiDi

1

}

> n`
′−iDi

2

{(
`
i

)
θi
(

δ

κ+ 1

)i(`−`′)/`
ki(`+1)(`−`′)/` −

(
`′

i

)
kiDi

1

}

> 0

since

D1 ≤
`θδ(`−`′)/`k`−`

′−`′/`

`′(κ+ 1)(`−`′)/`

by (4.7). This contradicts (4.11).
Case (ii). Let

n ≤ δ

κ+ 1
k`+1.(4.12)

Then by (2.4),

d ≥ δκ

κ+ 1
k`.(4.13)

From (4.11), it follows that there exists an i with 1 ≤ i ≤ `′ such that
(
`
i

)
(θD2)in`

′(`−i)/` −
(
`′

i

)
(kd)in`

′−i < −(θD2)`

`′
.

This implies that (
`′

i

)
(kd)in`

′−i >
(θD2)`

`′
.

Then, by (1.4), we have

D`
1 >

θ`d`−i

`′
(
`′
i

)
kin`

′−i .

Now we apply (4.12) and (4.13) to obtain

D1 >
κθδ(`−`′)/`k`−`

′−`′/`

(κ+ 1)1−`′/``′1/`
(
κi
(
`′
i

))1/` >
κθδ(`−`′)/`k`−`

′−`′/`

(κ+ 1)`′1/`
,

which contradicts (4.7).

The next result is an immediate extension of an estimate of Erdős and
Selfridge [5].

Lemma 6. Let 1 ≤ `′ ≤ ` − 1 and assume equation (1.1) with (1.2).
Suppose that for no distinct `′-tuples (i1, . . . , i`′) and (j1, . . . , j`′) with i1 ≤
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. . . ≤ i`′ and j1 ≤ . . . ≤ j`′ , the ratio of two products ai1 . . . ai`′ and aj1 . . . aj`′
is an `th power of a rational number. Then

(
H(d, k,m1,m2) + `′ − 1

`′

)
≤ `m1

(
`′ +m2
`′

)
(4.14)

where the left hand side is equal to zero if H(d, k,m1,m2) < 1.

Let g = g(`) = (`− 5)/2 and `′ = `− g. Then we see by induction that
if (4.14) does not hold for some odd ` = `1, then it does not hold for every
odd ` > `1 provided that

H(d, k,m1,m2) >
(

1 +
2
`1

)m1
(
m2 +

`1 + 7
2

)
− l1 + 5

2
.(4.15)

We apply Lemma 5 to derive

Lemma 7. Equation (1.1) with (1.2) and

D1 ≤ θk`−3+1/`(4.16)

implies that k < 11380.

Proof. Let k ≥ 11380. We observe from (4.16) and (4.1) that (4.4) is
valid. Hence Lemma 3 holds. Now we use logα1 < k log k by (2.5), ` ≥ 3,
k ≥ 11380, r ≤ 1, qχ(k) > k and (2.2) to find α3 ≥ .3754. Further, we
compute α5 with δ′ = 1/2 to get α5 ≥ 12.4678. Hence by Lemma 3(iii),
δ ≥ 12.4678. Now we take `′ = 2 and κ = 5 in Lemma 5. We see that
δ(`−2)/` ≥ δ1/3 ≥ 2.3187. We observe that `/(2(κ+ 1)(`−2)/`) is an increasing
function of `. Thus we get κ0 ≥ .6614. Hence the right hand side of inequality
(4.7) is > 1.5335·θk`−2−2/`. Thus (4.16) implies that (4.7) is satisfied. Hence
we conclude by Lemma 5 that the products aiaj for 1 ≤ i, j ≤ t are distinct.
Then all the estimates of [15, Lemma 8] are valid and these estimates yield
k < 11380 as in [15, pp. 165–166]. This is a contradiction.

