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1. Introduction. Let α be a non-zero algebraic integer of degree d
over Q. Put K = Q(α) and let OK denote the ring of algebraic integers
of K. Let E(α) be the number of positive integers n for which αn − 1 is a
unit in OK . If α− 1 is not a unit define E0(α) to be 0 and otherwise define
E0(α) to be the largest integer n such that αj − 1 is a unit for 1 ≤ j ≤ n.
Next put ζn = e2πi/n for each positive integer n and denote by Φn(x) the
nth cyclotomic polynomial in x, so

(1) Φn(x) =
n∏
j=1

(j,n)=1

(x− ζjn).

Then

(2) xn − 1 =
∏
m|n

Φm(x).

We define U(α) to be the number of positive integers n for which Φn(α) is
a unit.

We proved in [16], following an approach introduced by Schinzel [14] in
his study of primitive divisors of expressions of the form An − Bn with A
and B algebraic integers, that Φn(α) is not a unit for n larger than e452d 67

provided that α is not a root of unity. In 1995 Silverman [15] proved that
there is an effectively computable positive number c such that if α is an
algebraic unit of degree d ≥ 2 that is not a root of unity then

(3) U(α) ≤ cd1+0.7/log log d.
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Note that

(4) E0(α) ≤ E(α) ≤ U(α),

and by (2) and [16], αn − 1 is not a unit for n larger than e452d67. A con-
struction of Mossinghoff, Pinner and Vaaler [12] shows that there are α, not
roots of unity, of arbitrarily large degree for which

(5) E0(α) ≥ π
√
d

3
+O(log d).

In this article we shall strengthen the upper bound for integers n for which
Φn(α) is a unit and the upper bound for E0(α) given from (3) and (4). For
any β in Q(α) we denote the norm of β from Q(α) to Q by NQ(α)/Qβ.

Theorem 1. Let ε be a positive real number. There is a positive number
c = c(ε), which is effectively computable in terms of ε, such that if α is a
non-zero algebraic integer of degree d over the rationals which is not a root
of unity and n is a positive integer for which

(6) |NQ(α)/QΦn(α)| ≤ nd

then
n < cd3+(log 2+ε)/log log(d+2).

We now turn our attention to the number of integers n for which (6)
holds. We shall modify Silverman’s proof of (3) in order to establish the
following result.

Theorem 2. Let k be a positive integer. There is a positive number
c0 = c0(k), which is effectively computable in terms of k, such that if α is a
non-zero algebraic integer of degree d over the rationals which is not a root
of unity then the number of positive integers n with at most k distinct prime
factors for which

(7) |NQ(α)/QΦn(α)| ≤ nd

is at most
c0d(log(d+ 1))3(log log(d+ 2))k−4.

If αn− 1 is a unit then so is Φn(α) and as a consequence |NQ(α)/QΦn(α)|
= 1. We may then deduce from the proof of Theorem 2 our next result.

Corollary 1. There is an effectively computable positive number c1
such that if α is a non-zero algebraic integer of degree d over the rationals
then

E0(α) ≤ c1d(log(d+ 1))4/(log log(d+ 2))3.

By definition αj − 1 is a unit for 1 ≤ j ≤ E0(α) and if α is a unit then,
for 1 ≤ j < k ≤ E0(α),

(αk − 1)− (αj − 1) = αj(αk−j − 1),
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which is a unit of OK . Therefore if α is a unit then

(8) E0(α) + 2 ≤ L(K),

where L(K) denotes the Lenstra constant of K. Recall that

L(K) = sup{m | there exist w1, . . . , wm in OK
such that wi − wj is a unit for 1 ≤ i < j ≤ m}.

Thus we may take w1, . . . , wm to be 0, 1, α, α2, . . . , αE0(α) respectively and
(8) follows. Lenstra [11] has shown that if L(K) is large enough with respect
to the discriminant of K and an associated packing constant then OK is
Euclidean with respect to the norm map.

