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1. Introduction. Let P (x) =
∑d

i=0 aix
i = a0

∏d
i=0(x − αi) be a poly-

nomial in C[x]. Its length is defined by L(P ) =
∑d

i=0 |ai|, its height by
H(P ) = max{|ai| : 0 ≤ i ≤ d}, and (for a0 6= 0) its Mahler’s measure by

M(P ) = |a0|
d∏
i=0

max{1, |αi|} = exp
( 1�

0

log |P (e(θ)| dθ
)
,

where e(θ) = e2πiθ. The last equality follows from the well known Jensen for-
mula. For a polynomial P ∈ C[x1, . . . , xn] in several variables the length and
height are defined in the same way, while its Mahler’s measure is defined by

(1.1) M(P ) = exp
( �

[0,1]n

log |P (e(θ1), . . . , e(θn))| dθ
)
.

Several authors, e.g., [D, Sch08, Sch07a, Sch07b], studied the so called
reduced length of a polynomial. For a polynomial P it is defined by

l(P ) = inf L(PG),

where G runs through all monic polynomials in C[x]. In [Sch08], A. Schinzel
stated one of the unresolved questions relating to reduced length as:

Does the inequality L(P ) ≥ 2M(P ) hold for every polynomial P ∈ C[x]
that has a zero on the unit circle?

In the cited paper Schinzel proved this inequality for several particular
cases and showed that in the general case L(P ) ≥

√
2M(P ). The purpose of

this paper is to prove that in the general case we have indeed L(P ) ≥ 2M(P ).
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2. Statement of the results. It is deceptively easy to establish the
inequality for polynomials up to fourth degree; not much more is required
than a skillful use of the triangle inequality. However, degree five appears to
be a stumbling block. Our main theorem is

Theorem 2.1. L(P ) ≥ 2M(P ) for every P ∈ C[x] that has a zero on
the unit circle.

D. Boyd conjectured [B] and W. Lawton proved [L] that Mahler’s mea-
sure of a polynomial in several variables is a limit of Mahler’s measures
of polynomials in one variable. Thus our theorem automatically generalizes
to polynomials in several variables. The only requirement is that a poly-
nomial in z = (z1, . . . , zn) has a zero on the n-dimensional torus Tn =
{(z1, . . . , zn) ∈ Cn : |zi| = 1, i = 1, . . . , n}.

Corollary 2.2. Suppose that P ∈ C[z], where z = (z1, . . . , zn), has a
zero on Tn. Then L(P ) ≥ 2M(P ).

In particular, our result is valid for linear forms La(z) = a1z1+· · ·+anzn.
Such forms have been extensively studied. For n = 3 an explicit formula
for Mahler’s measure of La was established by Maillot and Cassaigne [M].
In the general case the authors of [RTV] give an estimate of M(La) in
terms of the Euclidean norm of a. However these results do not seem to
be helpful in establishing our inequality. Corollary 2.2 immediately gives
L(La) ≥ 2M(La) if La has a zero on Tn. For n = 3 the last condition
means that the lengths |a1|, |a2| and |a3|, in the formula for La(z), can form
a triangle. For such forms Maillot and Cassaigne expressed M(La) in terms
of the Bloch–Wigner dilogarithm. Corollary 2.2 thus provides an interesting
bound on the dilogarithm. However, we will not investigate this point in this
paper.

3. Lemmas and proofs

Lemma 3.1. Let P ∈ C[x] with deg(P ) = d, and set P ∗(x) = εxdP (x−1)
or P ∗(x) = εxdP̄ (x−1), |ε| = 1. Then

L(P ) ≥ 2M(P ) ⇔ L(P ∗) ≥ 2M(P ∗).

Proof. This is obvious, since L(P ) = L(P ∗) and M(P ) = M(P ∗).

Lemma 3.2 (Schinzel, [Sch08, Lemma 1]). If P ∈ C[x] has a zero on the
unit circle then L(P ) ≥ 2H(P ).

The next lemma is crucial to the proof of the theorem.