Lemma 8. Suppose that equation (1.1) with (1.2), (1.6) and ` ≥ 17 is
satisfied. Then

D1 > 1.59 · θk`/2−3−5/(2`).(4.17)

Proof. Suppose that

D1 ≤ 1.59 · θk`/2−3−5/(2`).(4.18)

Then (4.4) holds. Hence Lemma 3 is valid. For k ≥ 30, we use ` ≥ 17, r ≤ 1
in (2.7) and in (2.8) with δ′ = 1/2 to get α5 ≥ 64.5882. Thus δ ≥ 64.5882
for k ≥ 30 by Lemma 3(iii). Further, we see from Lemma 3(ii) that δ ≥
11.1022 for 4 ≤ k ≤ 29 by calculating q[α4k]+1(k). Hence δ ≥ 11.1022 for
k ≥ 4. Further we take `′ = (`+ 5)/2 and κ = 3.65. Then we observe that
(2`)/(`+ 5)(κ+ 1)(`−5)/(2`) is an increasing function of `. Therefore we find
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that κ0 ≥ .6816. Thus

κ0θδ
(`−`′)/`k`−`

′−`′/` > 1.5940 · θk`/2−3−5/(2`).

Thus we see from (4.18) that D1 satisfies (4.7) and (4.16). Therefore by
Lemma 7, we have k < 11380 and by Lemmas 5 and 6,

(
H(d, k,m1,m2) + `+5

2 − 1
`+5

2

)
≤ `m1

( `+5
2 +m2
`+5

2

)
.(4.19)

Let H(d, k,m1,m2) ≥ Y . We wish to contradict (4.19) for suitable values of
m1,m2 and `. For this, it is enough to show that

(
Y + `+5

2 − 1
`+5

2

)
> `m1

( `+5
2 +m2
`+5

2

)
(4.20)

for suitable values of m1,m2 and `. Let k ≤ 2238 and m1 = m, m2 = 0. By
(2.15)–(2.17) and (1.6), we can take for Y the values given as lower bounds
for f0(k,m) in (2.17) to satisfy (4.20) with ` = 17. Let 2238 < k < 11380.
By (2.15), (2.16) and (2.18), we can take Y as F ∗0 (m1,m2) given by Table 1
to satisfy (4.20) with ` = 17. Further we check that

Y ≥
(

1 +
2
`1

)m1
(
m2 +

`1 + 7
2

)
− `1 + 5

2

for `1 = 17 and for suitable values of m1,m2 mentioned above. Consequently,
inequality (4.20) is satisfied for all odd ` ≥ 17 and for suitable values of
m1,m2 given above.

Lemma 9. Suppose that equation (1.1) with (1.2), 3 ≤ ` ≤ 13 and (4.16)
is satisfied. Then

D1 > .7θδβ1kβ2(4.21)

where (β1, β2) are given as follows:

(i) (4/13, 43/13) if ` = 13,
(ii) (3/11, 25/11) if ` = 11,
(iii) (2/7, 9/7) if ` = 7,
(iv) (2/5, 7/5) if ` = 5, 5 | d, k 6= 4,

(1/5, 1/5) if ` = 5, 5 | d, k = 4 or ` = 5, 5 - d,
(v) (1/3, 1/3) if ` = 3.

Proof. We derive from Lemma 7 that k < 11380. We follow the argument
of Lemma 8. We take `′ = 9 for ` = 13; `′ = 8 for ` = 11; `′ = 5 for ` = 7;
`′ = 3 for ` = 5, 5 | d, k 6= 4; `′ = 4 for ` = 5, 5 | d, k = 4 or ` = 5, 5 - d; `′ = 2
for ` = 3. We take κ = 8 for ` 6= 5; κ = 7 if ` = 5, 5 | d, k 6= 4; and κ = 15
if ` = 5, 5 | d, k = 4 or if ` = 5, 5 - d in the expression for κ0 in Lemma 5 to
find that κ0 ≥ .7. Suppose

D1 ≤ .7θδβ1kβ2 .
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Then

D1 ≤ κ0θδ
β1kβ2 .(4.22)

Also (4.22) with (i) to (v) implies that (4.7) is satisfied. Therefore the as-
sertion of Lemma 5 is valid. Hence we conclude that (4.14) holds. We also
note that ai’s are distinct. For all the cases except ` = 5, 5 | d, k 6= 4, we use
(1.6), (2.19) and Table 1 as in the proof of Lemma 8 to contradict (4.14).
Now we consider the case ` = 5, 5 | d, k 6= 4. In this case `′ = 3 and k ≥ 5.
Since 5 | d, we observe that H(d, k,m1, 0) ≥ f0(k,m1 + 1) whenever m1 ≥ 2.
Now we use (2.19) and Table 1 as in Lemma 8 to contradict (4.14) whenever
k ≥ 23. Further we use the above inequality to calculate H(d, k, 2, 0) ≥ 5
for k ≤ 22, which contradicts (4.14), implying the assertion of Lemma 9.