2. Cyclic and cyclotomic resultants. For any pair of polynomials
f and g from C[x], let Res(f, g) denote the resultant of f and g. For a
non-constant polynomial f and for each positive integer n define the nth
cyclic resultant of f, denoted Rn(f), by

Rn(f) = Res(f, xn − 1).

If f factors as f(x) = ad(x− α1) · · · (x− αd) over C then

(9) Rn(f) = and

d∏
i=1

(αni − 1).

The arithmetic character of the numbers Rn(f) for f ∈ Z[x] has been in-
vestigated by Pierce [13] and Lehmer [10] (see also [9]). Further, Fried [5]
studied the question of whether the sequence (R1(f), R2(f), . . . ) character-
izes f. He proved, in the case when f is reciprocal with real coefficients,
ad is positive and f has no roots which are roots of unity, that the sequence
determines f. Hillar [7], and later Bézivin [2, 3], studied the general case
and characterized polynomials f and g in C[x] which generate the same
sequence of non-zero cyclic resultants. Hillar and Levine [8] proved that a
generic monic polynomial f is determined by its first 2d+1 cyclic resultants
and conjectured that the first d+ 1 cyclic resultants suffice to determine f.
Lehmer [10], in the case where f has integer coefficients, proved that the
sequence (R1(f), R2(f), . . . ) satisfies a linear recurrence of order at most 2d.

As a consequence of the proof of Theorem 2 we deduce the following.

Corollary 2. There exists an effectively computable positive number
c2 such that if f is a non-constant monic polynomial with integer coefficients
of degree d, different from xd, with f(1) 6= 0 and

(10) |R1(f)| = · · · = |Rk(f)|
then

(11) k < c2d(log(d+ 1))4/(log log(d+ 2))3.
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Let f be a non-constant polynomial with coefficients in C. For each
positive integer n define the nth cyclotomic resultant of f, denoted Cn(f),
by

Cn(f) = Res(f, Φn(x)).

If f factors as f(x) = ad(x− α1) · · · (x− αd) over C then

(12) Cn(f) = a
ϕ(n)
d

d∏
i=1

Φn(αi),

where ϕ(n) denotes Euler’s ϕ-function. Thus, by (2),

(13) Rn(f) =
∏
m|n

Cm(f).

It follows, therefore, that if (10) holds and f(1) 6=0, or equivalently C1(f) 6=0,
then

(14) |C2(f)| = |C3(f)| = · · · = |Ck(f)| = 1.

Of course if (14) holds then (10) follows from (13) and we deduce (11) once
again.

3. Preliminary lemmas. Let α be an algebraic number of degree d
over the rationals and let

f(x) = adx
d + · · ·+ a1x+ a0

be the minimal polynomial of α over the rationals. Suppose that f factors
over C as

f(x) = ad

d∏
i=1

(x− αi).

The Mahler measure, M(α) of α, is defined by

M(α) = |ad|
d∏
i=1

max(1, |αi|).

Lemma 1. Let α be a non-zero algebraic integer of degree d and let ε
be a positive real number. There is a positive number d0 = d0(ε), which is
effectively computable in terms of ε, such that if d exceeds d0 and

M(α) ≤ 1 + (1− ε)
(

log log d

log d

)3

,

then α is a root of unity.

Proof. This is Theorem 1 of Dobrowolski [4].

The Mahler measure is a height function and we may state our next
result in terms of it. Let α1 and α2 be algebraic numbers different from 0
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and 1 and let logα1, logα2 denote the principal values of the logarithms of
α1 and α2 respectively. Let b1 and b2 be integers, not both zero, of absolute
value at most B with B ≥ 3. Put

Λ = b1 logα1 + b2 logα2 and d = [Q(α1, α2) : Q].

Lemma 2. There exists an effectively computable positive number c such
that if Λ 6= 0 then

|Λ| > exp(−cd2 log(d+ 1) log(2M(α1)) log(2M(α2)) logB).

Proof. This follows from the main theorem of Baker and Wüstholz [1].

We shall use Lemma 2 in the proof of our next result.