Lemma 3.3. Let P (z) =
∑

j∈J ajz
d−j ∈ C[z], where |J | = k, be a polyno-

mial with exactly k ≥ 3 nonzero terms, such that P (0) 6= 0, P (1) = 0 and P
has no other zeros on the unit circle, P has at least one zero outside and at
least one zero inside the unit circle. Then either there exists a polynomial Q
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of degree d for which L(Q)/M(Q) < L(P )/M(P ), or there is an open inter-
val I containing 0 and a continuous trajectory I 3 t 7→ P[t] =

∑
j∈J aj(t)z

d−j

such that P[0] = P, M(P[t]) = M(P ), L(P[t]) = L(P ) for all t ∈ I, aj(t) 6= 0
for all j ∈ J and t ∈ I, and the modulus of the leading coefficient of P[t],
|a0(t)|, is strictly decreasing on I.

We leave the proof of this lemma to the last section.

3.1. Proof of Theorem 2.1. For a nonzero polynomial P define λ(P )
= L(P )/M(P ). Observe that the definitions of the length and Mahler’s mea-
sure of P immediately imply that λ(cP ) = λ(P ) for any nonzero constant c.
Thus, without loss of generality, we can assume that P is monic; later we
will relax that assumption when convenient. Further, λ(P (ux)) = λ(P (x))
for any complex u on the unit circle, hence we can also assume without loss
of generality that P (1) = 0, i.e., the zero of P on the unit circle is z = 1.
Let

Pd = {P ∈ C[z] : degP = d, P (1) = 0, P is monic},

and P =
⋃∞
d=1Pd. Further, let

λd = inf
P∈Pd

λ(P ) and λ0 = inf
P∈P

λ(P ).

Jensen’s formula for M(P ) implies that L(P ) ≥ M(P ) for any nonzero
polynomial. Hence λ(P ) ≥ 1. On the other hand λ(zd − 1) = 2, so λd ∈ [1, 2]
for all d ∈ N; the same holds for λ0. Clearly, λ0 = inf{λd : d ≥ 1}, hence the
conclusion of the theorem is equivalent to

(3.1) λd = 2 for all d ∈ N.

In order to prove this equality we proceed by induction on d. For d = 1,
Pd consists of a single polynomial z − 1, so λ1 = 2 trivially. Fix d > 1 and
suppose that λn = 2 for all n < d. A priori two cases are possible:

Case 1: The value of λd is not attained at any P ∈ Pd.

Case 2: The value of λd is attained at some P ∈ Pd.

Proof of (3.1) in Case 1. For a polynomial P (x) =
∑d

j=0 ajz
d−j , let

v(P ) = (a0, . . . , ad) denote the vector of its coefficients; conversely, for a
vector v let p(v) denote the corresponding polynomial, so that p(v(P )) = P.
By definition of λd, there is a sequence {Pm} of polynomials in Pd such
that limm→∞ λ(Pm) = λd. Further, M(P ) is a continuous function of the
coefficients of P (see [L]), and so is L(P ) and λ(P ). Since λd is not attained
and the set v(Pd) is closed in Cd+1, the sequence {Pm} cannot contain any
bounded subsequence. Hence

lim
m→∞

H(Pm) =∞.
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Let P̂m = Pm/H(Pm). We have

lim
m→∞

λ(P̂m) = lim
m→∞

λ(Pm) = λd.

The definition of P̂m implies that v({P̂m}) lies in the compact set
{(z0, . . . , zd) | |zj | ≤ 1, j = 0, . . . , d} ⊂ Cd+1. Therefore {P̂m} contains a

convergent subsequence. Let P̂0 be the limit of that subsequence. Then, by
continuity, H(P̂0) = 1 and P̂0(1) = 0. However, since Pm is monic, the
leading coefficient of P̂m is 1/H(Pm), and limm→∞H(Pm) = ∞; hence the
coefficient of zd in P̂0 must be 0. Hence deg(P̂0) < d and, by induction
hypothesis, λd = λ(P̂0) = 2.

Proof of (3.1) in Case 2. Suppose that λd = λ(P ) for some P ∈ Pd.

Write P as P (z) =
∑k

i=0 ciz
ni where ci, i = 0, . . . , k, are not zero, and

n0 > · · · > nk = 0. Let gcd(n0, . . . , nk) = m. If m 6= 1 then the conclusion
holds by induction hypothesis, since then P (z) = P1(z

m) for a polynomial
P1 of degree d/m with λ(P ) = λ(P1). Consequently, in what follows we
assume that m = 1.

