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Horizontal sections of
connections on curves and transcendence
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C. Gasbarri (Strasbourg)

1. Introduction. Many questions in transcendence theory may be sum-
med up in this “meta-question”: Suppose that U is a variety defined over
a number field K and G(F, F (1), . . . , F (n)) = 0 is an algebraic system of
differential equations defined over U (the functions defining G are in K(U)).
Suppose that F := (F1, . . . , Fn) is a local solution of the system. Let q ∈
U(K); what can we say about TrdegQ(K(F (q)))? Apart from the fact that
this transcendence degree is bounded from above by TrdegK(U)(K(U)(F )),
we cannot say much about this question in general.

Siegel–Shidlovskĭı theory gives us a very powerful and satisfactory answer
when we restrict our attention to systems of linear differential equations
over the projective line and nonsingular over the multiplicative group Gm.
Let us recall the main result of the theory (in a simplified version; cf. for
instance [La]):

Let

(1.1.1)
dY

dz
= AY with A ∈Mn(Q(z))

be a linear system of differential equations. Suppose F = (f1(z), . . . , fn(z))
is a solution of (1.1.1) with the following properties:

(a) the functions f1(z), . . . ,fn(z) are algebraically independent over C(z);
(b) each fi(z) has a Taylor expansion fi(z) =

∑∞
j=0 aijz

j/j! with

aij ∈ Q, and for each i, H(ai,0 : · · · : aij : 1)�ε j
εj

(H(·) being the exponential height).

Then, for every q ∈ Q∗, we have TrdegQ(Q(f1(q), . . . , fn(q))) = n. Recall
that functions with property (b) above are called E-functions.
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It is well known that the criterion above (and its extension to num-
ber fields) has many important consequences; in particular, the Hermite–
Lindemann Theorem is a special case of it (take fi(z) = eαiz). Many nontriv-
ial transcendence properties of special values of hypergeometric and Bessel
functions can be deduced from it.

Of course, if one could generalize Siegel–Shidlovskĭı theory to arbitrary
varieties, the general “meta-question” above would have a satisfactory an-
swer in the linear case. As a consequence of the main results of [Ga], we may
deduce the following:

1.1. Theorem. Let X/Q be a smooth projective curve and D ⊆ X be a
reduced divisor. Denote by Xo the affine curve X \D. Let (E,∇) be a fiber
bundle with connection over X having meromorphic singularities in D. Let
fC : Xo(C) → E(C) be a Zariski dense horizontal section of finite order of
growth ρ. Then

Card(f(Xo(Q)) ∩ E(Q)) ≤ rk(E) + 2

rk(E)
ρ.

(The theorem above is not explicitly stated in [Ga], but it can obtained
as a particular case of Theorem 1.1 there.) If we apply 1.1 to the symmetric
power of E with the induced connection and the induced section, we obtain:

1.2. Corollary. Under the hypotheses of Theorem 1.1 we have

Card(f(Xo(Q)) ∩ E(Q)) ≤ ρ.

Thus, if the order of growth of f is ρ, then there are at most ρ rational
points on the image of f (for a p-adic version of Theorem 1.1, see Theorem
4.6 of the recent thesis [He]). Examples show that if f is a horizontal section
of a vector bundle over an affine curve which has order of growth ρ and
takes less than ρ rational values at rational points, we cannot say anything
about the algebraic independence of its values at other algebraic points. In
this paper we show that when the number of rational values of the section is
the same as the order of growth, we can say more (for a similar observation
in the context of the Schneider–Lang Theorem, see [Be0, §4]).

In order to explain the main theorem of this paper, we need to explain
the definition of E-sections of arithmetic type of a vector bundle over a
curve. These are a generalization, over arbitrary curves, of the concept of E-
functions over the affine line developed by Shidlovskĭı (cf. for instance [La]).
The precise definition of E-section of arithmetic type requires the introduc-
tion of some notation so we refer to §6 for it. Here we give just the idea of
the definition. Let Xo be a smooth affine curve defined over Q, and V be a
vector bundle defined over it. We fix p1, . . . , ps ∈ Xo(Q) and a local trivial-
ization of V near them (in particular this trivialization is defined over Q).
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Suppose we have an analytic section f : Xo(C)→ E(C). It is said to be an
E-section of arithmetic type with respect to {p1, . . . , ps} if:

• The order of growth of f is s.
• Using the trivialization fixed above, locally around each of the pj ’s,

we may write f = (f1,pj (z), . . . , fm,pj (z)) with

fi,pj (z) =

∞∑
j=0

aij
zj

j!
and aij ∈ Z[1/N ], N jaij ∈ Z.

Notice that the number s of points involved and the order of growth ρ are re-
lated. E-sections of arithmetic type are a good generalization of E-functions
over arbitrary curves. Nevertheless it is important to notice that while the lo-
cal behavior and the growth behavior of an E-function are summarized in its
definition as a power series, the local and global properties of E-sections are
defined separately via formal geometry and Nevanlinna theory. In [Be0] the
author proves a generalization of the Schneider–Lang criterion just imposing
a local (at the point at infinity) Gevrey condition which is very similar to
our definition of E-sections of arithmetic type. With this definition in mind
we can state our main theorem (here, for simplicity, we state it just over Q;
for the general statement see 6.1):

1.3. Theorem. Let X/Q be a smooth projective curve. Let D be a re-
duced effective divisor on X and (E,∇) be a fiber bundle of rank m > 1 with
connection with meromorphic singularities on D. Let p1, . . . , ps ∈ X(Q) be
rational points, D′ := D− {p1, . . . , ps} and Xo := X \D′. Let f : Xo(C)→
E(C) be an analytic horizontal section with respect to the connection which
is an E-section of arithmetic type with respect to the points pj. Suppose that
the image of f is Zariski dense in E. Let q ∈ Xo(Q) \ {p1, . . . , ps}. Then

TrdegQ(Q(f(q))) = m.

Observe that if X0 = P1, D = 0 +∞, and we have only one point p = 0,
we find the classical theorem by Siegel and Shidlovskĭı. The requirement
that the image is Zariski dense is equivalent to the requirement that the
entries of f are algebraically independent over Q(X).

Even in the case whenX = P1 but D is arbitrary, Theorem 1.3 is stronger
than the classical theorem by Siegel and Shidlovskĭı. Indeed, we do not
require that the solution is an E-function, so in particular an entire function,
but it may have several essential singularities on D (as in [Be1], [Ga] and
[He] in the Schneider–Lang context).

This paper is organized as follows. In §2 we prove a zero lemma over an
arbitrary curve, which replaces the classical Shidlovskĭı Lemma; the state-
ment is formally similar to the Shidlovskĭı Lemma, but the proof clarifies the
classical proof and uses some tools from algebraic geometry: vector bundles,
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Hilbert schemes, etc. In §3 we explain the tools from Nevanlinna theory
which are needed; we use a version of Nevanlinna theory (developed in [Ga])
which allows one to prove powerful lemmas of Schwarz’s type over (a special
kind of) Riemann surfaces. In §4 and §5 we develop the notion of E-sections
of arithmetic type and we explain their main properties. Finally, in §6 we
state and prove the main theorem of the paper.

1.1. Two applications. We can give two applications of the main the-
orem.

First application: Connections with isomorphic monodromy. The first
application concerns nonisomorphic connections with the same monodromy.
Let X be a curve and (E1,∇1) and (E2,∇2) two integrable connections of
rank n over it. Let ρi : π1(X) → GLn be the monodromy representation
associated to (Ei,∇i). Suppose that ρ1 is equivalent to ρ2; thus the trivial
representation is a subrepresentation of ρ1⊗ρ∨2 ; consequently, we get a global
horizontal section of E1⊗E∨2 . Provided that it has the right order of growth,
this section is a typical section to which we can apply the criterion.

We may guarantee the right order of growth by the classical Gronwall
Lemma. In particular it guarantees that if we have a connection on a projec-
tive curve with poles of order at most two, then a horizontal section defined
on the complement of the poles of the connection will define an E-section of
arithmetic type (cf. Definition 5.1) with respect to any rational point where
the section takes an algebraic value.

From this we can obtain the following: Let X be a smooth projective
curve over Q. Let D be a reduced effective divisor over X. Denote by Xo

the affine curve X \ D. Let (E1,∇1) and (E2,∇2) be two fiber bundles
with connections having poles of order at most two on D. Suppose that
the corresponding representations ρi : π1(Xo) → GLN are isomorphic. Let
p ∈ Xo(Q). We can find an analytic isomorphism ϕ : E1 → E2 over Xo

which restricts to the identity over p.

1.4. Theorem. Let V be an analytic neighborhood of p, and let q ∈
V ∩ Xo(Q) be different from p. Let F be a horizontal section of (E,∇1)
defined over V . Then TrdegQ(Q(ϕ(F (q)))) = TrdegQ(X)(Q(ϕ)).

The proof is a direct application of Theorem 6.1. Observe that, since, a
priori, F (q) is not a rational point of E, one should apply 6.1 over the field
of definition of it and use Remark 5.2(c).

A nontrivial way to construct examples where we can apply Theorem
1.4 is the following: Let B be a reduced divisor in A1

Q. Let X be a smooth
projective curve defined over Q. Let D be a reduced divisor over X. Over
X×A1 consider the divisors H1 = D×A1 and H2 = X×B and H = H1+H2.
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Suppose that (E,∇) is a fiber bundle with integrable connection over X×A1

with poles on H and which are of order at most two on H1.

Then, for every x ∈ A1(Q) \ B, the restriction (Ex,∇x) of (E,∇) to
X ×{x} is a vector bundle with integrable connection having poles of order
at most two on D.

By construction, for every couple x1, x2 ∈ A1(Q), the vector bundles
(Exi ,∇xi) have conjugate monodromy. Thus the theorem applies in this
case.

An explicit example. Let a, b, c ∈ Q, and for every x ∈ Q consider the
linear system of differential equations

∇x :
dY

dz
=

(
1

z2
·
(
a (a− b)x
0 b

)
+

1

z
·
(

1− x −x2

1 1

)
+

1

z − 1
·
(

1 c

0 1

))
·Y.

Then, up to conjugation, for every couple x0, x1 ∈ Q the linear systems ∇x0

and ∇x1 have the same monodromy.

To see this, fix local coordinates (z, y) over P1 × A1. Denote by ω the
matrix of differential forms

ω :=

(
1

z2
·A(y) +

1

z
·B(y) +

1

z − 1
·
(

1 c

0 1

))
dz +

1

y
·
(

1 1

0 1

)
dy

with A(y) and B(y) unknown matrices to be determined. The system of
differential equations

E : ∇(Y ) = ω · Y

defines a fiber bundle with integrable connection if and only if

dω = ω ∧ ω.

Thus E is integrable if and only if A(y) and B(y) are solutions of the linear
differential system

(1.5.1)
dW (y)

dy
=

[
W (y);

(
1 1
0 1

)]
y

.

A basis of solutions of the system (1.5.1) is{(
1 log(y)

0 0

)
;

(
0 1

0 0

)
;

(
− log(y) − log2(y)

1 0

)
;

(
0 − log(y)

0 1

)}
.

Choose ∇0 to be (y = 1)

∇0 :
dY

dz
=

(
1

z2
·
(
a 0

0 b

)
+

1

z
·
(

1 0

1 1

)
+

1

z − 1
·
(

1 c

0 1

))
· Y.

Thus if we put x = log(y), the conclusion follows.
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Second application: Connections and coverings of curves. Let X be a
smooth projective curve defined over Q, and (E1,∇1) and (E2,∇2) two
vector bundles with meromorphic connections over X. Suppose that the
poles of ∇1 and ∇2 are both contained in a fixed divisor D. Denote by Xo

the affine curve X \ D. Suppose that we can find a point p ∈ X(Q) and
analytic horizontal sections f1 and f2 of (E1,∇1) and (E2,∇2) respectively
over Xo which are E-sections of arithmetic type with respect to p.

We can apply the main theorem to both fi’s and of course, if f1 ⊗ f2 is
Zariski dense in E1 ⊗ E2, we can apply the main theorem to it too.

A small generalization of this argument may obtained by applying the
full force of Theorem 1.3: Suppose that g1 : Y → X and g2 : Y → X are
finite coverings of degree d with g−1

1 (p) = g−1
2 (p) = {p1, . . . , pd} (and p not

contained in the branch loci of gi’s). Then g∗1(f1) ⊗ g∗2(f2) is an E-section
of arithmetic type with respect to p1, . . . , pd which is a horizontal section of
g∗1(E1) ⊗ g∗2(E2) (with the induced connection). Thus Theorem 1.3 applies
to it: Let q ∈ Y (Q) be such that gi(q) ∈ Xo \ {p}. Then, if the image of
g∗1(f1)⊗g∗2(f2) is Zariski dense, TrdegQ(g∗1(f1)⊗g∗2(f2)(q)) = rk(E1) ·rkE2).

For instance: let F (x), G1(x) and G2(x) be polynomials of degree d with
coefficients in Z, with no common zeros, and F (x) with d distinct roots
defined over Q. Let J0(z) be the Bessel function ([La, p. 76]). Then for
every rational number t such that F (t)G1(t)G2(t) 6= 0 the numbers

J0

(
F (t)

G1(t)

)
exp

(
F (t)

G2(t)

)
and J ′0

(
F (t)

G1(t)

)
exp

(
F (t)

G2(t)

)
are algebraically independent.

1.5. Remark. The algebraic independence of the values of the func-
tions above can be deduced from the classical Siegel–Shidlovskĭı theorem.
Nevertheless we proposed it as an explicit example of the principle above.

2. Connections and the Zero Lemma. In this section we will prove a
theorem which is a generalization to every curve of the classical Shidlovskĭı
Zero Lemma. The statement of the classical lemma may be found for in-
stance in [La, VII.3], and a generalization of it in [Be2].

We will start by fixing some notations and recalling some standard facts:

• X will be a smooth projective curve defined over the field of complex
numbers. We will denote by R the field C(X).

• If D =
∑

i niPi is a divisor on X, we denote by |D| the divisor∑
i min{1, |ni|}Pi. If D1 =

∑
h n1,hPh and D2 =

∑
h n2,hPh are two effective

divisors onX, we denote by l.c.m.(D1, D2) the divisor
∑

imaxh{n1,h, n2,h}Pj .
•We fix an effective divisor D such that if we denote by TX the tangent

bundle of X, then TX(D) is generated by its global section. Denote by H the



Connections on curves and transcendence 105

line bundle OX(D) and by s ∈ H0(X,D) a section such that div(s) = D.
If F is a coherent sheaf on X and x an integer, we will denote by F (x) the
sheaf F ⊗H⊗x; in particular OX(x) = OX(xD).

• The standard derivation d : OX → Ω1
X induces, for every point P ∈

X(C), a singular connection ∇P : OX(P ) → OX(P ) ⊗ Ω1
X(P ). Thus, for

every divisor S, the line bundleO(S) is equipped with a canonical connection
∇S : O(S) → O(S) ⊗ Ω1

X(|S|). In particular, the line bundle H := OX(D)
is canonically equipped with a singular connection ∇H : H → H ⊗ Ω1

X(D)
because H = OX(D).

• If ∇i : Fi → Fi ⊗ Ω1
X(Di) (i = 1, 2) are fiber bundles on X with

connections having singularities on the divisors Di respectively, then the
tensor product F1 ⊗ F2 is naturally equipped with a singular connection
∇1,2 : F1 ⊗ F2 → F1 ⊗ F2 ⊗Ω1

X(l.c.m.(D1, D2)).

• Fix a point Q ∈ X(C), which may be in the support of D. Let ∂ be
a global section of TX(D) which does not vanish at Q. We fix a section
s′ ∈ H0(X,H) such that s′(Q) 6= 0.

• We will denote by D the (noncommutative) ring R[∂].

• Denote by X̂Q the completion of X around Q and if E, L, f , Z etc. is
a vector bundle, a coherent sheaf, a section, a scheme, etc. defined over X,
we denote by EQ, LQ, fQ, ZQ etc. its restriction to X̂Q.

• Similarly, if E, L, f , Z etc. is a vector bundle, a coherent sheaf, a
section, a scheme, etc. defined over X, we denote by ER, LR, fR, ZR etc.
its restriction to the generic point of X.

We fix a vector bundle (E,∇E) on X of rank m with a singular connec-
tion

∇E : E → E ⊗Ω1
XK

(D).

Then:

• For every integer x, the vector bundle E(x) is equipped with a singular
connection ∇x : E(x)→ E(x)⊗Ω1

X(D).

• The derivation ∂ and the connection ∇x induce a derivation

∇x∂ : E(x)→ E(x+ 2).

• The restriction of (E(x),∇x) to the generic point of X is a D-module
which we will denote (ER,∇x).

• If F is a vector bundle on X and G ↪→ F is a subsheaf, we will say
that G is a subbundle if the quotient F/G is without torsion. In this case G,
F and F/G are locally free.

2.1. Definition. Suppose that (F,∇) is a vector bundle equipped with
a (possibly singular) connection, and G ↪→ F is a subbundle. We will say
that G is a subbundle with connection of F if the image of G via ∇ is
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contained in G ⊗ Ω1
X(D) (where D is the divisor involved in the definition

of the connection on F ).

2.2. Lemma. Let G ↪→ E(x) be a subbundle. The following properties
are equivalent:

(a) G is a subbundle with connection.
(b) The R-vector space GR is a D-submodule of E(x)R, namely ∇(GR)

is contained in (G⊗Ω1
X(D))R ⊆ (E(x)⊗Ω1

X(D))R.
(c) The image of the R-vector space GR under the map ∇x∂ is contained

in G(2)R ⊆ E(x+ 2)R.

The proof is left to the reader.

Let P ∈ H0(X,E(x)); denote P = P0 and Pi+1 := ∇x+2i
∂ (Pi). By con-

struction, Pi is an element of H0(X,E(x+2i)). Fix a positive integer r ≤ m.
The sections P̃i := Pi ⊗ (s′)⊗2(r−i) are elements of H0(X,E(x + 2r)). Let
G ⊆ E(x+2r) be the vector subbundle generated by the P̃i. From the lemma
above we deduce

2.3. Lemma. Suppose that the P̃i are linearly dependent as elements of
E(x+ 2r)R. Then G is a subbundle with connection of E(x+ 2r).

Fix a global section P ∈ H0(X,E(x)), suppose that P̃0, . . . , P̃`, with
some `≤r−1, are linearly independent over R and suppose that P̃0, . . . , P̃`+1

are linearly dependent. In this case, a simple local computation implies that
P̃0, . . . , P̃r are also linearly dependent. Denote by G the vector subbundle
of E(x + 2r) generated by the P̃i’s. It is a subbundle with connection, and
every subbundle with connection containing P ⊗ (s′)⊗2r contains G. This
motivates the following definition:

2.4. Definition. Given a global section P ∈ E(x), we will call the
subbundle G ↪→ E(x + 2r) constructed above the minimal subbundle with
connection generated by P .

In particular we remark that if P̃0, . . . , P̃m−1 are linearly independent
over R, then G = E(x+ 2m).

Let E∨ be the dual of E and let f be a horizontal section of E∨Q (the dual

of EQ), that is,∇E
∨
Q(f) = 0. The natural evaluation map 〈·, ·〉 : E(x)⊗E∨ →

OX(x) induces a linear map

ev : H0(X,E(x))→ H0(XQ,OXQ(x)), P 7→ 〈P, f〉.

We will denote by Fi the sections ev(P̃i) ∈ H0(XQ,OXQ(x+ 2r)).

The main theorem of this section is the following Zero Lemma:

2.5. Theorem. Suppose that the above hypotheses hold, and that f 6∈
H0(XQ,KQ) for every proper algebraic subbundle K ↪→ E∨. Then there
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exists a constant C, depending only on E, f and the fixed connections, but
independent of P , such that

ordQ(F0) ≤ x rk(G) + C.

Observe that ordQ(F0) = ordQ(〈P, f〉).
2.6. Remark. (a) The condition on f means that f is not algebraically

degenerate: once we fix an algebraic trivialization of EF , the coordinates of
f are linearly independent over F .

(b) One should compare this theorem (and its proof) with the statement
(and proof) of the classical Shidlovskĭı Lemma. More precisely, the crucial
point of the proof is the existence of a lower bound for the degrees of all
subbundles of E which are generically stable under the connection ∇E ; see
Proposition 2.10 below which should be compared with [La, Lemma 2.4,
p. 85]. For a different approach to the Shidlovskĭı Lemma based on Fuchs
relations see [Be2, §2].

In order to prove Theorem 2.5, we need to generalize to higher rank the
notion of the order of vanishing of a section:

Let V be a vector bundle on XK and f ∈ H0(XQ, VQ) be a nonzero
section. If we fix a trivialization of VQ, we may write f as (f1, . . . , fr) where
r is the rank of V and fi are power series in one variable.

2.7. Definition. The order of vanishing of f at Q is the integer
mini ordQ(fi).

One easily sees that the order of vanishing of f is independent of the
choice of the trivialization.

The theorem will be a consequence of the following lemma:

2.8. Lemma. There is a constant C depending only on the vector bundle
E with connection and f with the following property: Let F be a vector
bundle with connection and α : E∨ � F be a surjective morphism of vector
bundles with connections. Let [f ] := α(f) ∈ H0(XQ,FQ). Then

ordQ([f ]) ≤ C.
Recall the following standard properties of vector bundles (cf. for in-

stance [Se]):

(a) (Cramer rule) If G is a vector bundle of rank r then there is a
canonical isomorphism

det(G)⊗G∨ '
∧r−1G.

(b) There is a constant C depending only on E such that if G ↪→ E(x)
is a subbundle of rank r, then deg(G) ≤ rx+ C.

Let us show how the lemma implies the theorem.
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Proof of Theorem 2.5. First of all we claim that ordQ(Fi) ≥ ordQ(F0)−i.
Indeed, by definition

Fi = 〈Pi ⊗ (s′)2(r−i), f〉 = 〈Pi, f〉 ⊗ (s′)2(r−i);

thus, since s′ does not vanish at Q, ordQ(Fi) = ordQ(〈Pi, f〉). Suppose that e
is a local generator of H⊗x+2i and z is a local coordinate around Q. Then we
may suppose that 〈Pi, f〉 = za · e for some positive integer a. The evaluation
map

ev : E(x+ 2i)⊗ E∨ → OX(x+ 2i)

is a morphism of vector bundles with connection; thus, we may find an
analytic function h in a neighborhood of Q such that

aza−1he+ za∇∂(e) = ∇∂〈Pi, f〉 = 〈∇x+2i
∂ Pi, f〉+ 〈Pi,∇∂f〉 = 〈Pi+1, f〉.

The claim follows by induction on i.

Denote by r the rank of G. The inclusion G ↪→ E(x + 2r) gives rise
to a surjection α : E∨ � G∨(x + 2r). Denote by [f ] the image of f in
H0(XQ, G

∨
Q(x+ 2r)).

We may suppose that P̃0, . . . , P̃r−1 are linearly independent elements of
GR, so P̃0 ∧ P̃1 ∧ · · · ∧ P̃r−1 is a nonzero global section of

∧rG. Since, by
property (b) above, there is a constant C1 depending only on E such that
deg(

∧rG) ≤ xr + C, we have ordQ(P̃0 ∧ P̃1 ∧ · · · ∧ P̃r−1) ≤ xr + C1. By
Lemma 2.8 above, there is a constant C2 such that ordQ([f ]) ≤ C2. The
isomorphism given by the Cramer rule (a) gives rise to the equality

(P̃0 ∧ P̃1 ∧ · · · ∧ P̃r−1)⊗ [f ] =
∑
i

(−1)i(P̃0 ∧ · · · ∧ ̂̃Pi ∧ · · · ∧ P̃r−1)⊗ Fi;

thus

C1+C2+rx ≥ ordQ((P̃0∧P̃1∧· · ·∧P̃r−1)⊗[f ]) ≥ inf
i

ordQ(Fi) ≥ ordQ(F0)−r.

The conclusion of the theorem follows.

2.9. Remark. Observe that the constant C of the theorem is the sum
of two terms: the first is purely geometrical, it is essentially related to the
measure of the stability of E; the second term is analytical and it is related
to the structure of the specific solution of the differential equation.

Proof of Lemma 2.8. We start with a proposition:

2.10. Proposition. Let V be a vector bundle with singular connection
on X. Then there exists a constant C with the following property: Let L be
a line bundle with singular connection on X with a surjection α : V � L
(of vector bundles with singular connections). Then

deg(L) ≤ C.
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Let us show how Proposition 2.10 implies Lemma 2.8. We apply Propo-
sition 2.10 to V =

∧r E∨ to find a constant, depending only on E, such
that, for every subbundle G of E with connection, we have

deg(G∨) ≤ C.

This implies that the degrees of subbundles of E with connection are
uniformly upper and lower bounded. Consequently, by the theory of the
Hilbert scheme, we can find a projective variety HilbE , a vector bundle T
on X ×HilbE and a surjection v : pr∗1(E) � T (where pr1 : X ×HilbE → X
is the first projection) such that, for every vector bundle V with connection
which is a quotient of E, there is a point q ∈ HilbE such that the surjection
E � V is the restriction of v to X × {q}. For every q ∈ HilbE denote by Tq
the vector bundle T |X×{q} on X.

Let HilbEQ be the completion of X × HilbE around the Cartier divisor

{Q}×HilbE . The section f defines an element of H0(HilbEQ, TQ); thus, for

every q ∈ HilbE , a global section [fq] of the localization (Tq)Q of Tq at Q.
Consequently, we find a function

ordQ : HilbE(C)→ Z, q 7→ ordQ([fq]).

The local expression of the function ordQ([fq]) shows that it is upper semi-
continuous for the Zariski topology, and since HilbE is compact, the conclu-
sion follows.

Proof of Proposition 2.10. We begin by fixing some notation. Denote by
m the rank of V . We fix a point p on X which is not a singular point of the
connection. Denote by kp the completion of R with respect to the valuation
induced by p. We also fix an algebraic trivialization of V near p. Since the
connection is nonsingular around p, the space of horizontal sections of the
module Vp with connection has dimension m. Thus the space of algebraic
horizontal sections of V ∨p is finite-dimensional over C of dimension less than
or equal to m.

Every line bundle with singular connection and which is a quotient of
V defines a section g, up to a scalar, of V ∨p which is horizontal. Thus, g
belongs to a finite-dimensional C-vector space, say W . The line bundles L
which are quotients of V are in bijection with points of Pm−1(R) and thus
with algebraic maps ϕL : X → Pm−1 (modulo the action of PGL(m)).

Fix a basis g1, . . . , gr of W over C. Each gi corresponds to a line bundle Li
which is a quotient of V . To every line bundle with connection and which is a
quotient of V , we can associate an element g of W , thus a linear combination
of the gi’s. The lemma below shows that the degree of every such bundle
is bounded by the maximum of the degrees of the Li’s; thus the conclusion
follows.
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2.11. Lemma. Let Li ↪→ OmX (i = 1, 2) be subbundles of rank one.
Consider the map

+ : OmX ⊕OmX → OmX , (x, y) 7→ x+ y.

Let M be the image of L1 ⊕ L2 via +. Then deg(M) ≥ min deg(Li).

The proof of the lemma is elementary once one observes that there is a
surjection L1 ⊕ L2 �M .

3. Nevanlinna theory and order of growth of sections. In this
section we will recall the main definitions and theorems relating to the order
of growth of analytic maps. Most of these things are classical (cf. for instance
[GK]), but the approach we take here is a little different. One can find details
and possible generalizations in [Ga].

Let X be a smooth projective curve over C, and D a reduced effective
divisor on it. Let d be the degree of D. We denote by U the affine curve
X \ |D|. If p ∈ U then z− p will be a local coordinate near it. We define the
operator dc to be 1

4πi(∂ − ∂); consequently, ddc = 1
2πi∂∂.

3.1. Theorem. Let p ∈ U . Then, up to an additive scalar, there exists
a unique function gp : X → [−∞,+∞] with the following properties:

(a) gp satisfies the differential equation

ddcgp = δp −
1

d
δD,

δp (resp. δD) being the Dirac operator at p (resp. on D).
(b) gp is a C∞ function on U \ {p}.
(c) There is an open neighborhood V of p and a harmonic function vp

on V such that

gp|V = log |z − p|2 + vp.

This theorem has already been proved in [Ga] in a more general situation.
We give here a sketch of proof in this case for the reader’s convenience.

Proof. Fix a (Kähler) metric ω on X. Let ∆∂ be the associated Laplace
operator. The operator T := δp − (1/d)δD is orthogonal to the constants.
Thus there is a (1, 1) current α on X such that ∆∂(α) = T . Since T is smooth
on X \ {p, |D|}, the form α is also smooth there. The operator L := · ∧ ω
induces an isomorphism between D(0,0)(X) and D(1,1)(X) (D(i,i)(X) being
the space of (i, i) currents). Thus there is a function g̃p such that L(g̃p) = α.
Since, for a suitable constant c, we have ddc(g) = cL(∆∂(g)), points (a) and
(b) are easily deduced. Point (c) is similar.

The functions gp are exhaustion functions in the sense of [GK]:
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3.2. Lemma. For every constant C, g−1
p ((C,∞]) is a nonempty neigh-

borhood of D in X.

Proof. Fix a metric ‖ · ‖ on OX(D). Let I be the canonical section of
OX(D). By the Poincaré–Lelong equation, the function gp + (1/d) log ‖I‖2
is smooth near D. The conclusion follows.

We will call such a gp an exhausting function for U and p. Observe that
an argument similar to the one above gives

3.3. Proposition. Let p and q points on U . Let gp and gq be exhausting
functions for U and p and q respectively. Then there is a constant Cp,q and
an open neighborhood V of D such that for every z ∈ V ,

|gp(z)− gq(z)| ≤ Cp,q.

If p ∈ U , we fix a function gp as in the theorem above. For every positive
real number r, we consider the following two closed subsets of U :

B(r)p := {z ∈ U : gp(z) ≤ log(r)}, S(r)p := {z ∈ U : gp(z) = log(r)}.
The function gp is strictly related to the Green function on B(r). We first
recall the definition:

3.4. Definition. Let V be a regular region on a Riemann surface M
and let p ∈ V . A Green function for V and p is a function gV ;p(z) on V
such that:

(a) gV ;p(z)|∂V ≡ 0 continuously;
(b) ddcgV ;p = 0 on U \ {p};
(c) near p, we have gV ;p = − log |z−p|2 +ϕ, with ϕ continuous around p.

One extends gV ;p to all of V by defining gV ;p ≡ 0 outside the closure of V .
We easily deduce from the definitions that ddcgV ;p+ δp = µ∂V ;p where µ∂V ;p

is a positive measure of total mass one and supported on ∂V . Moreover the
following is true:

3.5. Proposition. The Green function, if it exists, is unique.

The following gives the relation between the function gp and the Green
functions on B(r)p:

3.6. Proposition. Let r be a positive real number. The function

grp := log(r)− gp|B(r)

is the Green function for B(r)p and p. Consequently, for every p and q
in U there is a constant C, depending on p and q, such that, for every r
sufficiently large,

|grp(q)− log(r)| ≤ C.
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The proof follows from the definitions.
By the Stokes theorem, one can easily verify that, in this case, µS(r);p is

the positive measure dcgp|S(r).
Let Z be a projective variety and L be an ample line bundle on it

equipped with a positive metric. Denote by c1(L) its first Chern form.
Let γ : U → Z be an analytic map. We define the associated height

function by

Tγ(r) :=

r�

0

dt

t

�

B(t)p

γ∗(c1(L)) =
�

U

grp · γ∗(c1(L)).

The order of growth of γ is defined to be

lim sup
r→∞

log Tγ(r)

log(r)
.

More generally, if M is an hermitian line bundle on U , we define

(M,U)(r) :=

r�

0

dt

t

�

B(t)p

c1(M) =
�

U

grp · c1(M).

Some remarks are in order (for the proofs, see for instance [Ga]):

• The order of growth is independent of the choice of the ample line
bundle L and the metric on it, and of the choice of the point p.
• If γ is the inclusion in X, or more generally if γ is an algebraic map

(cf. [GK]), then there is a constant C such that

(3.7.1)

∣∣∣∣ Tγ(r)

log(r)

∣∣∣∣ ≤ C.
• The Stokes and Poincaré–Lelong formulas give rise to the first main

theorem: Let Y ∈ H0(U,M) be a global section. We define the counting
function of Y : if div(Y ) =

∑
nzz (the sum may be infinite), and for sim-

plicity p 6∈ div(Y ), then

NY (r) :=
�

X

grp · δdiv(Y ) =
∑

grp(z)<log(r)

nzg
r
p(z).

The First Main Theorem (FMT) holds:

NY (r)−
�

S(r)p

log ‖Y ‖2 µS(r)p = (M,U)(r) + log ‖Y ‖2(p).

The term −
	
S(r)p

log ‖Y ‖2 µS(r)p is often denoted by mY (r) and called the

proximity function of Y .

Let E → X be an hermitian vector bundle and p : P := Proj(O⊕E∨)→
X be the associated compactification. Let M be the tautological line bundle
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of P; since E is hermitian, M is naturally equipped with the relative Fubini–
Study metric. The surjection O⊕E∨ → E∨ defines an inclusion P(E) ↪→ P
(the divisor at infinity) and the image is a global section of M. It is well
known that if M is a sufficiently ample line bundle on X then M ⊗ p∗(M)
is a very ample line bundle on P.

Let f : U → E be an analytic section of E. It canonically defines an
analytic map fP : U → P. By definition, the order of growth of fP is

lim sup
r→∞

log (f∗P(M⊗ p∗(M)), X)(r)

log(r)
.

Observe that by (3.7.1) the order of growth of fP is independent of M .

3.7. Definition. We define the order of growth of the section f to be
the number

ρ := lim sup
r→∞

log (f∗P(M), U)(r)

log(r)
.

3.8. Lemma. Suppose that f is a section of order strictly less than ρ.
Then there is a constant C such that�

S(r)p

log ‖f‖µS(r)p ≤ Cr
ρ.

Proof. Observe that fP does not intersect P(E), and if q 6∈ P(E), then
‖P(E)‖2(q) = 1

1+‖q‖2 . Thus, by FMT, there is a constant C such that

(f∗P(M), U)(r) =
1

2

�

S(r)p

log(1 + ‖f‖2)µS(r)p + C.

The conclusion easily follows.

We will show that, given a section with finite order of growth, and two
points, we can estimate the size of a related section at one point if we know
that the section vanishes to a high order at the other point.

Fix two points p and q in U .
Suppose that E is an algebraic vector bundle over X. Fix an ample

line bundle H on X. We suppose that E and H are equipped with smooth
metrics. For every positive integer x, denote by E(x) the vector bundle
E ⊗H⊗x. Denote by E∨ the dual of E.

Fix an analytic section f ∈ H0(U,E) having order of growth ρ. For every
P ∈ H0(X,E∨(x)) denote by F the analytic section 〈f, P 〉 ∈ H0(U,H⊗x).

We will show that one can bound the size of F at q in terms of the sup
norm of P , the order of vanishing of F at p and the order of growth of f .

3.9. Theorem. There exists a constant c1 depending only on H, a
constant c2 depending only on f , and a constant c3 depending only on p
and q, for which the following holds: for every x � 0 and every section
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P ∈ H0(X,E∨(x)), if A, B and b are positive constants such that

log sup{‖P‖} ≤ B, ordp(F ) ≥ Ax− b,
then

log ‖F‖(q) ≤ B − Ax

ρ
log(x) + (c2 + c3)x+

c1

ρ
x log(x).

Observe that the constant c1 depends only on H.

Proof. By the Stokes formula, for every real number r,

(3.10.1)
�

U

log ‖F‖ · ddcgrq =
�

U

ddc log ‖F‖ · grq .

By the definition of Green function, the left hand side of (3.10.1) is�

S(r)q

log ‖F‖µS(r)q − log ‖F‖(q).

The Cauchy–Schwarz inequality implies that ‖F‖ ≤ ‖P‖ · ‖f‖; thus�

S(r)q

log ‖F‖µS(r)q ≤
�

S(r)q

log ‖P‖µS(r)q +
�

S(r)q

log ‖f‖µS(r)q .

The hypotheses and Lemma 3.8 imply that
	
S(r)q

log ‖F‖µS(r)q is bounded

above by
B + c2r

ρ

where c2 depends only on f . The fact that ordp1(F ) ≥ Ax− b, Proposition
3.6, and the Poincaré–Lelong formula imply that the right hand side of
(3.10.1) is surely greater than

(Ax− b)(log(r) + c3)− x(H,U)(r),

where c3 depends only on p1 and p2. Since H is algebraic, with a metric
smooth at infinity, the last term of this sum is surely lower bounded by
−x · c1 log(r), for a suitable c1 depending only on H. The conclusion follows
by taking r = x1/ρ.

4. Order of growth at finite places. In this section we will recall the
definitions and principal properties of LG-germs. This notion is defined in
[Ga] and developed there in a greater generality, and here we just recall it
(and explain in the special situation we need) for the reader’s convenience.
The notion of LG the germ is similar to the notion of E-function developed
by Siegel, Shidlovskĭı and others. When we are dealing with LG-germs, we
can estimate the order of growth of sections at all finite places at the same
time. It is our opinion that the notions of LG-germs and of the order of
growth of sections (or more generally of analytic maps) are two concepts
which may be in contrast; and from this contrast we may deduce nontrivial
results.
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We fix some notations:

• K is a number field and OK its ring of integers.

• We will denote by Mfin the set of finite places of K.

• If v ∈ Mfin, we denote by Kv the completion of K with respect to v
and by Ov its ring of integers; we normalize the norm of Kv by the condition
‖p‖v = p−1 (where p is the associated prime number). If M is an OK-module,
we denote by Mv the Kv-vector space M ⊗Kv and by MOv the Ov-module
M ⊗OK Ov.
•We fix a smooth projective curve XK over K and an ample line bundle

HK over it.

•We fix a vector bundle EK of rank m over XK . Denote by E∨K the dual
of EK .

• Let X → Spec(OK) be a regular projective model of XK . We may
suppose that HK (resp. EK) extends to a line bundle H (resp. to a vector
bundle E) over X . We will denote by E∨ the dual of E.

• For every integer x, denote by Gx the OK-module H0(X , E ⊗H⊗x).

• If pK ∈ XK(K) is a rational point, we may extend it to a section
p : Spec(OK)→ X . Denote by X̂p the completion of XK near pK and by X̂p
the completion of X near p.

• Denote by Hp, Ep etc. (resp. Hp,K , Ep,K etc.) the restriction of H, E

etc. to X̂p (resp. of HK , EK etc. to X̂p).

• Extending the base K if necessary, we may suppose that X̂p is isomor-
phic to Spf(OK [[Z]]); we fix such an isomorphism.

• Since X̂p is an affine formal scheme, we may identify every coherent
sheaf on it with the corresponding module of global sections. The OK [[Z]]-
modules Hp and Ep are isomorphic to the trivial modules of the correspond-
ing rank; we fix such isomorphisms.

• For every positive integer i, denote by X̂ ip (resp. X̂i
p) the ith infinitesi-

mal neighborhood of p (resp. pK) in X (resp. XK). Similarly we denote by
Hp,i, Ep,i etc. the restriction of H, E etc. to X̂ ipj .
• Let pK ∈ XK(K) and p : Spec(OK) → X the corresponding section.

The sheaf of Kähler differentials Ω1
X/OK is locally free in a neighborhood

of p, indeed the morphism X → Spec(OK) is smooth near p. Denote by
TpX the restriction to p of the dual of that sheaf. For every place v ∈Mfin,
and couple of integers x and i, the Ov-module H0(p,H⊗x ⊗ (TpX )⊗i)v is
equipped with the norm induced by the integral structure.

Let pK ∈ XK(K) and p : Spec(OK) → X the corresponding section.
Let f ∈ H0(X̂p, E

∨
p,K). Since we fixed an isomorphism of E∨p with OmX̂p , the
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section f can be written as m power series,

f =
( ∞∑
i=1

ai(1)Zi, . . . ,
∞∑
i=1

ai(m)Zi
)

with ai(j) ∈ K.

4.1. Definition. Let α be a nonnegative real number. We will say that
f is an LG-germ of type α if the following holds:

(a) For every place v ∈ MK and every j = 1, . . . ,m, the power series∑
i ai(j)Z

i have positive radii of convergence.
(b) There is a finite set S of places such that if v 6∈ S there is a constant

Cv such that, for every j = 1, . . . ,m,

‖ai(j)‖v ≤
Civ
‖i!‖αv

.

(c)
∏
v 6∈S Cv <∞.

Following the proofs of [Ga, §3], one may prove that:

• The notion of LG-germ of type α does not depend on the chosen
isomorphisms; thus the notion depends only on the germ of section. However,
the constants Cv may depend on the choices.

• If E is equipped with a connection which is nonsingular at p, then a
formal horizontal section is an LG-germ of type 1.

• If moreover, for almost all v ∈ MK , the connection has vanishing
p-curvature, then the formal horizontal section is an LG-germ of type zero.

The last two statements are proved in [Bo, §3.4] (cf. also [A1] or [Bom]).

Fix s points p1,K , . . . , ps,K in XK(K). Denote by pj : Spec(OK) → X
the corresponding sections. Suppose that for every point pj,K we have an

LG-germ fj ∈ H0(X̂pj,K , E
∨
pj,K

) of type α. If we take a suitable blow up

of X , we may suppose that the pj ’s extend to sections pj : Spec(OK) → X
which do not intersect. For every j, the section fj induces an OK-linear map

〈·, fj〉 : Gx → H0(X̂pj , H
⊗x
pj,K

), and by composition a map

〈·, f〉 := (〈·, f1〉, . . . , 〈·, fs〉) : Gx →
s⊕
j=1

H0(X̂pj , H
⊗x
pj,K

).

Denote by resi :
⊕

j H
0(X̂pj , H

⊗x
pj,K

) →
⊕

j H
0(X̂i

pj , H
⊗x
pj,i) ⊗ K the re-

striction map, by 〈·, f〉i the map obtained by composing 〈·, f〉 with the resi
and by Gix the kernel of 〈·, f〉i.
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The snake lemma applied to the exact sequence

0→
s⊕
j=1

H0(pj , H
⊗x ⊗ (TpjX )⊗−i)→

s⊕
j=1

H0(X̂i+1
pj , H⊗xpj ,i+1)

→
s⊕
j=1

H0(X̂i
pj , H

⊗x
pj ,i

)

induces a canonical inclusion

γix : Gix/G
i+1
x →

s⊕
j=1

H0(pj , H
⊗x ⊗ (TpjX )⊗−i)⊗K.

For every v ∈Mfin both (Gix/G
i+1
x )v and

⊕
j H

0(pj , H
⊗x ⊗ (TpjX )⊗−i)v

are equipped with norms, induced by the integral structure. Observe that
naturally the former has the sup norm. Thus we may compute the norm
‖γix‖v of the operator γix.

When f is an LG-germ, one can bound the norms at all finite places of
the γix’s.