We conclude this section by stating a result of Győry [7].

Lemma 10. Equation (1.1) with r = 0, k = 3, P (b) < k and d > 1 does
not hold.

5. Proof of Theorem 3. We assume equation (1.1) with (1.2) and
(1.6). We may suppose that (4.16) is satisfied, otherwise the assertion of
Theorem 3 follows immediately. We observe that (1.8) with (i) is the asser-
tion of Lemma 8. Thus we may suppose that 3 ≤ ` ≤ 13. Then by Lemma 9,
(4.21) holds with (i) to (v). Let ` = 13. Then β1 = 4/13 and δ4/13 ≥ 1.5936
for 4 ≤ k ≤ 30 by Lemma 3(ii) and for k ≥ 31 by Lemma 3(iii). Now
the assertion for ` = 13 follows from (4.21). Similarly we have δβ1 ≥
1.3382; 1.0514; .8663; .9307; .5849 according as ` = 11; ` = 7; ` = 5, 5 | d;
` = 5, 5 - d; ` = 3, respectively. Finally we apply (4.21) to complete the
proof of Theorem 3.

6. Proof of Theorem 2. We suppose that equation (1.1) with (1.2),
(1.6) and D1 = 1 is satisfied. Now we derive from Theorem 3 that 3 ≤ ` ≤ 7.
Then from Lemma 9 we get

1 > .7θδβ1kβ2(6.1)

with (β1, β2) as in Lemma 9. Let ` = 7. Then by Theorem 3, we get 7 | d
and k = 4, 5. We see from (6.1) that δ ≤ 2.2628 if k = 5 and δ ≤ 6.1764 if
k = 4. On the other hand, we derive from (4.2) and (1.6) that δ ≥ 160. This
is a contradiction.

Let ` = 5 and 5 - d. Then we derive from (1.8) and (6.1) that k ≤ 8 and
δ ≤ 5.95/k. Thus r = 0 by (1.6) and k = 4, 5 by Lemma 3(ii). Now we
see from (4.2) and (1.2) that d = 1 and P (∆) = 5 if k = 4, P (∆) = 7 if
k = 5. Thus n + k − 1 ≥ 55. On the other hand, we see from an argument
of Lemma 1 that n ≤ 12. This is a contradiction.
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Let ` = 5 and 5 | d. Then we derive from (1.8) and (6.1) that k = 4
and n + (k − 1)d <

(200
7

)5
. If 3 | d, the assertion follows from Lemma 10.

If 2 | d, there are two successive terms which are `th powers, contradicting
D1 = 1. Thus 2 - d, 3 - d. Since D1 = 1, we see that gcd(p, d) = 1 whenever
p ∈ {11, 31, 41, 61, 71}. By an argument of Lemma 1, we find i, j with 0 ≤
i < j ≤ 3 such that Ai, Aj ∈ {1, 2, 3, 4, 6} and Xi,Xj are primes between 7
and 23. We have d = (AjX`

j −AiX`
i )/h with h = j − i. We calculate all

possible pairs (AiX`
i , d) satisfying the above conditions. Further we check

that AiX`
i + 2d if h = 1, AiX`

i + 3d if h = 2, and AiX
`
i + 2d if h = 3 is

divisible by a prime > 7 to a power which is 6≡ 0 (mod `). Hence k 6= 4.
Let ` = 3 and 3 - d. Then by (1.8), we see that k ≤ 14. Further δ ≤

2.9155/k by (6.1), which contradicts Lemma 3(ii) when 4 ≤ k ≤ 14.
Let ` = 3 and 3 | d. By (1.8) and (6.1), we get k ≤ 391 and