Claim 3.1.1. P has no other zeros on the unit circle besides z = 1,
which is a zero of order 1.

Proof of Claim 3.1.1. Suppose first to the contrary that P has another
zero z0 6= 1 on the unit circle. The condition gcd(n0, . . . , nk) = 1 implies
that for some j 6= k, the binomial h(z) = znj−1 does not vanish at z0. Let θ0
be the argument of z0 and consider z = eiθ, θ ∈ R. Since h is continuous we
can choose δ > 0 and an open interval Iδ containing θ0 such that |h(z)| > δ
for θ in Iδ. Let ρ > 0 be a small real number to be determined later, and
let s = eiψ. Define Pρs(z) = P (z) + ρsh(z). Let λs = L(Pρs)/M(Pρs) and

λave = exp
(

1
2π

	2π
0 log |λs| dψ

)
. We have log λave = lρ(P )−mρ(P ), where

mρ(P ) =
1

2π

2π�

0

log |M(Pρs)| dψ and lρ(P ) =
1

2π

2π�

0

log |L(Pρs)| dψ.

Let P (z) = (z − z0)P1(z), κ = sup|z|=1 |P1(z)|, and Iρ = {θ : |θ − θ0| ≤
κ−1ρδ}. On Iρ we have

|P (eiθ)| = |(eiθ − eiθ0)P1(e
iθ)| ≤ |θ − θ0|κ ≤ ρδ,

while for sufficiently small ρ, Iρ ⊂ Iδ, so |ρh(eiθ)| > ρδ. Hence

mρ(P ) =
1

4π2

2π�

0

2π�

0

log |P (z) + ρsh(z)| dθ dψ

=
1

2π

2π�

0

max{log |P (z)|, log |ρh(z)|} dθ
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≥ 1

2π

2π�

0

log |P (z)| dθ +
1

2π

�

Iρ

(log |ρh(z)| − log |P (z)|) dθ

≥ m(P ) +
1

2π

�

Iρ

(log |ρδ| − log |(θ − θ0)κ|) dθ = m(P ) +
δ

πκ
ρ.

On the other hand

L(Pρs) = L(P ) + |cj + ρs| − |cj |+ |ck − ρs| − |ck|.
For l ∈ {j, k}, let cl = |cl|eiθl . Then

|cj + ρs| − |cj | =
√
|cj |2 + ρ2 + 2ρ<(c̄js)− |cj | = ρ cos(ψ − θj) +O(ρ2).

Similarly
|ck − ρs| − |ck| = −ρ cos(ψ − θk) +O(ρ2).

Hence

|L(Pρs)| = |L(P )|+ ρ cos(ψ − θj)− ρ cos(ψ − θk) +O(ρ2).

Consequently,

lρ(P ) =
1

2π

2π�

0

log |L(Pρs)| dψ = log |L(P )|+O(ρ2).

Thus, for sufficiently small ρ, log λave = lρ(P )−mρ(P ) < log λ(P ). Therefore
for some ρ > 0 and s on the unit circle, λ(Pρs) < λ(P ) = λd, contrary to
the choice of P.

Now suppose that P has a multiple zero at z = 1. In the notation
of the previous case consider again Pρs(z) = P (z) + ρsh(z). Then again
lρ(P ) = log |L(P )| + O(ρ2). However, in order to obtain a lower bound

for mρ(Pρs), we apply the previous argument to P̂ (z) = P (z)/(z − 1) and

ĥ(z) = h(z)/(z − 1) (both quotients are polynomials in C[z]), instead of P

and h. Then P̂ (1) = 0, M(P̂ +ρsĥ) = M(Pρs) and ĥ(1) 6= 0. Thus the same
argument can be applied in the case of z0 = 1, and we get the same estimate
mρ(Pρs) ≥ m(P )+ δ

πκρ, with κ = max|z|=1 |P (z)/(z−1)2| and δ determined

by ĥ. Again, this contradicts the choice of P.

Consequently, in what follows, we assume that P has exactly one zero,
z = 1, on the unit circle. Further, we can also assume that P has at least
one zero outside as well as at least one zero inside the unit circle. For if P
has no zeros inside the unit circle then by Lemma 3.2,

(3.2) L(P ) ≥ 2H(P ) ≥ 2|P (0)| = 2M(P ),

provided P (0) 6= 0. If P has no zeros outside the unit circle then P ∗ has
no zeros inside it and by Lemma 3.1 we are reduced to the previous case.
Finally, if P (0) = 0 the induction hypothesis applies to P (z)/z, so we also
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assume that P (0) 6= 0. The assumptions about P imply that it has at least
three nonzero terms. Thus P satisfies all the hypotheses of Lemma 3.3.

Suppose that deg(P ) = d. Let P̂d be the set of all polynomials of degree
d satisfying all hypotheses of that lemma. Further, let P̂d(P ) be the set
of all polynomials in P̂d that have the same length and Mahler’s measure
as P. Let A0 be the set of the absolute values of the leading coefficients of all
polynomials in P̂d(P ). By Lemma 3.3 for every polynomial in P̂d(P ) we can
always find another one in this set with a smaller leading coefficient. Hence
inf A0 /∈ A0. Since the length of each polynomial in P̂d(P ) equals L(P ),
this set is bounded and v(P̂d(P )) is contained in a compact subset of Cd+1.

Therefore inf A0 is attained at some point Q of the closure v(P̂d(P )). Clearly

Q ∈ v(P̂d(P )) \ v(P̂d(P )).

Let p(Q) be the corresponding polynomial. Since length and Mahler’s mea-
sure are continuous functions of the coefficients of a polynomial, we have
L(p(Q)) = L(P ) and M(p(Q)) = M(P ). Consequently, λ(p(Q)) = λd. Also,
by continuity, p(Q)(1) = 0. However, p(Q) /∈ P̂d(P ), hence it must violate
some of the properties of this set. Therefore, either deg p(Q) = d and p(Q)
has more than one zero on the unit circle or has no zeros outside or no zeros
inside the unit circle or P (0) = 0, or else deg p(Q) < d. Since λ(p(Q)) = λd
is minimal, the first possibility is ruled out by Claim 3.1.1. By (3.2), the next
two possibilities of the case deg(p(Q)) = d give λ(p(Q)) = λd = 2. Finally,
if p(Q)(0) = 0 then we can lower its degree by taking p(Q)(z)/z. Thus we
are reduced to the case deg(p(Q)) < d, and λd = 2 follows by induction
hypothesis.

Proof of Corollary 2.2. Suppose that z = (z1, . . . , zn) ∈ Tn is a zero
of P. Then P̂ (x) = P (xm1z1, . . . , x

mnzn) has a zero at x = 1. The conclusion
follows immediately from Theorem 2.1 and [L], with an appropriate choice
of varying exponents m1, . . . ,mn.

3.2. Proof of Lemma 3.3. Under the conditions of the lemma, P
factors as

P = PinP0Pout,

where

• P0(z) = z − 1,
• Pin is monic and has all zeros inside the unit circle, and deg(Pin) =
n1 ≥ 1,
• Pout has all zeros outside the unit circle and is not necessarily monic,

and deg(Pout) = n2 ≥ 1.
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Further, we have

(3.3) M(P ) = M(Pout) = |Pout(0)|.
We emphasize that this equality also holds when Pout is not monic.

Let g be any polynomial of degree no greater than n2 − 1. Consider
P̂out(z) = Pout(z) + εzg(z). For sufficiently small complex ε, deg P̂out =
degPout, and since Pout does not vanish on the unit circle, we have

|Pout(z)| > |εzg(z)| for |z| = 1.

By the Rouché theorem P̂out has no zeros inside the unit circle, and since it
has the same degree as Pout, all its zeros are outside the unit circle. Similarly,
for any polynomial h of degree not greater than n1− 1, and any sufficiently
small ε, P̂in(z) = Pin(z) + εh(z) is monic, has all its zeros inside the unit
circle, and does not vanish at 0. Let

Q(z) = (Pin(z) + εh(z))P0(z)(Pout(z) + εzg(z)).

The zeros of Q outside the unit circle coincide with the zeros of P̂out. Hence
M(Q) = M(P̂out). The definition of P̂out guarantees that P̂out(0) = Pout(0).
Hence, by (3.3),

M(Q) = M(P̂out) = |P̂out(0)| = |Pout(0)| = M(P ).

The construction of Q allows us to slightly modify P while preserving
its Mahler’s measure. We have

(3.4) Q = P + ε(zgPin + hPout)P0 + ε2zghP0.

We initially ignore the term of smaller magnitude, ε2zghP0, and examine
what kind of modification of P can be obtained from the term

(3.5) ε(zgPin + hPout)P0.

Claim 3.2.1. With suitable h and g, (3.5) is a nonzero polynomial with

(zgPin + hPout)P0 =
∑
j∈J

vjz
d−j .

Note. Recall that P (z) =
∑

j∈J ajz
d−j . Claim 3.2.1 asserts that we can

construct the polynomial (3.5) in a way that modifies only the nonzero
coefficients of P and does not create new terms.

Proof of Claim 3.2.1. Recall that deg(g) ≤ n2 − 1 and deg(h) ≤ n1 − 1.
Let

zg(z) =

n2∑
i=1

xiz
n2−i+1 and h(z) =

n1∑
i=1

xn2+iz
n1−i,(3.6)

Pout(z) =

n2∑
i=0

ciz
n2−i and Pin(z) =

n1∑
i=0

biz
n1−i.(3.7)
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Then

(3.8) v(zgPin + hPout) = MX,

where X = [x1, . . . , xn1+n2 ]T and M is an (n1+n2+1)×(n1+n2) = d×(d−1)
matrix whose columns consist of ‘shifted’ vectors v(Pin) and v(Pout) and
zeros. More precisely, the first n2 columns are

[b0 . . . bn1 0 . . . 0]T , [0 b0 . . . bn1 0 . . . 0]T , . . . , [0 . . . 0 b0 . . . bn1 0]T ,

while the remaining n1 are

[0 c0 . . . cn2 0 . . . 0]T , [0 0 c0 . . . cn2 0 . . . 0]T , [0 . . . 0 c0 . . . cn2 ]T .

We notice that MT is a submatrix of a d × d Sylvester matrix SzPin,Pout .
Recall that det(SzPin,Pout) = Res(zPin, Pout). Since zPin and Pout have no
common zero, rankSzPin,Pout = d; consequently, rankM = d− 1.

The required conditions on the polynomial (3.5) mean that it is a nonzero
polynomial with no nonzero terms of the form vjz

d−j for j /∈ J . In order to
verify that this can be achieved by suitable choice of h and g we let

V0 = {(y0, . . . , yd) ∈ Cd+1 : ∀j /∈J yj = 0}
U1 = {zgPin + hPout : g ∈ Pn2−1, h ∈ Pn1−1} ⊂ Pd−1,
U2 = P0U1 = {P0Q : Q ∈ U1} ⊂ Pd,

where Pn denotes the space of all complex polynomials of degree at most n.
Since |J | = k we have dimV0 = k, and by (3.6),

dimU2 = dimU1 = rankM = d− 1.

Put V1 = v(U1) and V2 = v(U2). We have

dim(V2 ∩ V0) ≥ d− 1 + k − (d+ 1) = k − 2.

Put Vm = V2 ∩ V0. Since k ≥ 3, dimVm ≥ 1. By (3.8) and (3.6) there are g
and h such that v((zgPin+hPout)P0) ∈ Vm. Let vm = v((zgPin+hPout)P0) =
(v0, . . . , vd). Then vj = 0 for j /∈ J, and

p(v((zgPin + hPout)P0)) =
∑
j∈J

vjz
d−j ,

which proves the claim.

Now fix h and g satisfying Claim 3.2.1. By (3.4) we have

(3.9) L(Q) = L
(∑
j∈J

(aj + εvj)z
d−j
)

+O(ε2).

Write ε = tu, where t is a positive real number and |u| = 1. Suppose
that d

dtL(Q)|t=0 6= 0 for some u on the unit circle. Then by choosing an
appropriate sufficiently small t we can make L(Q) < L(P ), while still having
M(Q) = M(P ) and degQ = degP. Then L(Q)/M(Q) < L(P )/M(P ) and
the first case of the conclusion of the lemma occurs. Otherwise, we have
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d
dtL(Q)|t=0 = 0 for any u on the unit circle and all vm ∈ Vm. This is
equivalent to

(3.10)
∑
j∈J

vj
āj
|aj |

= 0

for every vm ