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1. Introduction. Automorphisms of compact metric groups provide
a simple family of dynamical systems with additional structure, rendering
them particularly amenable to detailed analysis. On the other hand, they
are rigid in the sense that they cannot be smoothly perturbed, and for a
fixed compact metric group the group of automorphisms is itself countable
and discrete. Thus it is not clear which, if any, of their dynamical properties
can vary continuously. The most striking manifestation of this is that it
is not known if the set of possible topological entropies is countable or is
the set [0,∞] (this question is equivalent to Lehmer’s problem in algebraic
number theory; see Lind [13] or the monograph [7] for the details). The
possible exponential growth rates for the number of closed orbits is easier
to decide, and it is shown in [23] that for any C ∈ [0,∞] there is a compact
group automorphism T : X → X with

(1.1)
1

n
log FT (n)→ C

as n → ∞, where FT (n) = |{x ∈ X : Tnx = x}|. Unfortunately, the
systems constructed to achieve this continuum of different growth rates are
non-ergodic automorphisms of totally disconnected groups, and so cannot
be viewed as natural examples from the point of view of dynamical systems.
It is not clear if a result like (1.1) is possible within the more natural class
of ergodic automorphisms on connected groups, unless C is a logarithmic
Mahler measure (in which case there is a toral automorphism that achieves
this).

Our purpose here is to indicate some of the diversity that is nonetheless
possible for ergodic automorphisms of connected groups, for a measure of
the growth in closed orbits that involves more averaging than does (1.1).
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To describe this, let T : X → X be a continuous map on a compact metric
space with topological entropy h = h(T ). A closed orbit τ of length |τ | = n
is a set {x, T (x), T 2(x), . . . , Tn(x) = x} with cardinality n. Following the
analogy between closed orbits and prime numbers advanced by work of
Parry and Pollicott [18] and Sharp [21], asymptotics for the expression

MT (N) =
∑
|τ |≤N

1

eh(T )|τ |

may be viewed as dynamical analogues of Mertens’ theorem. The expres-
sion MT (N) measures in a smoothed way the extent to which the topological
entropy reflects the exponential growth in closed orbits or periodic points.
A simple illustration of how MT reflects this is to note that if

FT (n) = C1e
hn + O(eh

′n)

for some h′ < h, then

MT (N) = C1

N∑
n=1

1

n
+ C2 + O(e−h

′′N )

for some h′′ > 0 (see [17]).
Writing OT (n) for the number of closed orbits of length n, we have

FT (n) =
∑
d|n

dOT (d)

and hence

(1.2) OT (n) =
1

n

∑
d|n

µ

(
n

d

)
FT (d)

by Möbius inversion.
For continuous maps on compact metric spaces, it is clear that all pos-

sible sequences arise for the count of orbits (see [19]; the same holds in the
setting of C∞ diffeomorphisms of the torus by a result of Windsor [25]). For
algebraic dynamical systems the situation is far more constrained, and it
is not clear how much freedom there is in possible orbit-growth rates. Our
purpose here is to exhibit two different continua of growth rates, on two
different speed scales:

• for any κ ∈ (0, 1) there is an automorphism T of a one-dimensional
compact metric group with MT (N) ∼ κ logN ;
• for any δ ∈ (0, 1) and k > 0 there is an automorphism T of a one-

dimensional compact metric group with MT (N) ∼ k(logN)δ.

While this plays no part in the argument, it is worth noting that there is a
complete divorce between the topological entropy and the growth in closed
orbits of these examples—they all have topological entropy log 2.
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2. The systems studied. We will study a family of endomorphisms
(or automorphisms) of one-dimensional solenoids, all built as isometric ex-
tensions of the circle-doubling map. To describe these, let P denote the set
of rational primes, and associate to any S ⊂ P the ring

RS = {r ∈ Q : |r|p ≤ 1 for all p ∈ P \ S},
where | · |p denotes the normalized p-adic absolute value on Q, so that |p|p
= p−1. Thus, for example, R∅ = Z, R{2,3} = Z[1/6], and RP = Q. Let T = TS

denote the endomorphism of R̂S dual to the map r 7→ 2r on RS . This map
may be thought of as an isometric extension of the circle-doubling map, with
topological entropy h(TS) =

∑
p∈S∪{∞}max{log |2|p, 0} = log 2 (see [14] for

an explanation of this formula, and for the simplest examples of how the
set S influences the number of periodic orbits). Each element of S destroys
some closed orbits, by lifting them to non-closed orbits in the isometric
extension; see [5] for a detailed explanation in the case S = {2, 3}. This is
reflected in the formula for the count of periodic points in the system,

(2.1) FTS (n) = (2n − 1)
∏
p∈S
|2n − 1|p

(see [2] for the general formula being used here), showing that each inverted
prime p in S in the dual group RS removes the p-part of 2n − 1 from the
total count of all points of period n. The effect of each inverted prime in RS
on the count of closed orbits via the relation (1.2) is more involved.

We write |x|S =
∏
p∈S |x|p for convenience, and since we will be using

the same underlying map throughout, we will replace T = TS by the param-
eter S defining the system in all of the expressions from Section 1. There are
then three natural cases: the ‘finite’ case with |S| < ∞ and the ‘co-finite’
case with |P \ S| < ∞, together producing countably many examples, and
the more complex remaining ‘infinite and co-infinite’ case. A special case of
the results in [3] is that for S finite we have

MTS (N) = MS(N) =
∑
|τ |≤N

1

eh|τ |
= kS logN + CS + O(N−1)

for some kS ∈ (0, 1] ∩ Q and constant CS . For example, [3, Ex. 1.5] shows
that

k{3,7} =
269

576
.

Here we continue the analysis further, showing the following theorem.

Theorem 1. The set of possible values of the constant kS with

MS(N) = kS logN + CS + O(N−1),

as S varies among the finite subsets of P, is dense in [0, 1].
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If S is infinite, then more possibilities arise, but with less control of the
error terms.