δ <

(
30
7

)3 1
k
.(6.2)

For k ≥ 102, we see from Lemma 3(iii) with δ′ = 1/2 that δ ≥ α5 ≥ .7779,
contradicting (6.2). For every k with 71 ≤ k ≤ 102, we give a lower bound
for α5 by using πd(k) ≤ π(k) and the exact value of π(k) to contradict (6.2).
Thus k ≤ 70. We see from Lemma 2 that |T | = t unless k ∈ {10, 12, 16, 18} in
which case |T | = t− 1. Since ai’s are cube free, we observe that H(d, k, 1, 0)
≤ 3 and H(d, k, 2, 0) ≤ 9. By using gcd(ai, 3) = 1 for 1 ≤ i ≤ t, we calculate
that H(d, k, 2, 0) ≥ f0(k, 2) ≥ 10 for 26 ≤ k ≤ 70 and H(d, k, 1, 0) ≥
f0(k, 1) ≥ 4 for 4 ≤ k ≤ 25, k 6∈ {12, 16, 18, 23, 24}. Let k = 24. Then
f0(k, 1) ≥ 3 and hence H(d, k, 1, 0) = 3. This implies that the number of
ai’s divisible by the primes 5, 7, 11, 13, 17, 19 and 23 is 5, 4, 3, 2, 2, 2 and 2,
respectively. Each of these ai’s is divisible precisely by one of these primes.
Therefore 23 divides a0, a23 and 7 divides a1, a8, a15, a22. Hence 5 divides
either a2, a7, a12, a17, a22 or a3, a8, a13, a18, a23. This is a contradiction since
7 | a22 and 23 | a23. The cases k = 12, 16, 18, 23 are excluded similarly.

Proof of Corollary 1. By Theorem 2, we may assume that k ≤ 3. If
k = 3 and P (b) < k, the assertion follows from Lemma 10. If k = 3 and
2 | d, then there are at least two distinct ai, aj which are equal to one. Thus
|x`i − x`j | = d or 2d and this is not possible since D1 = 1. If k = 2 and
P (b) < k or 2 | d, then b = 1, implying x`1 − x`0 = d, which is not possible
again by D1 = 1.

7. Additional lemmas for the proof of Theorem 1. The proof of
Theorem 1 depends on Lemmas 4 and 6 of Section 4. In this section, we give
the other lemmas required for the proof of Theorem 1. We start with the
following result on a generalised Fermat equation.
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Lemma 11. Let ` ≥ 3 and α an integer with 1 ≤ α < `. Then the
equation

x` + y` = 2αz`(7.1)
in non-zero relatively prime integers x, y, z has no solution for α > 1, and
for α = 1 the equation has only the trivial solution for which xyz = ±1.

The above assertion for α > 1 is due to Ribet [11] and for α = 1 to
Darmon and Merel [2]. Lemma 10 and the following result of Győry are
consequences of Lemma 11.

Lemma 12. Equation (1.1) with r = 0, d = 1, k = 3 and (1.2) has no
solution.

In fact, as in Sander [14], the contributions of Wiles, Ribet and others
give the following result on a more general Fermat equation than (7.1).

Lemma 13. Let ` ≥ 5. Let a, b, c be non-zero integers such that either
P (abc) ≤ 3 or a, b, c are composed of only 2 and 5. Then the equation

(7.2) ax` − by` = cz` in non-zero integers x, y, z

with gcd(ax`, by`, cz`) = 1, ord2(by`) ≥ 4

has no solution.

Proof. We follow the arguments given in Ribet [11]. Let x, y, z be non-
zero integers satisfying (7.2). We put A = ax`, B = −by` and C = cz`. Thus
A + B = C. We assume that A ≡ −1 (mod 4) by possibly multiplying the
given equation by −1. Further we observe that gcd(A,B) = 1 and 16 |B.
We form the Frey elliptic curve E:

Y 2 = X(X − A)(X +B).

Then the conductor NE of E is given by

NE = 2trad′(ABC)

where t is a non-negative integer and rad′(ABC) means the product of odd
prime divisors of ABC. According to the computations made by Diamond
and Kramer,

t =
{

0 if ord2(by`) = 4,
1 if ord2(by`) > 4.

Thus E is a semistable elliptic curve and hence by the works of Wiles and
Wiles and Taylor, it is modular. Hence there exists a cusp form of weight 2
and level NE . Further we see that if ∆E denotes the minimal discriminant
of E, then

∆E = 2u(ABC)2

where u is an integer. Thus for any p |∆E we have

ordp(∆E) ≡ 0 (mod `)
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except for p = 2, 3 if P (abc) ≤ 3 and except for p = 2, 5 if a and b are
composed of only 2 and 5. Hence by a theorem of Ribet, there is a cusp
form of weight 2 and level 2 or 3 or 6 if P (abc) ≤ 3 or there is a cusp
form of weight 2 and level 2 or 5 or 10 if a and b are composed only of
2 and 5. We see from the dimension formula given in [16, pp. 23–25] that
X0(2),X0(3),X0(5),X0(6),X0(10) are of dimension 0. This is a contradic-
tion.

Bennett [1] developed hypergeometric methods to show

Lemma 14. If a, b and ` are integers with ab 6= 0 and ` ≥ 3, then the
equation

|ax` − by`| = 1

has at most one solution in positive integers (x, y). Hence the equation

|(a+ 1)x` − ay`| = 1

has the only solution (x, y) = (1, 1).

Finally, we show that the assertion of Theorem 1 is valid when P (∆) ≤ k.

Lemma 15. Equation (1.1) with r = b = d = 1 implies that P (∆) > k
unless

(n, k, d1, . . . , dt) ∈ {(2, 3, 0, 2), (1, 4, 0, 1, 3)}.
Proof. Assume equation (1.1) with r = b = d = 1 and P (∆) ≤ k.

Let k = 3. Then n(n + 2) = y` with either n = 2α3β , n + 2 = 2γ or
n = 2α, n + 2 = 2γ3β where β ≡ 0 (mod `). Now we use a result on the
Catalan equation stated in Section 3 to see that n = 2. We show that
k ≥ 17. Let 4 ≤ k ≤ 16. Then we see by an argument of Lemma 1 that
n ≤ 12 if 4 ≤ k ≤ 8 and n ≤ 72 if 9 ≤ k ≤ 16. Now we check that

π(n+ k − 1)− π(n− 1) ≥ 2(7.3)

for these values of n and k except when k = 4, n ∈ {6, 7, 8, 9, 12}; k = 5,
n ∈ {6, 8, 12}; k = 9, n ∈ {20, 32, 44, 48, 49, 50, 62}; k = 10, n ∈ {48, 49};
k = 11, n = 48, which are excluded since ∆ is an `th power. Therefore we
may suppose that (7.3) holds. This implies that there exists a prime p ≥ n
dividing ∆. Let n ≥ 11. Then ordp(∆) ≤ 2 since n+ k− 1 ≤ 87 and p ≥ 11.
Finally, we check that ∆ is not an `th power for n ≤ 10 and 4 ≤ k ≤ 16.
Thus k ≥ 17.

Suppose n < k. Then (n+ k − 1)/2 ≥ n. Now using (2.3) we check that

π(n+ k − 1)− π
(
n+ k − 1

2

)
≥ 2 if n+ k − 1 ≥ 41.

This means that if n + k − 1 ≥ 41, there exists a prime p > (n+ k − 1)/2
dividing ∆ and ordp(∆) = 1. Thus we may assume that n + k − 1 ≤ 40.
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These values of n and k are excluded since ∆ is an `th power. Thus we may
suppose that n ≥ k. By Lemma 1, we have

nk−π(k)−1 ≤ kk,
i.e.

k ≤ k log k
logn

+ π(k) + 1.(7.4)

Suppose n + i0 is the omitted term. Let 0 ≤ i0 ≤ [k/2]. By a result of
Sylvester, there exists a prime p≥ k/2 dividing the product (n+[k/2]+1)
. . . (n+k−1). This prime p can divide at most two terms of the product ∆.
Hence by equation (1.1) with r = b = d = 1 we have

n+ k − 1 ≥
(
k

2

)`−1

.(7.5)