Lemma 3. Let α be a non-zero algebraic integer of degree d over the
rationals which is not a root of unity. Let n be a positive integer. There
exists an effectively computable positive number c such that

(15) log 2 + n log(max(|α|, 1) ≥ log |αn − 1|
≥ n log(max(|α|, 1))− cd2 log(d+ 1) log(2M(α)) log 3n.

Proof. Note that

log |αn − 1| = n log |α|+ log |α−n − 1|,
and so the left hand inequality of (15) follows directly. For any complex
number z, either 1/2 < |ez − 1| or

1
2 |z − ikπ| ≤ |e

z − 1|
for some integer k. Put z = n log(α) where the logarithm takes its principal
value and put

Λ = n log(α)− ikπ
where k is chosen to minimize |Λ|.Observe that k is at most 2n, log(−1) = iπ
and that

Λ = n log(α)− k log(−1)

is non-zero since α is not a root of unity. Thus, by Lemma 2,

|Λ| > exp(−cd2 log(d+ 1) log 3n log(2M(α))),

and (15) now follows.

4. Proof of Theorem 1. Let ε be a positive real number and let
c1, c2, . . . be positive numbers which are effectively computable in terms
of ε. Let α = α1, . . . , αd be the conjugates of α over Q. The inequality

Res(f(x), Φn(x)) =
∏
m|n

Res(f(x), xn − 1)µ(n/m)
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implies

log |NQ(α)/QΦn(α)| =
d∑
i=1

∑
m|n

µ

(
n

m

)
log |αmi − 1|,

and by Lemma 3 this is bounded below by

ϕ(n) logM(α)− q(n)c1d
3 log(d+ 1) log(2M(α)) log 3n,

where q(n) = 2ω(n) denotes the number of squarefree divisors of n. If n is a
positive integer for which (6) holds then

d log n+ q(n)c1d
3 log(d+ 1) log(2M(α)) log 3n > ϕ(n) logM(α).

But, by Lemma 1, logM(α) > c2/(log(d+ 1))3 say, so

log(2M(α)) < c3 log(M(α))(log(d+ 1))3.

It then follows that

q(n)c4d
3(log(d+ 1))4 log(M(α)) log 3n > ϕ(n) logM(α),

hence

(16) ϕ(n)/(q(n) log 3n) < c4d
3(log(d+ 1))4.

By Theorem 328 of [6],

ϕ(n) > c5n/log log 3n,

and by the prime number theorem, for n > c6,

q(n) < 2(1+ε) logn/log logn.

Thus, by (16),

n < c7d
3+(log 2+ε)/log log(d+2)

as required.

5. Further preliminaries. We shall require an estimate for the nth
cyclotomic polynomial on the unit disc in terms of its roots due to Silver-
man [15].

Lemma 4. If α is a complex number of absolute value at most 1 which
is not a root of unity and n is a positive integer then

|Φn(α)| ≥ (118n)−(3/2)q(n) min
1≤j≤n
(j,n)=1

|α− ζjn|.

Proof. This is Proposition 3.3 of [15] provided that one notes that the
proof of that proposition remains valid if we replace σ0(m), the number of
divisors of m, by q(m), the number of squarefree divisors of m.

Lemma 5. Let α be a non-zero algebraic integer of degree d over the
rationals which is not a root of unity and let k be a positive integer. There
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is a positive number c(k), which is effectively computable in terms of k, such
that there are at most d integers n for which (7) holds with n larger than

c(k)d(log(d+ 1))4/(log log(d+ 2))3

and composed of at most k distinct prime factors.

Proof. Let c1, c2, . . . denote positive numbers which are effectively com-
putable in terms of k. Suppose that n is at least 2. Let α = α1, . . . , αd be
the conjugates of α and define β1, . . . , βd by

βi =

{
αi if |αi| ≤ 1,

α−1i if |αi| > 1.

Then

(17) |NQ(α)/QΦn(α)| = M(α)ϕ(n)
d∏
i=1

|Φn(βi)|.

By Lemma 4,

(18)
d∏
i=1

|Φn(βi)| ≥ n−c1d
(

min
1≤i≤d

min
1≤j≤n
(j,n)=1

|βi − ζjn|
)d
.