4.2. Theorem. With the notations as above, suppose that f is an LG-
germ of type α. Then there exists a constant C such that∑

v∈Mfin

log ‖γix‖v ≤ [K : Q]αi log(i) + C(i+ x).

Proof. We first remark the following general statement: Let k be a
normed field and ϕ : V 1

k → V 2
k be a linear map between finite-dimensional

normed vector spaces over k. Let V i ⊂ V i
k be the set of elements of norm

less than or equal to one. Suppose that there exists a constant A ∈ k∗ such
that ϕ(Av) ⊂ V 2 for every v ∈ V 1. Then ‖ϕ‖ ≤ 1/‖A‖.

For every j ∈ {1, . . . , s}, let prj :
⊕

j H
0(pj , H

⊗x ⊗ (TpjX )⊗−i) →
H0(pj , H

⊗x ⊗ (TpjX )⊗−i) be the projection. Fix one of the pj . Let v 6∈ S.

The restriction of X̂pj to Spec(Ov) is isomorphic to Spf(Ov[[Z]]) (via an iso-
morphism fixed as above).

Suppose that P ∈ (Gix)Ov . Since we fixed an isomorphism of Epj with the

trivial vector bundle of rank m, the restriction of P to (X̂pj )v is represented

by (g1, . . . , gm) with gi ∈ Ov[[Z]]. By definition 〈P, fj〉 =
∑m

s=1 gs
∑

` a`(s)Z
`

= hj(Z). Since P ∈ (Gix)Ov , we have hj(Z) =
∑∞

`=i h`Z
` and prj ◦ γix(P )

= hi. Since fj is an LG-germ of type α, we have

‖i!‖αv
Civ
‖hi‖v ≤ 1.
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The norm on
⊕

j H
0(pj , H

⊗x ⊗ (TpjX )⊗−i) is the sup of the norms on
each factor, so for every v 6∈ S we have

‖i!‖αv
Civ
‖γix(P )‖v ≤ 1.

The conclusion follows from the remark at the beginning of this proof,
the Stirling formula and the standard Cauchy inequality at places in S.

5. E-sections of arithmetic type. In this section we will introduce
the concept of E-sections of arithmetic type of a vector bundle over an
affine curve. These are analytic sections of an algebraic vector bundle whose
order of growth is the inverse of the type of their formal development at a
fixed algebraic point. The main examples of E-sections of arithmetic type
are the E-functions of the theory of Siegel–Shidlovskĭı or the more recent
“arithmetic series of order s” introduced by André [A1].

We fix the same notations as in the previous section. Moreover we denote
by M∞ the set of complex embeddings of K. If σ ∈M∞ we will denote by σ
the conjugate embedding. A subset SK ⊆M∞ is said to be regular if σ ∈ S
implies that σ ∈ S.

Let XK be a smooth projective curve over a number field K. Fix s points
p1,K , . . . , ps,K ∈ XK(K).

For every σ ∈M∞, we will denote by Xσ, Eσ, Hσ etc. the restriction of
X, E, H etc. to C via σ.

Let EK be a vector bundle over XK of rank m.

5.1. Definition. Let SK ⊆M∞ be a nonempty regular subset of cardi-
nality a, and α a nonnegative real number. An E-section f̃ of arithmetic type
of E with respect to SK , α and the points p1,K , . . . , ps,K is the following data:

(a) for every j = 1, . . . , s, a germ of section fj ∈ Epj,K which is an
LG-germ of type α;

(b) for every σ ∈ SK , an affine open subset Uσ of Xσ containing pj,σ =
σ(pj) and an analytic section fσ ∈ H0(Uσ, Eσ) such that:

(b.1) for every j, the germ of fσ at pj,σ is σ(fj);
(b.2) the section fσ has finite order of growth ρσ and αρσ=as/[K :Q]

(in particular, if α = 0, then it suffices that the order of growth
is finite).

5.2. Remark. (a) An E-function in the sense of Siegel–Shidlovskĭı is an
E-section of arithmetic type; in this case, we have only one point, SK = M∞
and the α involved is one.

(b) An “arithmetic Gevrey series of order s < 0” in the sense of André
[A1] is an E-section of arithmetic type; again we only have one point,
SK = M∞ and the α involved is −s.
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(c) If L/K is a finite extension and f ∈ Ep,K is an E-section of type α
over K, then f ∈ Ep,L is an E-section of arithmetic type: take as SL the set
of τ such that τ/σ for σ ∈ SK .

(d) Notice that, on the projective line, the main differences between E-
functions and E-sections of arithmetic type are: (1) E-sections of arithmetic
type may have order of growth not one; (2) (more important) E-sections
of arithmetic type may have more than one essential singularity, whereas
E-functions are always entire functions.

(e) An interesting example of E-section of arithmetic type (and our main
theorem will concern that example) is given by a horizontal section of a
fiber bundle with a meromorphic connection having order of growth ρ and
assuming rational values at ρ nonsingular rational points; at each of the
rational points the section will be an LG-germ of type 1. In the introduction
we gave some way to construct some of these examples. Unfortunately we
do not know examples which do not come from some covering construction
and with more than one rational value at a rational point.

(f) When K = Q, by Corollary 1.2 the order of growth cannot be less
than s. It is not difficult to find a similar lower bound for arbitrary number
fields (because Theorem 1.1 of [Ga] holds in general).

In this section we show that, given an E-section of arithmetic type, it
is possible to construct sections with high order of vanishing and bounded
sup norm.

First of all we have to fix integral structures (we refer to [BGS] for
precise definitions and properties). As in the previous section, we suppose
that X → Spec(OK) is a regular projective model of XK , and EK extends
to a vector bundle E over X . We also suppose that H is a relatively ample
line bundle on X . For every place σ ∈M∞, we suppose that Eσ and Hσ are
equipped with smooth metrics (and the metric on H is sufficiently positive).
We also fix metrics on Xσ. Thus, for every integer x, the vector bundle
E∨(x) is an hermitian vector bundle over X .

For every integer x, the OK-module H0(X , E∨(x)) is equipped with a
structure of hermitian OK-module: for every σ ∈ M∞, H0(Xσ, E

∨(x)σ) is
equipped with the L2 metric (notice that the L2 norm and the sup norm are
comparable by for instance [Bo, §4.1]). As in the previous section, we will
denote this module by Gx.

Fix an E-section f̃ of arithmetic type with respect to the points
p1,K , . . . , ps,K .

With the notations of the previous section, for every positive integer i, we
obtain a natural OK-linear map Gx →

⊕
j H

0(X̂i
pj , H

⊗x
pj,i)⊗K. Again denote

by Gix its kernel. Put c := deg(HK). We want to prove that, under these
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conditions, for every ε ∈ (0, 1) there is a nonvanishing section of bounded

norm in G
x c
s
m(1−ε)

x .

5.3. Theorem. Suppose that the above hypotheses hold. Fix ε ∈ (0, 1).
Then we can find a constant c1, depending only on ε, α and the points pj,
but independent of the vector bundle E, and a constant c2, for which the fol-
lowing holds: for every sufficiently large positive integer x there is a nonzero

section P ∈ Gx
c
s
m(1−ε)

x such that

sup
σ∈M∞

log ‖P‖σ ≤ c1x log(x) + c2x.

Before we start the proof, we need to recall some classical tools from
Arakelov geometry (cf. for instance [BGS]).

• If M is an hermitian line bundle over Spec(OK) we will define its
Arakelov degree by

d̂eg(M) := log Card(M/s ·OK)−
∑
σ∈M∞

log ‖s‖σ.

for any s ∈ M \ {0}. This quantity is well defined because of the product
formula.

• If E is an arbitrary hermitian vector bundle over Spec(OK) then the
line bundle

∧maxE is canonically equipped with an hermitian metric; con-
sequently, we can define the hermitian line bundle

∧maxE. We then define

d̂eg(E) := deg(
∧max(E)).

• Suppose that E1 is an hermitian OK-module and L1, . . . , Ls are her-
mitian line bundles over OK . Let ϕ : E1 →

⊕
j Lj⊗K be an injective linear

map. For every place v ∈MK (finite or infinite) we denote by ‖ϕ‖v the norm
of ϕ. One easily finds that if ϕ is nonzero, then

d̂eg(E1) ≤ rk(E1)
(

sup
j

d̂eg(Lj) +
∑
v∈MK

log ‖ϕ‖v
)
.

• There exists a constant χ(K) depending only on K such that the

following holds: Suppose that E is an hermitian OK-module with d̂eg(E)
≥ A. Then there exists a nonzero element x ∈ E such that

sup
σ∈M∞

‖x‖σ ≤ −
A

rk(E)
+ log(rk(E)) + χ(K)

(cf. [BGS, Thm. 5.2.4 and below]).

• If x is sufficiently large, we may suppose that d̂eg(Gx) ≥ 0.

Proof of Theorem 5.3. As in the previous section, for every integer i, we
have an injective map
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(5.3.1) γix : Gix/G
i+1
x →

s⊕
j=1

H0(p,H⊗x ⊗ (TpjX )⊗−i)⊗K.

Note that since the Gix’s are submodules of Gx, they are naturally hermitian
OK-modules. From the properties listed above we find that we can find a
constant A depending only on p and H such that

d̂eg(Gi+1
x ) ≥ d̂eg(Gix)− rk(Gix/G

i+1
x )

(
A(x+ i) +

∑
v∈MK

log ‖γix‖v
)
.

Since f̃ is an E-section of arithmetic type, by Theorem 4.2, there are con-
stants c3 and α such that∑

v∈Mfin

log ‖γix‖v ≤ [K : Q]αi log(i) + c3(i+ x).

Let S be the set of infinite places involved in the definition of E-section of
arithmetic type. By the classical Cauchy inequality there is a constant C
such that if σ is an infinite place not contained in S, then

log ‖γix‖σ ≤ C(x+ i).

In order to estimate the norm at places of S we need a refinement of Theorem
3.9.

Let σ ∈ S. Let j ∈ {1, . . . , s}. We equip the line bundle OUσ(pj) with
the following metric: Let Ipj be the canonical section of OUσ(pj). We define

‖Ipj‖(z) = exp(1
2gpj (z)). By adjunction, this defines a norm on TpjXσ. Let

s ∈ (Gi)σ; then fσ(s)
∏
j I−ipj is a holomorphic section F̃ of (H⊗x(−

∑
j ipj))σ.

To compute the norm of γix at places in SK we have to compare ‖F̃‖(pj),
for every j, with ‖s‖∞.

By the Stokes formula we find, for every real number r,�

Uσ

log ‖F̃‖ · ddcgrp =
�

Uσ

ddc log ‖F̃‖ · grp.

By Proposition 3.3, for r � 0, we may suppose that if gpj (z) ≥ r then
gpji (z) = gpj (z)(1 + ε(z)) with |ε(z)| ≤ ε, where ε is a fixed constant. Thus,
by the property of the Green functions (cf. §3), the definition of the norm
on O(pj), the Cauchy–Schwarz inequality and the Poincaré–Lelong formula
we find

log ‖s‖∞ +
�

S(r)

log ‖fσ‖ dcgp − is(1− ε) log(r)− log ‖F̃‖(p)

≥ −x(H,Uσ)(r).

Thus, we can find constants C and ε > 0, depending only on H, and a
constant λσ depending on f , such that, as soon as r � 0,

log ‖γix‖σ ≤ −is(1− ε) log(r) + xC log(r) + λσr
as

[K:Q]α
(1+ε)

.
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For each i we put r = iα[K:Q]/(as(1+ε)) and we deduce that there are
constants C1, C2 and ε1, with C1 depending only on α and H, and ε1 as
small as we want, in particular independent of E, i and x, such that∑

v∈MK

log ‖γix‖v ≤ xC1 log(i) + ε1i log(i) + C2(i+ x).

Observe that rk(Gix/G
i+1
x ) ≤ s, so we can find constants Ci, with C4

depending only on H, s and α, such that, summing all together, we obtain

d̂eg(G
x c
s
m(1−ε)

x ) ≥ C3x
2 − C4

(x csm(1−ε)∑
i=1

x log(i) + ε1i log(i) + C2(i+ x)
)
.

Thus, since we can take ε1 very small compared to m2, there are constants
C6 and C7, with C6 independent of E, and C7 depending on m, f and H,
such that

d̂eg(G
x c
s
m(1−ε)

x ) ≥ −(C6mx
2 log(x) + C7x

2).

By the Riemann–Roch theorem, rk(Gx) is about cmx. By the filtration

(5.3.1), the rank of G
x c
s
m(1−ε)

x is greater than εmx. Consequently, there is a

nonzero section P of G
x c
s
m(1−ε)

x such that

sup
σ∈M∞

log ‖P‖σ ≤
mC8

mε
x log(x) + Cx.

The conclusion follows, since C8 depends only on the pj , H and is indepen-
dent of E.

Fix s rational points p1,K , . . . , ps,K of XK(K) and a fiber bundle (E,∇)

with a meromorphic connection as above. Fix an E-section f̃ of arithmetic
type with respect to these points which is horizontal for the connection.
Theorem 5.3 gives rise to an integral global section P . We may take deriva-
tives of P with respect to the connection and we obtain other sections with
the same properties:

First of all we have to ensure that the derivative of an integral section
is again an integral section. We may extend the connection ∇ : E∨(x)K →
E∨(x)K ⊗Ω1

X̂
(DK) to an integral connection

∇ : E(x)→ E ⊗ ωX/OK (D + V )

where V is a vertical divisor. We also fix an integral element ∂ ∈ TX/OK (D)
which, generically, does not vanish at the pi’s. By construction, if P ∈
H0(X , E∨(x)), then ∇∂(P ) ∈ H0(X , E∨(V )(x + 2)); in particular, ∇∂(P )
is a section over the model X . For every point pj,K , the order of vanish-
ing of 〈∇∂(P ), fj〉 at pj,K is one less than the order of vanishing of 〈P, fj〉
at pj,K . Moreover a straightforward application of the classical Cauchy–
Schwarz inequality implies that, for every complex embedding σ, the linear
map (∇∂)σ : E∨(x)σ → (E∨σ (x+ 2))σ has bounded norm. Thus we proved:



Connections on curves and transcendence 123

5.4. Proposition. There is a constant A depending only on (E,∇) and
∂ such that the following holds: if P ∈ H0(X , E∨(x)) is an integral section
such that supσ log ‖P‖σ ≤ C and ordpj (〈P, fj〉) ≥ C1 for every j then:

(i) ∇∂(P ) is a section of E∨(V )(x+ 2) over X such that

sup
σ

log ‖∇∂(P )‖σ ≤ C +A;

(ii) ordpj (〈∇∂(P ), fj〉) ≥ C1 − 1 for every j.

6. Proof of the main theorem. In this section we will show how
to generalize the Siegel–Shidlovskĭı theory to an arbitrary curve and to a
connection with arbitrary meromorphic singularities and E-sections of arith-
metic type over an arbitrary set of points.

6.1. Theorem. Let XK be a smooth projective curve defined over the
number field K. Let DK be an effective divisor on XK and (EK ,∇K) be a
vector bundle of rank m > 1 with connection with meromorphic singularities
on DK . Let p1,K , . . . , ps,K ∈ X(K) be rational points. Let f̃ be a Zariski
dense horizontal section which is an E-section of arithmetic type with respect
to the pj,K ’s, some α and some regular subset SK ⊆ M∞. Let σ ∈ SK .
Suppose that q ∈ XK(K) \ {D, p1, . . . , ps}. Then

TrdegK(K(fσ(σ(q)))) = m.

6.2. Remark. (a) By “f̃ is a horizontal section” we mean that all the
local sections f1, . . . , fs (or, equivalently, all the sections fσ, σ ∈ SK) of E,
involved in the definition of E-section f̃ of arithmetic type, are formal (an-
alytic) horizontal for the connection ∇E .

(b) f̃ being Zariski dense means that the image of none of the formal
local sections σ(f1), . . . , σ(fs) is included in a proper Zariski closed subset
of Eσ. This is equivalent to requiring that the image of the section fσ is
Zariski dense.

(c) If we apply the theorem to P1 with s = 1 and we suppose that the
horizontal section is an E-function, we find the classical theorem of Siegel
and Shidlovskĭı (cf. [La]).

Before we give the proof of the theorem we will produce a metrical cri-
terion which implies that the coordinates of an element of a complex vector
space are algebraically independent. This criterion is a version in metric
language of a classical trick by Siegel.

A criterion for transcendence. As before, K will be a number field and
OK will be its ring of integers. We fix an embedding σ : K → C. Let E be an
hermitian OK-module of rank m. If V is an hermitian OK-module, denote
by VK the K-vector space V ⊗OKK and by VC the C-vector space V ⊗C (C is
an OK-module via σ). We describe here a criterion which implies that the
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coordinates of an element f ∈ EC satisfying it are algebraically independent
over K.

For every integer n, we denote by En the hermitian OK-module Symn(E)
and by mn its rank.

Let f ∈ EC. Denote by fn the image of f⊗n in (En)C. For every n denote
by Vn the smallest K-subspace containing fn, and by rn its dimension.

6.3. Definition. We will say that f is algebraically independent over
K if Vn = En for every positive integer n.

6.4. Remark. If we fix a basis of EK , then f is algebraically inde-
pendent over K if its coordinates are transcendental numbers algebraically
independent over Q.