Theorem 2. For any k ∈ (0, 1), there is an infinite co-infinite subset S
of P with

MS(N) ∼ k logN.

We also give explicit examples of sets S for which the value of k arising
in Theorem 2 is transcendental.

The co-finite case is very different in that MS(N) converges as N→∞;
other orbit-counting asymptotics better adapted to the polynomially
bounded orbit-growth present in these systems are studied in [4] and [11].
The following result is more surprising, in that a positive proportion of
primes may be omitted from S while still destroying so many orbits that
MS(N) is bounded.

Proposition 3. There is a subset S of P with natural density in (0, 1)
such that

MS(N) = CS + O(N−1).

In fact there are such sets S with arbitrarily small non-zero natural
density.

While it seems hopeless to describe fully the range of possible growth
rates for MS(N) as S varies, we are able to exhibit many examples whose
growth lies strictly between that of the examples in Theorem 2 and that of
the examples in Proposition 3.

Theorem 4. For any δ ∈ (0, 1) and any k > 0, there is a subset S of P
such that

MS(N) ∼ k(logN)δ.

We also find a family of examples whose growth lies between that of the
examples in Theorem 4 and of those in Proposition 3.

Theorem 5. For any r ∈ N and any k > 0, there is a subset S of P
with

MS(N) ∼ k(log logN)r.

Moreover, it is possible to achieve growth asymptotic to any suitable
function growing slower than log logN . A byproduct of the constructions
for Theorems 1 and 5 gives sets S such that both MS(N) and MP\S(N)
are o(logN).

The idea behind the proofs of all these results is rather similar. We choose
our set of primes S so that it is easy to isolate a subseries of dominant terms
in MS(N) in such a way that the sum of the remaining terms converges,
usually quickly (controlling this rate governs the error terms). We describe
a general framework for dealing with such sets, and then the sets used to
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carry out the constructions are defined by arithmetical criteria relying on
properties of the set of primes p for which 2 has a given multiplicative order
modulo p.

Notation. From (2.1), we have MS(N) = MS∪{2}(N) for any set S;
thus, without loss of generality, we make the standing assumption that 2 /∈ S.
We will use various global constants C1, C2, . . . , each independent of N
and numbered consecutively. The symbols C and CS denote local constants
specific to the statement being made at the time. For an odd prime p,
denote by mp the multiplicative order of 2 modulo p; for a set T of primes,
we write mT = lcm{mp : p ∈ T}. We will also use Landau’s big-O and
little-o notation.

3. Asymptotic estimates. By (1.2) and (2.1) we have

MS(N) =
∑
n≤N

1

n2n

∑
d|n

µ

(
n

d

)
|2d − 1| × |2d − 1|S =

∑
n≤N

|2n − 1|S
n︸ ︷︷ ︸

=FS(N)

+RS(N),

where the last equality defines both FS(N) and RS(N).

Lemma 6. RS(N) = CS + O(2−N/2).

Proof. By definition, RS(N) is the sum of two terms,

RS(N) = −
N∑
n=1

|2n − 1|S
n2n

+

N∑
n=1

1

n2n

∑
d|n, d<n

µ

(
n

d

)
(2d − 1)|2d − 1|S .

Since

|2n − 1|S
n2n

≤ 1

2n
and

1

n2n

∑
dn, d<n

(2d − 1)|2d − 1|S ≤
1

2n/2
,

both sums converge (absolutely) so RS(N) converges to some CS . Moreover,

|RS(N)− CS | ≤
∞∑

n=N+1

1

2n
+

∞∑
n=N+1

1

2n/2
= O(2−N/2).

Thus we think of FS(N) as a dominant term, and much of our effort will
be aimed at understanding how FS(N) behaves as a function of S, which
starts with understanding the arithmetic of 2n − 1. The main tool here is
the elementary observation that, for p a prime and n ∈ N,

(3.1) ordp(2
n − 1) =

{
ordp(2

mp − 1) + ordp(n) if mp |n,

0 otherwise,

where ordp(n) denotes the index of the highest power of p dividing n, so
that |n|p = p− ordp(n). In particular, if T is a finite set of primes and n ∈ N,
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then

(3.2) |2nmT − 1|T = |2mT − 1|T |n|T .
In the proof of [3, Proposition 5.3], a recipe is given for computing the co-

efficient of logN in the asymptotic expansion of FS(N), when S is finite. This
is based on an inclusion-exclusion argument, splitting up the sum FS(N) ac-
cording to the subsets of S. The disadvantage of this approach is that many
subsets of S can lead to an empty sum: in principle, the splitting works for
infinite S (since FS(N) is anyway a finite sum) but then the decomposi-
tion of the sum falls into an uncountable number of pieces. Here we take
a different approach, splitting up the expressions arising according to the
values mT , for T a finite subset of S, rather than according to the subsets T .
In this setting, several different subsets T may give the same value for mT .

To this end, we set MS = {mp : p ∈ S} and denote by MS its closure
under taking least common multiples:

MS = {lcm(M′) :M′ ⊆MS} = {mT : T ⊆ S}.
For n ∈ N, we put

m̄n = max{m̄ ∈MS : m̄ |n} = lcm{mp ∈MS : mp |n}.
Then, for m̄ ∈M, set

Nm̄ = {n ∈ N : m̄n = m̄} and Sm̄ = {p ∈ S : mp | m̄}.
Note that the sets Sm̄ are finite, even if S is not. Then, using (3.2), we get

FS(N) =
∑

m̄∈MS

∑
n≤N
n∈Nm̄

|2n − 1|S
n

(3.3)

=
∑

m̄∈MS

|2m̄ − 1|Sm̄
m̄

∑
n≤N/m̄

mp-nm̄ for p∈S\Sm̄

|n|Sm̄
n

.

The asymptotic behaviour of these inner sums can be computed, at least in
principle, using the results of [3, §5]. However, for a general set S of primes,
this is cumbersome, so we will specialize to sets which are easier to deal
with. In this, we are motivated by the next lemma, which follows one of
the many paths used to prove Zsigmondy’s theorem (see [6, §8.3.1] for the
details).