Thus, by (7), (17) and (18),

(19) min
1≤i≤d

min
1≤j≤n
(j,n)=1

|βi − ζjn| ≤ nc2M(α)−ϕ(n)/d.

But since n has at most k distinct prime factors, we find that ϕ(n) > c3n,
and so, by Lemma 1,

(20) M(α)−ϕ(n)/d < e
−c4nd−1(

log log(d+2)
log(d+1)

)3
.

Thus, by (19) and (20),

(21) min
1≤i≤d

min
1≤j≤n
(j,n)=1

|βi − ζjn| < e
c2 logn−c5nd−1(

log log(d+2)
log(d+1)

)3
.

Therefore for

(22) n > c6d(log(d+ 1))4/(log log(d+ 2))3

we find that

(23) min
1≤i≤d

min
1≤j≤n
(j,n)=1

|βi − ζjn| < (d+ 1)−c7 .

Suppose now that there are d+ 1 integers n satisfying (7) and (22) with
at most k distinct prime factors. Then two of the integers, n1 and n2 say,
take the minimum over i in (23) at the same integer i0. In particular there
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are integers j1 and j2 with 1 ≤ j1 ≤ n1, (j1, n1) = 1 and 1 ≤ j2 ≤ n2,
(j2, n2) = 1 such that

|βi0 − ζj1n1
| < (d+ 1)−c7 and |βi0 − ζj2n2

| < (d+ 1)−c7 .

Therefore

(24) |ζj1n1
− ζj2n2

| ≤ |βi0 − ζj1n1
|+ |βi0 − ζj2n2

| < 2(d+ 1)−c7 .

On the other hand

|ζj1n1
− ζj2n2

| = |e2πi(j1n2−j2n1)/n1n2 − 1|,
and since j1n2 − j2n1 is non-zero,

(25) |ζj1n − ζj2n2
| ≥ |e2πi/n1n2 − 1| ≥ 1/n1n2.

Now, by (24) and (25),
2n1n2 > (d+ 1)c7 ,

and if we suppose that n1 < n2 we see that

(26) n2 > ((d+ 1)c7/2)1/2.

On the other hand, by Theorem 1 with ε = 1/4,

n2 < c8(d+ 1)4

and this is incompatible with (26) provided c7 is sufficiently large. Note that
we can ensure that c7 is as large as required by choosing c6 appropriately.
The result now follows.

6. Proof of Theorem 2. By Lemma 5 there are at most d integers n,
composed of at most k prime factors, for which (7) holds with n larger than
c(k)d log(d+1)4/(log log(d+2))3. Our result now follows from estimates for
the number of integers up to a given bound having at most k prime factors,
see Theorem 437 of [6].

7. Proof of Corollary 1. Let c1, c2, . . . denote positive effectively com-
putable numbers.

On taking k = 1 in Lemma 5 we see that provided that α is a non-zero
algebraic integer of degree d which is not a root of unity, there are at most
d terms Φp(α) which are units for p a prime greater than c(1)d(log(d+1))4/
(log log(d + 2))3. Thus there is, by the prime number theorem, a prime p1
with

p1 < c2d(log(d+ 1))4/(log log(d+ 2))3

for which Φp1(α) is not a unit, hence for which αp1 − 1 is not a unit. Fur-
thermore, if α is a root of unity of degree d then αn − 1 is zero for some
positive integer n with

n < c3d log log(d+ 2)
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since for any positive integer m,

ϕ(m) > c4m/log log(m+ 2).

The result now follows.

8. Proof of Corollary 2. As we remarked in §2, if (10) holds and
f(1) 6= 0 then (14) holds. Since f is different from xd there is a non-zero
root α of f . Let f1 be the irreducible polynomial of α over Q. Then

1 = |C2(f1)| = |C3(f1)| = · · · = |Ck(f1)|.
Our result follows from Lemma 5 as in the proof of Corollary 1.