We fix an hermitian line bundle H over Spec(OK). If M is an hermitian
OK-module, for every integer x we denote by M(x) the hermitian vector
bundle F ⊗H⊗x. For Pi ∈ E∨(x) we denote by Fi the vector 〈Pi, f〉 ∈ H⊗xC .

The criterion we want to prove is the following:

6.5. Proposition. Let f ∈ EC be as above. Suppose that we can find
positive constants ci for which the following holds: For every n we can find
x0(n) such that for all x ≥ x0(n) there exist sections Pn1 (x), . . . , Pnmn(x) ∈
En(x) and constants bi = bi(n) such that:

• The Pni (x) are linearly independent.
• supσ∈M∞ log ‖Pni (x)‖ ≤ c1x log(x) + b1x.
• Denoting 〈Pni (x), fn〉 ∈ H⊗xC by Fni (x), we have

sup
σ∈M∞

log ‖Fni (x)‖ ≤ c1x log(x)− c2mnx log(x) + b2x.

Then f is algebraically independent over K.

First of all we observe the following trivial fact:

• Suppose that V1 and V2 are vector spaces and dim(V2) < dim(V1).
Then

lim
n→∞

dim(Symn(V2))

dim(Symn(V1))
= 0.

The proof is trivial and left to the reader.

6.6. Lemma. The vector f is algebraically independent over K if and
only if there is a constant c > 0 such that for every n,

dim(Vn)

dim(En)
≥ c.

Proof. If f is algebraically independent over K then, by definition we
may take c = 1.
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Conversely, suppose that f is not algebraically independent over K; then
there is an n and a nontrivial subspace Vn ( En containing fn. Thus for every
integer m, fnm ∈ Symm(Vn) ( Enm. Consequently, there is a subsequence
nm such that

lim
m→∞

dim(Vnm)

dim(Enm)
= 0.

The conclusion follows.

Proposition 6.5 will be a consequence of Lemma 6.6 above and the fol-
lowing proposition applied to fn ∈ (En)C:

6.7. Proposition. Let E be an hermitian OK-module and f ∈ EC as
above. Suppose that we can find constants ci and bj for which the following
holds: For every x sufficiently large, there exist P1, . . . , Pm ∈ E∨(x) such
that:

• P1, . . . , Pm are linearly independent.
• supσ∈M∞ log ‖Pi‖σ ≤ c1x log(x) + b1x.
• supσ∈M∞ log ‖Fi‖σ ≤ c1x log(x)− c2mx log(x) + b2x.

Then there are constants Ci depending only on the ci’s such that

r1 ≥ C1m+ C2.

Proof. Denote by VK ↪→ EK the minimal K-subspace containing f .
Let V := VK ∩ E; then r1 = rk(V ). For every positive integer x, denote
by P̃i the image of Pi in V ∨(x). Observe that there are constants dj such

that d̂eg(V ∨(x)) = d1 + d2x. We can find r1 elements among the P̃i which
are linearly independent; we may suppose that they are P̃1, . . . , P̃r1 . The
isomorphism of the Cramer rule, which is an isometry, gives rise to the
equality

(P̃1 ∧ · · · ∧ P̃r1)⊗ f =
∑
i

(−1)i(P̃1 ∧ · · · ∧ ˆ̃Pi ∧ · · · ∧ P̃r1)⊗ Fi.

Since P̃1 ∧ · · · ∧ P̃r1 is an integral section of V ∨(x), we have

log ‖P̃1 ∧ · · · ∧ P̃r1‖σ ≥ d1 + d2x− ([K : Q]− 1)(r1c1x log(x) + b1x).

Thus we find

d1 + d2x− ([K : Q]− 1)(r1c1x log(x) + b1x) + d3

≤ (r1 − 1)c1x log(x) + c1x log(x)−mc2x log(x) + c3x log(x) + b2x+ d4,

where the constants bi, ci and di are independent of x. We divide everything
by x log(x) and let x tend to infinity to obtain

r1c1[K : Q]−mc2 + c3 ≥ 0.

The conclusion follows.
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Proof of the theorem. We fix models X of XK , D of DK and (E,∇) of
(EK ,∇K) as in the previous sections. We also fix a positive metric on the
ample line H := O(D). Let c be the degree of HK ; adding some points to D
if necessary we may suppose that c is much greater than s. We eventually
fix an integral derivation ∂ ∈ H0(X , (ω1

X/OK )∨(D)) which does not vanish

at the points pj and q; notice that this can be done once we suppose that
c much greater compared to s. Finally, we fix a section s′ ∈ H0(X , H) not
vanishing at pi,K or q.

In order to apply 6.5, it suffices to replace E by one of its symmetric
products, f by its symmetric power, and construct sections satisfying the
hypothesis of Proposition 6.7. Thus we need m linearly independent sections
of E∨(x)q satisfying the hypotheses of 6.7.

By Theorem 5.3, for every x� 0 we may construct P1 ∈ H0(X , E∨(x))
such that, denoting by F1 ∈

⊕
j H

0(Xpj,K ,O(x)) the section 〈P1, fpj,K 〉j , for
every j we have ordpj (F1) ≥ x csm(1−ε) and supσ log ‖P1‖σ ≤ ax log(x)+c1x.

Let Pi := ∇∂(Pi−1). Applying Proposition 5.4, we then construct m
integral sections P1, . . . , Pm such that supσ log ‖Pi‖σ ≤ ax log(x) + c2x and
ordp(Fi) ≥ x csm(1− ε)−m (where again Fi = 〈Pi, fpj,K 〉j).

Since we suppose that c > s and x� 0, we may apply the Zero Lemma
2.5 to deduce that P1, . . . , Pm are linearly independent over K(XK). As in
the previous sections, we denote by P̃i the sections Pi ⊗ (s′)⊗2(m−i). Ob-
serve that P̃i ∈ H0(X , E∨(x + 2m + V )) for some fixed vertical divisor V .
Consequently, there is a constant c3 such that

deg(P̃1 ∧ · · · ∧ P̃m) = mcx+ c3.

By the Cramer rule,

(P̃1 ∧ · · · ∧ P̃m)⊗ f =
∑
i

(−1)i(P̃1 ∧ · · · ∧ ˆ̃Pi ∧ · · · ∧ P̃m)⊗ Fi;

thus, for every j, ordpj (P̃1∧· · ·∧ P̃m) ≥ x csm(1− ε)−m; consequently, there
are constants ε1 and c4 such that

ordq(P̃1 ∧ · · · ∧ P̃m) ≤ cxε1 + c4.

Fix c, ε1 and c4 as above and denote by c(x) the function cε1x + c4.
For P ∈ H0(X , E∨(x)) with x � 0 as above, we construct a sequence
P 1 = P⊗(s′)c(x) and P i+1 := ∇∂(Pi)⊗(s′)⊗c(x)−2(i+1) with 0 ≤ 2i ≤ c(x)−1.
Observe that P 1, . . . , P c(x) are global sections in H0(X , E∨(c(x) + x+ V )).

6.8. Lemma. With the notations as above, there are constants ai inde-
pendent of E (in particular independent of m) and constants bj for which
the following holds: For every x � 0 there exist m indices `1 < · · · < `m
with `m ≤ c(x) such that:
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(a) P `1 ∧ · · · ∧ P `m is an integral section not vanishing at q;
(b) supσ log ‖P `i‖σ ≤ a1x log(x) + b1;
(c) ordpj (F`i) ≥ a2x(m− 1)− b2 for every j.

The lemma implies the theorem: indeed, by Theorem 3.9, the P `i satisfy
the hypotheses of Proposition 6.7.

Proof of Lemma 6.8. The only thing we have to prove is (a); indeed, (b)
and (c) are consequences of Proposition 5.4.

Let v be the order of vanishing of P̃1 ∧ · · · ∧ P̃m at q. We know that
v ≤ c(x). By induction we see that if h1 < · · · < hm, then

∇∂(Ph1 ∧ · · · ∧ Phm) =
∑

s1<···<sm
ts(P s1 ∧ · · · ∧ P sm)

with si ≤ hm+1 and the functions ts vanishing at q. Consequently, denoting
by ∇◦v∂ (·) the operator ∇∂ ◦ · · · ◦ ∇∂(·) (v times), we find that

0 6= ∇◦v∂ (P̃1 ∧ · · · ∧ P̃m)|q =
∑

s1<···<sm
as(P s1 ∧ · · · ∧ P sm)|q

with sm ≤ c(x). Thus there exist `1 < · · · < `m ≤ m+ cx+ a such that

(P `1 ∧ · · · ∧ P `m)|q 6= 0.

The conclusion follows.

Acknowledgments. We would like to thank D. Bertrand and the ref-
eree for many useful comments which helped to simplify and clarify the
exposition.
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[He] M. Herblot, Sur le théorème de Schneider–Lang, PhD Thesis, Rennes, 2011.
[La] S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, MA,

1966.
[Se] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque 96 (1982),
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