Lemma 7. Fix n ∈ N, and let S ⊂ P be a set of primes containing

{p ∈ P : mp = n}.
Then

|2n − 1|S ≤
n

2φ(n)−2
.
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Recall that a divisor of 2n−1 is primitive (in the sequence (2n−1)n≥1) if
it has no common factor with 2m− 1 for any m with 1 ≤ m < n. Thus {p ∈
P : mp = n} is the set of primitive prime divisors of 2n−1. This set is finite,
since mp ≥ log2 p, but may be large—for example

m233 = m1103 = m2089 = 29.

Schinzel [20] proved that there are infinitely many n for which this set con-
tains at least two elements, but it seems that not much more is known about
it in general.

Proof of Lemma 7. Writing (2n − 1)∗ for the maximal primitive divisor
of 2n − 1, we certainly have

(3.4) |2n − 1|−1
S ≥ (2n − 1)∗.

By factorizing xn − 1 we have

(3.5) 2n − 1 =
∏
d |n

Φd(2),

where Φd is the dth cyclotomic polynomial. It follows that (2n−1)∗ is a factor
of Φn(2). If a prime p divides gcd(Φn(2), Φd(2)) for some d |n with d < n,
then p | 2d − 1. Then, from (3.1),

ordp(2
n − 1) = ordp(2

d − 1) + ordp(n/d),

and from (3.5),

ordp(2
n − 1) ≥ ordp(2

d − 1) + ordp(Φn(2)) ≥ ordp(2
d − 1) + 1,

so in particular p divides n/d; therefore p divides n and d divides n/p, so p
divides 2n/p − 1. Moreover

ordp(2
n − 1) = ordp(2

n/p − 1) + 1

and

ordp(2
n − 1) ≥ ordp(2

n/p − 1) + ordp(Φn(2)),

so in fact ordp(Φn(2)) = 1. Thus gcd(Φn(2),
∏
d|n, d<n Φd(2)) divides

∏
p|n p,

which is at most n, and

(3.6) (2n − 1)∗ ≥ Φn(2)/n.

On the other hand, by Möbius inversion applied to (3.5),

Φn(2) =
∏
d|n

(2d − 1)µ(n/d)

so

log(Φn(2)) = φ(n) log 2 +
∑
d|n

µ(n/d) log(1− 2−d),
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where φ(n) is the Euler totient function. Now, using the Taylor expansion
for the logarithm,∣∣∣∑

d|n

µ(n/d) log(1− 2−d)
∣∣∣ ≤∑

d|n

∞∑
j=1

2−jd

j
=
∞∑
j=1

2−j

j

∑
d|n

2−j(d−1) ≤ 2 log 2,

so Φn(2) ≥ 2φ(n)−2 and the result follows by (3.4) and (3.6).

This lemma will be used as follows. Instead of starting with a set S of
primes, we begin with M a subset of N and put

SM = {p ∈ P : mp ∈M}.
Then ∑

n≤N

|2n − 1|SM
n

=
∑
n≤N
n/∈M

|2n − 1|SM
n︸ ︷︷ ︸

=DSM (N)

+
∑
n≤N
n∈M

|2n − 1|SM
n︸ ︷︷ ︸

=QSM (N)

,

and, by Lemma 7,

QSM(N) ≤ C3

∑
n≤N

1

2φ(n)
,

which converges since φ(n) ≥
√
n for n ≥ 6. Moreover, the same observation

shows that

QSM(N) = C4 + O(2−
√
N ).

Thus the asymptotic behaviour is governed by the dominant term DSM(N).
From Lemma 6, we get

(3.7) MSM(N) =
∑
n≤N
n/∈M

|2n − 1|SM
n

+ C5 + O(2−
√
N ).

All our examples will take this form.

Remarks 8. (i) We have set up maps S 7→ MS andM 7→ SM between
the power sets of P\{2} and N, which are order-preserving for inclusion. It is
easy to check that SMS

⊇ S, while SMSM
= SM. Similarly, we haveMSM =

M\{1, 6}, since all but the first and sixth terms of the Mersenne sequence
have primitive divisors, and MSMS

=MS . In particular, we can apply the

decomposition (3.3) of MSM(N) in tandem with (3.7). When we do so, we
will replaceMSM by the closureM ofM under least common multiples to
get

(3.8) MSM(N) =
∑
m̄∈M

|2m̄ − 1|Sm̄
m̄

∑
n≤N/m̄, nm̄/∈M

mp-nm̄ for p∈SM\Sm̄

|n|Sm̄
n

+ C6 + O(2−
√
N ).
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(ii) For a general set S, let Mo
S be the set of m ∈ MS for which S

contains all primes p with mp = m, and put So = SMo
S
; this is the largest

subset of S of the form SM. Similarly, put S = SMS
, the smallest superset

of S of the form SM. The techniques here can be applied to the sets So

and S and, since
MS(N) ≤ MS(N) ≤ MSo(N),

we get some information on the asymptotic behaviour of MS(N).

The formula (3.8) is particularly simple in the case that M is closed
under multiplication by N; that is, if a ∈ M and b ∈ N, then ab ∈ M. In
this case M is closed under least common multiples and, for n /∈ M, we
have m̄n = 1. Thus the inner sum in (3.8) is empty for m̄ 6= 1, and we get

(3.9) MSM(N) =
∑
n≤N
n/∈M

1

n
+ C7 + O(2−

√
N ).

Provided MSM(N)→∞ as N →∞, this implies that

MSM(N) ∼
∑
n≤N
n/∈M

1

n
.

Many, though not all, of our examples will be of this form. The task is then
to choose setsM which are closed under multiplication by N, and for which
we can control the asymptotics of the sum in (3.9). One technique we will
often use for this is partial (or Abel) summation: if we write

πM(x) = |{n ≤ x : n 6∈ M}|
and f is a positive differentiable function on the positive reals, then∑

n≤x
n/∈M

f(n) = πM(x)f(x) +

x�

1

πM(t)f ′(t) dt,

with the dominant term generally coming from the integral. In several cases
the asymptotics of πM(x) are already well understood.

4. Finite sets of primes. In order to prove Theorem 1, we need to
choose finite sets S of primes for which we can make good estimates for the
coefficient of the leading term in Mertens’ theorem. These calculations are
simplified by considering only primes p for which mp is prime.

Let L be a finite set of primes and take M = L, so that

S = SL = {p ∈ P : mp ∈ L},
which is a finite set. By [3, Theorem 1.4], we have

MSL(N) = kL log(N) + CL + O(N−1)
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for some kL ∈ (0, 1]∩Q and constant CL. The following lemma gives upper
and lower bounds for kL.

Lemma 9. Let L be a finite subset of P.

(i) We have

kL ≤
∏
`∈L

(
1− 1

`
+

1

`(2` − 1)

)
.

(ii) For ` ∈ P \ L, we have (1− 1/`)kL ≤ kL∪{`}.

Proof. For L′ a subset of L, we write m(L′) =
∏
`∈L′ `. We break up the

Mertens sum as in (3.8), noting that M = {m(L′) : L′ ⊆ L}:

(4.1) MSL(N) ∼
∑
L′⊆L

|2m(L′) − 1|SL′
m(L′)

∑
n≤N/m(L′)
`-n for `∈L\L′

|n|SL′
n

.

By [3, Proposition 5.2], we have∑
n∈N

|n|SL′
n

= k′L′ logN + C ′L′ + O(N−1),

with k′L′ =
∏
p∈SL′

p/(p+ 1). Moreover, by [3, Lemma 5.1],∑
n≤N

`-n for `∈L\L′

|n|SL′
n

= k′L′
∏

`∈L\L′

(
1−
|`|SL′
`

)
logN + C ′′L′ + O(N−1).

In particular, the coefficient of the logN term is∏
`∈L\L′

(
1− 1

`

) ∏
p∈SL′\L

p

p+ 1
,

which is at most
∏
`∈L\L′(1 − 1/`). Moreover, for ` ∈ L′ and p such that

mp = `, we have ordp(2
m(L′) − 1) ≥ ordp(2

` − 1) so

|2m(L′) − 1|SL′ ≤
∏
`∈L′

1

2` − 1
.

Putting everything back into (4.1), we see that the coefficient kL of the logN
term is bounded above by∑

L′⊆L

∏
`∈L′

1

`(2`−1)

∏
`∈L\L′

(
1− 1

`

)
=
∏
`∈L

(
1− 1

`
+

1

`(2`−1)

)
.
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This proves (i), and the proof of (ii) is similar but easier: we have

MSL∪{`}(N) ∼
∑

L′⊆L∪{`}

|2m(L′) − 1|SL′
m(L′)

∑
n≤N/m(L′)

gcd(n,`m(L))|m(L′)

|n|SL′
n

,

and, for L′ a subset contained in L, the contribution of the sum correspond-
ing to L′ is 1 − |`|SL′/` times the contribution of the sum corresponding
to L′ in (4.1). In particular, the Mertens sum for L ∪ {`} is at least 1− 1/`
times that for L.

Proof of Theorem 1. Let k ∈ (0, 1) and ε > 0, and choose two primes
`0 > 1 + k/ε and `1 > `0 such that∏

`0≤`<`1

(
1− 1

l
+

1

l(2l − 1)

)
< k;

this is possible since the product over all primes greater than `0 converges
to 0.

We choose recursively a subset L of {` ∈ P : ` < `1}, using the greedy
algorithm as follows. Let ` ∈ P and suppose we have already defined L(`) :=
L ∩ {1, . . . , ` − 1}. If k ≤ kL(`) < k + ε then we are done and L = L(`);
otherwise ` ∈ L if and only if kL(`)∪{`} ≥ k.

The claim is then that, for the subset L given by this algorithm, the lead-
ing coefficient kL satisfies k ≤ kL < k + ε. The first inequality is clear from
the definition, while the second follows from the following two observations:

(i) There is a prime ` with `0 ≤ ` < `1 such that ` /∈ L: if not, by
Lemma 9(i),

kL ≤
∏

`0≤`<`1

(
1− 1

`
+

1

`(2` − 1)

)
< k,

which is absurd.
(ii) With ` as in (i), we have kL(`)∪{`} < k, since ` /∈ L; thus, by Lem-

ma 9(ii),

kL(`) ≤
`

`− 1
kL(`)∪{`} <

`0
`0 − 1

k < k + ε.

Remark 10. Let L be an infinite set of primes such that
∑

`∈L 1/`
diverges and put S = SL = {p ∈ P : mp ∈ L}. Then MS(N) ≤ MSL′ (N) for
any finite subset L′ of L, so MS(N) grows no more quickly than kL′ logN .
Since kL′ is at most

∏
`∈L′

(
1− 1

` + 1
`(2`−1)

)
, by Lemma 9(i), there are finite

subsets L′ of L with kL′ arbitrarily close to 0, and we deduce that MS(N) =
o(logN).
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5. Logarithmic growth for infinite sets of primes. In this section
we will prove Theorem 2. Fix ` ∈ P, and let

M` = {n ∈ N : ` |n},
so that

SM`
= S` = {p ∈ P : ` |mp}.

By Hasse [9, 10] these sets have a positive Dirichlet density within the set
of primes: for ` > 2 the density is `/(`2 − 1), and for ` = 2 the density is 17

24 .
They also have natural density by, for example, [24, Theorem 2]. Noting
that M` is closed under multiplication by N, by (3.9) we have

MS`
(N) =

∑
n≤N
`-n

1

n
+ C9 + O(2−

√
N ) =

(
1− 1

`

)
logN + C8 + O(N−1).

Indeed, if L is any finite set of primes, applying the same argument to

ML = {n ∈ N : ` |n for some ` ∈ L} and SL = {p ∈ P : mp ∈ML},
we get

MSL
(N) =

∏
`∈L

(
1− 1

`

)
logN + C10 + O(N−1).

Since the set {
∏
`∈L(1 − 1/`) : L ⊂ P finite} is dense in [0, 1], this gives an

easy way of getting a dense set of values for the leading coefficient in Mertens’
theorem. Note however that Theorem 1 was more delicate, since the claim
was that a dense set of values can be obtained using only finite sets S.
Similarly, Theorem 2 claims more: every value in (0, 1) can be obtained as
leading coefficient.

Proof of Theorem 2. Now let L ⊂ P be any set of primes for which the
product kL :=

∏
`∈L(1− 1/`) is non-zero, define ML and SL as above, and

apply the argument above to obtain

MSL
(N) ∼

∑
n≤N
n/∈ML

1

n
.

Applying [22, Theorem I.3.11] we have |{n ≤ x : n /∈ML}| ∼ kLx, thus, by
partial summation, we get

MSL
(N) ∼ kL logN.

This gives Theorem 2 since {kL : L ⊆ P} = [0, 1].

6. Sublogarithmic growth. Now we consider sets giving intermediate
sublogarithmic growth, proving Theorem 4. We return to sets close to ML
and SL of §5 but now for infinite sets L of primes such that

∏
`∈L(1− 1/`)
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= 0. We will need a result from analytic number theory that allows sets of
primes to be selected with prescribed properties; we defer the proof to §10.

Proposition 11. For any δ ∈ (0, 1], there is a set L of primes such that

(6.1)
∑
`≤x
l∈L

log `

`
= δ log x+ O(1)

and, for any c > 1, there is a set L′ ⊆ L such that∏
p∈L′

(
1 +

1

p

)
= c and

∑
p∈L′

log p

p
<∞.

Proof of Theorem 4. Let δ ∈ (0, 1] and k > 0, and let L be a set of primes
satisfying (6.1). As before we put ML = {n ∈ N : ` |n for some ` ∈ L} and
now we set

M′L = {n ∈ N : n ∈ML or n is not square-free}

and S′L = {p ∈ P : mp ∈M′L}. Note that M′L is also closed under multipli-
cation by N so that

MS′L
(N) =

∑
n≤N
n6∈M′L

1

n
+ C11 + O(2−

√
N )

by (3.9). Now we apply [8, Theorem A.5] with, in the notation used there,
the function

g(n) =

{
1/n if n /∈M′L,
0 otherwise.

Note that, by (6.1), the hypotheses [8, (A.15–17)] of that theorem are indeed
satisfied. We conclude that∑

n≤N
n6∈M′L

1

n
= kL(logN)δ + O((logN)δ−1),

where kL > 0 is

kL =
1

Γ (δ + 1)

∏
p∈P

(
1− 1

p

)δ∏
p/∈L

(
1 +

1

p

)
by [8, (A.24)]. Notice that we can adjust L by any set of primes L′ such
that

∑
`∈L′ (log `)/` converges without affecting the hypothesis (6.1).

Assume now that L is the set of primes L constructed in Proposition 11.
Let L′′ ⊆ P \ L be a set of primes such that k

∏
p∈L′′(1 + 1/p) ≥ kL. By
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Proposition 11, there is a subset L′ of L such that∏
p∈L′

(
1 +

1

p

)
=

k

kL

∏
p∈L′′

(
1 +

1

p

)
.

In particular, putting L0 = (L \ L′) ∪ L′′, we have kL0 = k so the set S′L0

gives the required asymptotic.

Remark 12. Since the sets ML and M′L coincide on the set of square-
free natural numbers, there is a constant cL such that∑

n≤N
n/∈M′L

1

n
≤
∑
n≤N
n/∈ML

1

n
≤ cL

∑
n≤N
n/∈ML

1

n
.

In particular, the Mertens sum MSL
(N) also grows like (logN)δ. We have

chosen to useM′L here rather thanML since it is for such a set that we were
able to find an off-the-shelf reference [8, Theorem A.5] for the asymptotics.

7. Doubly logarithmic growth. Here we consider sets giving doubly
logarithmic growth or slower, in particular proving Theorem 5. In the case
r = 1, the proof is based on taking the setM of §3 to be the set N \ P of com-
posite natural numbers, so that S = SM is the set of primes p such that mp

is composite. Since M is closed under multiplication by N, applying (3.9)
we have

MS(N) =
∑
p≤N
p∈P

1

p
+ C12 + O(2−

√
N ).

By Mertens’ original theorem [15], we have

(7.1)
∑
p≤N
p∈P

1

p
= log logN + C13 + O((logN)−1),

and hence

MS(N) = log logN + C14 + O((logN)−1),

which is an improved form (i.e. with error term) of Theorem 5 with k = 1
and r = 1.

Remark 13. The complement of this set S is the set of primes p for
which mp is prime so MP\S(N) = o(logN), by Remark 10. Thus both MS(N)
and MP\S(N) are o(logN).

For the general case of Theorem 5 we will need the following lemma,
which gives asymptotics for the number of integers with exactly r prime
factors (counted with multiplicity), all from a fixed set of primes. For L
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a set of primes and n ∈ N we denote by ΩL(n) the number of prime factors
of n in L (counted with multiplicity), and abbreviate Ω(n) = ΩP(n).

Lemma 14. Let L be a set of primes of natural density δ and r ∈ N.
Then

(7.2) |{n ≤ x : ΩL(n) = Ω(n) = r}| ∼ δr x

log x

(log log x)r−1

(r − 1)!
.

Proof. When r = 1, the case L = P is the prime number theorem and
the case of general L follows immediately, since L has density δ. For r > 1,
the case L = P is a result of Landau [12, XIII, §56, (5)], proved by induction
on r. The proof (using the prime number theorem and partial summation –
see [16, §7.4] for a sketch) works equally well for any set L as in the lemma,
and the result follows.

Proof of Theorem 5. Let r ∈ N and k > 0. We pick a natural number m
such that

km :=
∑
d|m

1

d
> k(r!)

and a set L of primes with natural density δ = (k(r!)/km)1/r. Denote
byMr,L,m the set of natural numbers n such that either Ω(n/gcd(m,n)) > r
or n/gcd(m,n) has a prime factor outside L.

We put S = SMr,L,m and apply (3.9) to get

(7.3) MS(N) ∼
∑
n≤N

n/∈Mr,L,m

1

n
=
∑
d|m

1

d

∑
n≤N/d
n/∈Mr,L,1

1

n
.

On the other hand, by (7.2), we have

πMr,L,1(x) = |{n ≤ x : Ω(n) = ΩL(n) ≤ r}| ∼ δr x

log x

(log log x)r−1

(r − 1)!
.

Applying partial summation gives∑
n≤x

n/∈Mr,L,1

1

n
∼ δr (log log x)r

r!
,

and substituting this into (7.3) gives the result, because of the choice of δ.

Remark 15. Let θ be any positive, increasing, differentiable function
on the positive reals such that, for large enough x, both θ(x) ≤ log log x and
θ′(x) ≤ 1/(x log x). Then there is a set Lθ of primes such that∑

p≤x
p∈Lθ

1

p
∼ θ(x)
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and hence, putting Sθ = {p ∈ P : mp 6∈ Lθ} and applying (3.9), we have

MSθ(N) ∼ θ(x).

The existence of such a set Lθ comes from (7.1) and the following lemma,
whose proof using the greedy algorithm is straightforward but technical so
is omitted. It seems almost certain that a lemma of this sort exists in the
literature but we have not been able to find it.

Lemma 16. Suppose f is a positive, increasing, differentiable function
on the positive reals and an are non-negative reals converging to 0 such
that

∑
n≤x an ∼ f(x). We write δ(x) =

∑
n≤x an− f(x). Suppose we have a

positive, increasing, differentiable function θ on the positive reals such that:

(i) there is an x0 > 0 such that θ(x) ≤ f(x) and θ′(x) ≤ f ′(x) for
all x > x0;

(ii) δ = o(θ).

Then there is a subset Nθ ⊂ N such that∑
n≤x
n∈Nθ

an ∼ θ(x).

8. Convergence for co-infinite sets of primes

Proof of Proposition 3. Fix a prime ` and set Mc
` = {n ∈ N : ` - n}, the

complement of the set M` considered in §5; thus

S = SMc
`

= {p ∈ P : ` - mp}

is a set of primes with positive natural density. Although Mc
` is not closed

under multiplication by N, it is closed under least common multiples; more-
over, for m ∈Mc

`, we have Nm = {m`e : e ≥ 0}, in the notation of §3. Thus,
from (3.8),

(8.1) MS(N) =
∑
m∈N
`-m

|2m − 1|Sm
m

∑
1<`e≤N/m

|`|eSm
`e

+ C15 + O(2−
√
N ).

Now ∑
1<`e≤N/m

|`|eSm
`e
≤
∑
e≥1

1

`e
=

1

(`− 1)
.

Thus the terms of the (outer) sum in (8.1) converge and, since |2m−1|Sm =
(2m − 1)−1, the difference between each term and its limit is

|2m − 1|Sm
m

∑
`e>N/m

|`|eSm
`e
≤ m

2m − 1

∑
e>log(N/m)/log `

1

`e
≤ C16

1

2mN
.
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Plugging this back into the sum in (8.1), we see that it converges and the
difference between it and its limit is bounded by

C16

N

∑
m∈N
`-m

1

2m
= O(N−1).

Remark 17. It is straightforward to generalize this proof to the case
where M is the complement of the set ML considered in §5, for any finite
set of primes L, so that SM is the set of primes p such that mp is not divisible
by any ` ∈ L. By a special case of a very general result of Wiertelak [24,
Theorem 2], when L consists only of odd primes the set SM has natural
density

∏
`∈L(1 − `/(`2 − 1)). In particular, this density can be arbitrarily

close to 0.

9. Transcendental constants. Our first example of a transcendental
constant comes from an elementary result in analytic number theory. LetM
be the set of non-square-free natural numbers; then a theorem of Landau
gives

πM(x) = |{n ≤ x : n /∈M}| = 6

π2
x+ o(

√
x)

(see for example [12, XLIV, §162] or [22, Theorem I.3.10]). Thus, by partial
summation and (3.9), we get

MSM(N) =
6

π2
logN + C17 + o(N−1/2).

For our second example, fix a prime ` and set M(`) = {`e : e ≥ 0}, so
that S = SM(`)

is the infinite set of primes p for which mp is a power of `.
This is a thin set of primes, that is, it has density zero. As in the previous
section, the setM(`) is closed under least common multiples, but not under
multiplication by N. Applying (3.8), we get

(9.1) MS(N) =
∞∑
e=0

1

`e

∑
2≤n≤N

ord`(n)=e

|2n − 1|Se
n

+ C18 + O(2−
√
N ),

where Se is the finite set of primes dividing 2`
e − 1. (This set was denoted

by S`e in (3.8).) Noting that ` /∈ S, we observe that, for any e ≥ 0, n ∈ N
such that ord`(n) = e, and prime p dividing 2`

e − 1, by (3.1) we have

ordp(2
n − 1) = ordp(2

`e − 1) + ordp(n).

Since every prime divisor of 2`
e − 1 lies in Se, we deduce that

|2n − 1|Se =
|n|Se

2`e − 1
.
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Thus the sum in (9.1) becomes

(9.2)

∞∑
e=0

1

`e(2`e − 1)

∑
2≤n≤N/`e

`-n

|n|Se
n

.

Now, by [3, Proposition 5.2, Lemma 5.1], we have

(9.3)
∑

2≤n≤N
`-n

|n|Se
n

=

(
1− 1

`

)
ke logN + Oe(1),

where ke =
∏
p∈Se p/(p+ 1). Here we need to control the error terms uni-

formly in e. For this, we use the following lemma, which we will prove at
the end of the section.

Lemma 18. For S′ any finite set of primes put

k′S′ =
∏
p∈S′

p

p+ 1
and fS′(N) =

∑
n≤N

|n|S′
n
− k′S′ logN.

By [3, Proposition 5.2], there exists AS′ > 4 such that |fS′(N)| ≤ AS′ for
all N > 1.

Now fix S′, let p ∈ P \ S′ and put S′′ = S′ ∪ {p}. Then |fS′′(N)| ≤ 2AS′
for all N > 1.

In particular the Oe(1) error in (9.3) is O(2|Se|), with an implied constant
independent of e, and 2|Se| ≤

∏
p∈Se p ≤ 2`

e−1. Thus the error in each term

of the outside sum in (9.2) is O(1/`e) and the sum of these errors converges.
Thus (9.1) and (9.2) give

MS(N) ∼ kS logN,

with

kS =
∞∑
e=0

`− 1

`e+1(2`e − 1)

∏
p∈Se

p

p+ 1
.

Now the partial sums give infinitely many rational approximations a/b of kS
with error O(b−`); thus, provided ` ≥ 3, we deduce that kS is transcendental
by Roth’s theorem.

It only remains to prove Lemma 18.

Proof of Lemma 18. We have

∑
n≤N

|n|S′′
n

=

blogN/log pc∑
r=0

1

p2r

∑
n≤N/pr
p-n

|n|S′
n
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and ∑
n≤N
p-n

|n|S′
n

=

(
1− 1

p

)
k′S′ logN −

k′S′ log p

p
+ fS′(N)− 1

p
fS′(N/p).

Putting these together, we get

fS′′(N) =
k′S′(p− 1)

p

∑
r>blogN/log pc

1

p2r
logN −

k′S′(p− 1) log p

p

blogN/log pc∑
r=0

r

p2r

−
k′S′ log p

p

blogN/log pc∑
r=0

1

p2r
+

blogN/log pc∑
r=0

1

p2r

(
fS′(N/p

r)− 1

p
fS′(N/p

r+1)

)
.

Using 0 < k′S′ ≤ 1, p ≥ 3 and N ≥ 2, we show that the first three terms are
absolutely bounded by

pk′S′

(p+ 1) logN
<

1

log 2
,

pk′S′

(p+ 1)(p2 − 1)
<

3

32
and

pk′S′ log p

(p2 − 1)
<

3 log 3

8

respectively, whose sum is bounded by 2. The final term is bounded in
absolute value by p

p−1AS′ <
3
2AS′ and the result follows from the assumption

that AS′ > 4.

Remark 19. In fact [3, Proposition 5.2] says that fS′(N) = C ′S′ +
O(N−1) so a finer analysis of the errors in (9.3) along the lines of Lemma 18
should allow one to get an asymptotic expression for MS(N) with an error
term.

10. Existence of suitable sets of primes. It remains to prove Propo-
sition 11.

Proof of Proposition 11. Let δ ∈ (0, 1]. We seek first a set of primes L
such that ∑

`≤x
l∈L

log `

`
= δ log x+ O(1).

For rational δ, such a set exists from Dirichlet’s theorem on primes in arith-
metic progression (see [1, Theorem 7.3]); thus L would be a set of primes
defined by congruence conditions and δ would in fact be the natural density
of L. For arbitrary δ a more delicate construction is needed. Let S be the
set of primes in the union of intervals⋃

n∈N
(2n, 2n+δ].
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Now the prime number theorem implies that

πP(x) := |{p ≤ x : p ∈ P}| = x

log x
+

x

(log x)2
+ 2

x

(log x)3
+ O

(
x

(log x)4

)
and applying partial summation gives∑

2n<p≤2n+δ

log p

p
= δ log 2 + O

(
1

n2

)
.

Summing over n gives the required asymptotic.
For L′ ⊆ L, write Σ(L′) =

∑
p∈L′ (log p)/p. Taking logarithms, the state-

ment now sought is that any a > 0 can be written as

a =
∑
p∈L′

log

(
1 +

1

p

)
,

Σ(L′) <∞.


The basic idea is to use the greedy algorithm but on a subset of L which is
forced to be sparse enough to ensure the convergence of Σ(L′).

Let

(10.1) L′ := P ∩
( ⋃
X<m<Y

(2m, 2m+δ] ∪ (2Y+δ/4, 2Y+δ] ∪
∞⋃
n=1

(2Rn , 2Rnrn ]
)
,

where

Rn := [2n/2Y ].

Here we assume that X,Y ∈ N and rn ∈ R are parameters satisfying

3 ≤ X < Y

and

1 < rn < 1 +
δ

Rn

for all n ≥ 1, so that the union on the right-hand side of (10.1) is disjoint
and L′ ⊆ L. The construction involves choosing the parameters X, Y and rn
appropriately. More precisely, we show that, provided X is large enough,
there are choices of Y and rn such that the corresponding set L′ has the
required properties.

We first derive asymptotic estimates for the sums of log(1 + 1/p) over
2m < p ≤ 2m+δ, 2Y < p ≤ 2Y+δ/4 and 2Rn < p ≤ 2Rnrn . We have∑

2m<p≤2m+δ

log

(
1 +

1

p

)
=

∑
2m<p≤2m+δ

(
1

p
+ O

(
1

p2

))
(10.2)

=
∑

2m<p≤2m+δ

1

p
+ O(2−m).
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Using the prime number theorem with error term in the well-known form
(see for example [22, Part II, §4.1, Theorem 1])

π(x) =

x�

2

dt

log t
+ O(x exp(−C19

√
log x)),

C19 being a suitable positive constant, and partial summation and integra-
tion, we deduce that

(10.3)
∑

2m<p≤2m+δ

1

p
=

1

2m+δ

( ∑
2m<p≤2m+δ

1
)

+

2m+δ�

2m

1

t2

( ∑
2m<p≤t

1
)
dt

=
1

2m+δ

2m+δ�

2m

dt

log t
+

2m+δ�

2m

1

t2

t�

2m

dy

log y
dt+ O(exp(−C20m

1/2))

=

2m+δ�

2m

dt

t log t
+ O(exp(−C20m

1/2))

= log log 2m+δ − log log 2m + O(exp(−C20m
1/2))

= log

(
1 +

δ

m

)
+ O(exp(−C20m

1/2)),

for a suitable positive constant C20. Combining (10.2) and (10.3), we obtain

(10.4)
∑

2m<p≤2m+δ

log

(
1 +

1

p

)
= log

(
1 +

δ

m

)
+ O(exp(−C20m

1/2)).