9. Computations for small degrees. Let

(27) f(x) = xd + ad−1x
d−1 + · · ·+ a0

with a0, a1, . . . , ad−1 integers. For d small we shall determine the polynomials
f, different from xd, with

(28) 1 = |R1(f)| = · · · = |Rk(f)|
and k as large as possible. By (13) this is equivalent to finding f so that

(29) 1 = |C1(f)| = · · · = |Ck(f)|
with k as large as possible. Observe that if α is a non-zero algebraic integer
of degree d then E0(α) ≤ k.

In addition to (12) we have

Cn(f) =
n∏
j=1

(j,n)=1

f(ζjn),

or equivalently

Cn(f) =
n∏
j=1

(j,n)=1

(ζjdn + ad−1ζ
j(d−1) + · · ·+ a0).

Let εn be from {1,−1} and put

gn,εn [y0, . . . , yd−1] =
( n∏

j=1
(j,n)=1

(ζjdn + yd−1ζ
j(d−1) + · · ·+ y0)

)
− εn.

Note that gn,εn is a polynomial with integer coefficients.
Let Vn(εn) be the affine variety over C defined by

Vn(εn) = {(t0, . . . , td−1) ∈ Cd | gn,εn(t0, . . . , td−1) = 0}.
There is a monic polynomial f with integer coefficients satisfying (29) and
different from xd provided that for some sequence (ε1, . . . , εk) with εi in
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{1,−1} for i = 1, . . . , k there is an integer point (a0, . . . , ad−1), different
from (0, 0, . . . , 0), on the variety

(30) V1(ε1) ∩ · · · ∩ Vk(εk).
We have used Groebner basis techniques to study varieties of the form

(30) for small degrees d. In particular, we call on the program Basis in the
Groebner package in the symbolic computation system Maple. By taking k
to be d and considering each possible sequence (ε1, . . . , εd) in turn we are
able to find all polynomials f of degree d satisfying (28) and (29) for k = d
and d = 1, . . . , 6. On calling on Basis in reverse lexicographic order we find,
as the first term in the Groebner basis, a polynomial in t0 which we then
test for integer roots. Once t0 is determined we then proceed to t1, . . . , td−1.
In this manner we have found that the largest integer k for which (28) holds
is d for d = 1, . . . , 6 and that for d = 7 we have k = 6. We give below the
complete list of polynomials of degree d, different from xd, for which (28)
holds with k = d and d = 1, . . . , 6:

d f(x) d f(x)

1 x− 2 4 x4 + x3 − 1

x4 − x− 1

2 x2 + x− 1 5 x5 + x4 + x3 − x− 1

x2 − x− 1 x5 + x4 − x2 − x− 1

x2 − 2

3 x3 + x2 − 1 6 x6 + x4 − 1

x3 − x− 1 x6 − x2 − 1

For none of these polynomials does (28) hold with k = d+ 1.
For d = 7 there are no monic polynomials with integer coefficients, dif-

ferent from x7, for which (28) holds with k = 7. Note that x(x6+x4−1) and
x(x6 − x2 − 1) are monic polynomials of degree 7 with integer coefficients,
different from x7, for which (28) holds with k = 6. However there are no
polynomials f of degree 7 as in (27) with |a0| = 1 for which (28) holds with
k = 6. By contrast there are exactly two polynomials f as in (27) of degree
8 with |a0| = 1 for which (28) holds with k = 7, and they are

x8 + x7 + x6 + x5 − x2 − x− 1 and x8 + x7 + x6 − x3 − x2 − x− 1.

The computations for the results in this paragraph required 38.7 CPU days
and they were done on the cluster Gamay at the University of Waterloo and
supported by a CFI/OIT grant. I would like to thank Kevin G. Hare for
providing access to this cluster and for helping me to adapt my computer
program to this setting.
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For any positive integer d let us define e(d) by

e(d) = max{E0(α) | α an algebraic integer of degree d}.

Our results show that

e(d) = d for d = 1, . . . , 6

and that

e(7) < 7 and e(8) ≥ 7.

We suspect that e(d) < d for d ≥ 7.
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