Suppose now [k/2] < i0 ≤ k − 1. Since n > k, we again apply the result
of Sylvester to n(n+ 1) . . . (n+ [k/2]) and find that (7.5) is satisfied. Thus
(7.5) always holds. By combining (7.4) and (7.5), we have

k ≤ k log k

log
((

k
2

)`−1 − k + 1
) + π(k) + 1,

from which we derive that k ≤ 33 since ` ≥ 3. Further we see from (7.4) that
n ≤ 280. Also we observe that n 6∈ {17, 18, 110, 114, 200, 201, 202, 203, 204,
205, 206} since ∆ is an `th power. These values of n and k are excluded
as earlier by checking (7.3) when n ≥ 19 and the proof of Lemma 15 is
complete since n > k.

8. Proof of Theorem 1. Suppose that equation (1.1) with r = b = d =
1 holds. Then we may assume (1.2) by Lemma 15. Now we conclude that
k ≤ 8 by Saradha [15, Theorem 1(a)] or Theorem 2. Further the assertions
of Lemmas 4 and 6 are valid. In particular, the ai’s are distinct. Let k = 8.
Then f0(k, 2) ≥ 3. Further we apply Lemmas 4 and 6 with `′ = `−1, m1 = 2,
m2 = 0 as in the proof of Lemma 8 to conclude that f0(k, 2) = 3. We write
the terms of the left hand side of equation (1.1) as in (2.9). Then 7 divides
a0 and a7, 5 divides a1 and a6 and by Lemma 12, the omitted term is either
n+ 3 or n+ 4. Thus we have two possible equations:

n(n+ 1)(n+ 2)(n+ 4)(n+ 5)(n+ 6)(n+ 7) = y`(8.1)

or
n(n+ 1)(n+ 2)(n+ 3)(n+ 5)(n+ 6)(n+ 7) = y`.(8.2)

We prove the assertion of Theorem 1 for (8.1). The proof for (8.2) is similar.
We assume without reference that (8.1) holds in the case k = 8. Suppose no
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ai equals 1. Then we observe that 6 | (n+ 2) and we write (2.9) as

n = 2f07i0x`0, n+ 1 = 5h1x`1, n+ 2 = 2f23g2x`2, n+ 4 = 2f4x`4,

n+ 5 = 3g5x`5, n+ 6 = 2f65h6x`6, n+ 7 = 7i7x`7.

Here all the indices are non-negative integers< ` such that i0, h1, f4, g5, h6, i7
are positive and either f2 or g2 is non-zero. Suppose f4≥ 2. Then f2 = f6 = 1,
which implies a2a5 = a1a6

(3
5

)`. This contradicts Lemma 4. Thus f4 = 1.
Suppose f2 ≥ 3. Then f6 = 2, giving a1a6 = a4a45`, a contradiction. If
f2 = 2, then a2a5 = a4a43` gives a contradiction. Let f2 = 1. Then f6 = 1
or 2. If f6 = 1, then a1a6 = a2a5

(5
3

)`, and if f6 = 2, then a1a6 = a4a45`.
These give the necessary contradiction. If f2 = 0, then x2 is even, say 2x′2,
and we get x`4 − 2`−13g2x′`2 = 1. This equation has no solution for ` ≥ 5 by
Lemma 13. Thus we may assume for ` ≥ 5 that one of the ai’s, say aj0 , is 1.
We note that j0 ∈ {2, 4, 5}. Then

a0a1 . . . aj0−1aj0+1 . . . a7 = aj0 . . . aj0h
`

for some positive integer h. Here, in the product on the right hand side, aj0
is taken 6 times. This is a contradiction to Lemma 4 with `′ = 6 if ` ≥ 7.

Now we turn to considering the case ` = 5. First, we suppose n+2 = x5
2.

Then 6 - (n + 4) and 6 - (n + 5). So n + 4 = 2f4x5
4 or 3g4x5

4 where f4 > 0,
g4 > 0. If n + 4 = 2f4x5

4, then 2 | x2. Hence f4 = 1. Then x5
4 − 16x′52 = 1

where x2 = 2x′2. This is not possible by Lemma 11. Suppose n+ 4 = 3g4x5
4.

Then n + 5 = 2f5x5
5. As 3 divides n + 1 and n + 7, we see that g4 is either

1 or 3. Further n + 2 = x5
2 implies that n + 4 ≡ 1, 2, 3 (mod 11) and

n + 5 ≡ 2, 3, 4 (mod 11). Hence n + 4 = 3x5
4 and n + 5 ≡ 4 (mod 11).

Therefore n + 5 = 4x5
5. Thus 4x5

5 − 3x5
4 = 1. By Lemma 14, this equation

has the only solution (x4, x5) = (1, 1), which is not possible. Secondly, we
consider the case when n + 4 = x5

4. Then n + 2 = 3g2x5
2 or 2 · 3g2x5

2. Let
n+2 = 3g2x5

2. Since n+4 ≡ 0, 1, 10 (mod 11), we have g2 = 1 or 2. If g2 = 2,
then g5 = 3, which implies 9 | 3, a contradiction. If g2 = 1, then n is odd
and we have

n = 7i0x5
0, n+ 1 = 2f15h1x5

1, n+ 2 = 3x5
2, n+ 4 = x5

4,

n+ 5 = 2f534x5
5, n+ 6 = 5h6x5

6, n+ 7 = 2f77i7x5
7.

Here f1, f5, f7 are positive satisfying f1+f5+f7 = 5, which implies (f1, f5, f7)
= (2, 2, 1) or (1, 1, 3). Then we see that a1a6 = a2a5

(5
3

)5, contradicting
Lemma 4. Suppose n + 2 = 2 · 3g2x5

2. Then x4 is even. If g2 > 0, then
n+ 1 = 5h1x5

1, n+ 5 = 3g5x5
5 and n+ 6 = 2 · 5h6x5

6. Thus a1a6 = a2a5
(5

3

)5.
This is a contradiction. If g2 = 0, then 16x′54 − x5

2 = 1 with x4 = 2x′4,
contradicting Lemma 11. Finally, we take n+ 5 = x5

5. If 3 | a2, then n+ 4 =
2f4x5

4 and x5
5 − 2f4x5

4 = 1, contradicting Lemma 11. Thus 3 - a2. We again
apply Lemma 11 to (n+ 5)− (n+ 4) to see that 3 | a4. Also we have f2 > 0.
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Thus

n = 2f07i0x5
0, n+ 1 = 3g15h1x5

1, n+ 2 = 2f2x5
2,

n+ 4 = 2f43g4x5
4, n+ 5 = x5

5, n+ 6 = 2f65h6x5
6, n+ 7 = 3g77i7x5

7.

Now g1 + g4 + g7 = 5, which implies that (g1, g4, g7) is a permutation of
(3, 1, 1). Similarly, by counting the power of 2 in ai’s, we conclude that
(f0, f2, f4, f6) is a permutation of (2, 1, 1, 1). When (f0, f2, f4, f6)=(2, 1, 1, 1),
we have x4 even, say 2x′4, and 253g4x′55 −x5

2 = 1. This is impossible by Lemma
13. The cases (f0, f2, f4, f6) = (1, 2, 1, 1) and (1, 1, 1, 2) are excluded simi-
larly. Let (f0, f2, f4, f6) = (1, 1, 2, 1). If (g1, g4, g7) = (3, 1, 1), (1, 3, 1) and
(1, 1, 3), then a0a2a7 = a4a5a575, a0a7 = a1a6

(7
5

)5 and a1a2a6 = a4a5a555

respectively, a contradiction to Lemma 4. The other possibilities are ex-
cluded similarly. Thus ` 6= 5.

Let ` = 3. Then ai’s are cube-free. Since n ≡ 0 (mod 7) and ai ∈
{1, 2, 3, 4, 6, 9, 12, 18, 36}, we see that a2, a5 ∈ {2, 9, 12} and a4 ∈ {3, 4, 18}.
Let a2 = 2. Then a5 = 9 and 9x3

5 − 2x3
2 = 3, which is not possible. The

other cases are excluded similarly. This completes the proof of Theorem 1
for k = 8.

Let k = 6. Arguing as at the beginning of the case k = 8, we find that
we have either

n(n+ 1)(n+ 2)(n+ 4)(n+ 5) = y`(8.3)

or
n(n+ 1)(n+ 3)(n+ 4)(n+ 5) = y`

with 5 |n. Further we see that if ` ≥ 5, the proof is similar to the case
k = 8 and ` ≥ 7. Therefore we assume that ` = 3. We prove the assertion of
Theorem 1 for the first equation. The proof for the second is similar. First
we suppose that no ai equals 1. Then we observe that 6 | (n + 4) and we
write (2.9) as

n = 2f05h0x3
0, n+ 1 = 3g1x3

1, n+ 2 = 2f2x3
2,

n+ 4 = 2f43g4x3
4, n+ 5 = 5h5x3

5.

If f2 = 2, then f0 = f4 = 1 and (8.3) is not possible. Thus f2 = 1
since no ai equals 1. Suppose f4 = 2. Then a1a4 = a2a233, which con-
tradicts Lemma 4. If f4 = 1, then f0 = 1 and hence a0a5 = a1a4

(5
3

)3, a
contradiction to Lemma 4. If f4 = 0, then f0 = 2 and we have a0a5 =
a2a253, a contradiction. Thus we may assume that one of a1, a2, a4 is equal
to 1 since h0 > 0 and h5 > 0. We have ai ∈ {1, 2, 3, 4, 6, 9, 12, 18, 36}
for i ∈ {1, 2, 4}. Let a1 = 1. Then x1 > 1 and a2x

3
2 − x3

1 = 1, which
implies that (x3

1 + 1)/(x1 + 1) = x′32 or 3x′32 since P (a2) ≤ 3. Therefore
x1 = 2, 19 by Nagell and Ljunggren (see Ribenboim [10, pp. 96, 105]).
Hence n + 1 = 86859, which is not possible since 5 |n. The possibility
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a2 = 1 is excluded similarly. Let a4 = 1. Then n + 4 ≡ 0, 1, 8 (mod 9).
Thus n = 4, 5, 6 (mod 9). Let 3 | a1. Then a1 = 3, 6, 12 since 9 - a1. If
a1 = 6 or 12, then a2 = 1, which is not possible. If a1 = 3, then a2 =
2 or 4, which is not possible by Lemma 14. Hence 3 - a1. Then a1 = 2
or 4 and a2 = 3 since 9 - (n + 2). Finally, we apply Lemma 14 to ex-
clude the above possibilities and our proof for the case k = 6 is com-
plete.

Let k = 5, 7. Then ai’s are composed of 2, 3 if k = 5, and of 2, 3, 5 if
k = 7. Hence f0(k, 2) ≥ 4, which is not possible by Lemma 4 and Lemma 6
with `′ = `− 1,m1 = 2,m2 = 0.

Let k = 4. Then by Lemma 12, we have either n(n + 2)(n + 3) = y`

or n(n + 1)(n + 3) = y`. We prove the assertion of Theorem 1 for the first
equation. The details for the second equation are similar. By Lemma 4, we
derive that no ai is equal to one. Then we conclude that 6 | n. Then either

n = 2`−13g0x`0, n+ 2 = 2x`2, n+ 3 = 3g3x`3

or
n = 2 · 3g0x`0, n+ 2 = 2`−1x`2, n+ 3 = 3g3x`3.

We exclude the first possibility and the proof for the second is similar. We
observe that 0 < g0 < `, 0 < g3 < ` and 3g3−1x`3− 2`−13g0−1x`0 = 1, which is
not possible by Lemma 13 if ` ≥ 5. Let ` = 3. Then we apply Lemma 14 to
3g3x3

3 − 2x3
2 = 1 to get g3 = 2. Then g0 = 1 and 3x3

3 − 4x3
0 = 1, which is not

possible again by Lemma 14.
Let k = 3. It is clear that the product of two consecutive positive integers

is never a power. Therefore, we need to consider only the equation n(n+ 2)
= y`, which is not possible by Lemma 11.
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