Similarly, we derive

(10.5)
∑

2Y <p≤2Y+δ/4

log

(
1 +

1

p

)
= log

(
1 +

1

4

δ

Y

)
+ O(exp(−C20Y

1/2))

and

bn :=
∑

2Rn<p≤2Rnrn

log

(
1 +

1

p

)
= log rn + O(exp(−C20R

1/2
n ))(10.6)

= log rn + O(exp(−C202n/4Y 1/2)).

Now assume that X is large enough so that∑
2m<p≤2m+δ

log

(
1 +

1

p

)
< a

for all m > X. Let Y be the unique natural number satisfying∑
X<m≤Y

∑
2m<p≤2m+δ

log

(
1 +

1

p

)
< a ≤

∑
X<m≤Y+1

∑
2m<p≤2m+δ

log

(
1 +

1

p

)
.
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Set

a′ := a−
( ∑
X<m<Y

∑
2m<p≤2m+δ

log

(
1 +

1

p

)
+

∑
2Y+δ/4<p≤2Y+δ

log

(
1 +

1

p

))
.

Using (10.4) and (10.5), we have

1

5

δ

Y
< log

(
1 +

1

4

δ

Y

)
+ O(exp(−C20Y

1/2))(10.7)

=
∑

2Y <p≤2Y+δ/4

log

(
1 +

1

p

)

< a′ ≤
∑

2Y <p≤2Y+δ/4

log

(
1 +

1

p

)
+

∑
2Y+1<p≤2Y+1+δ

log

(
1 +

1

p

)

= log

(
1 +

1

4

δ

Y

)
+ log

(
1 +

δ

Y + 1

)
+ O(exp(−C20Y

1/2))

<
5

4

δ

Y
+ O(exp(−C20Y

1/2)) <
4

3
log

(
1 +

δ

Y

)
,

provided Y is sufficiently large (which is the case if X is sufficiently large).
Now write

r1 = exp(a′/2)

and then define

rn = exp

(
a′ − (b1 + · · ·+ bn−1)

2

)
for all n ≥ 2, where bj is defined as in (10.6).

We wish to show by induction that, if X (and hence Y ) is chosen large
enough, then the following three properties hold for every n ≥ 1:

1 < rn < 1 +
δ

Rn
,(10.8)

a′
(

1− 1

2n
− f(n)

)
< b1 + · · ·+ bn < a′

(
1− 1

2n
+ f(n)

)
(10.9)

and

(10.10)
∑

2Rn<p≤2Rnrn

log p

p
� 2−n/2,

where

f(n) =
n∑
j=1

100−2j/42j−n.

Notice that

(10.11) f(n) < 2−(n+2)
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for all n ≥ 1, since
∞∑
j=1

100−2j/42j <
1

4
.

Thus (10.7)–(10.10) together give the result.
If Y is large enough then, using (10.7), we have

1 < r1 = exp(a′/2) <

(
1 +

δ

Y

)2/3

< 1 +
7

10

δ

Y
< 1 +

δ

[21/2Y ]
= 1 +

δ

R1
,

and hence the bounds (10.8) hold for n = 1. Turning to (10.9), notice that,
since r1 = exp(a′/2), we have

b1 = a′/2 + O(exp(−C2021/4Y 1/2))

by (10.6), so (10.9) holds for n = 1 if Y is large enough. Moreover, (10.10)
holds trivially for n = 1.

We assume now that X has been chosen large enough such that (10.7)
holds, (10.9) holds for n = 1, and

(10.12) a′ exp(C20Y
1/2) >

1

5

δ

Y
exp(C20Y

1/2) > 100 if Y > X.

In particular, the base step of the induction holds. Now assume that (10.8)–
(10.10) hold for some n = k − 1, with k ≥ 2. By (10.9) for n = k − 1, we
have

(10.13) a′
(

1

2k
− f(k − 1)

2

)
< log rk < a′

(
1

2k
+
f(k − 1)

2

)
.

Using (10.7), (10.11) and (10.13), we deduce that

1 < rk < exp

(
5

4

a′

2k

)
<

(
1 +

δ

Y

)(5/3)·2−k

< 1 +
7

4

1

2k
δ

Y

< 1 +
δ[

2k/2Y
] = 1 +

δ

Rk
,

and hence (10.8) holds for n = k. Using (10.6), (10.11), (10.13) and the
definition of Rk, we have∑

2Rk<p≤2Rkrk

log p

p
� log 2Rkrk

∑
2Rk < p≤2Rkrk

1

p

� Rk
∑

2Rk<p≤2Rkrk

log

(
1 +

1

p

)
� 2−k/2.

It follows that (10.10) holds for n = k. Moreover, by (10.6) and the definition
of rk, we have

b1 + · · ·+ bk =
a′ + b1 + · · ·+ bk−1

2
+ O(exp(−C202k/4Y 1/2)),
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and so

(10.14)
a′ + b1 + · · ·+ bk−1

2
− a′ · 100−2k/4 < b1 + · · ·+ bk

<
a′ + b1 + · · ·+ bk−1

2
+ a′ · 100−2k/4 ,

using (10.12). From (10.9) for n = k − 1 and (10.14), we deduce that

a′
(

1− 1

2k
− f(k − 1)

2
− 100−2k/4

)
< b1 + · · ·+ bk

< a′
(

1− 1

2k
+
f(k − 1)

2
+ 100−2k/4

)
.

This is equivalent to (10.9) for n = k, since

f(k) = f(k − 1)/2 + 100−2k/4 ,

completing the induction.
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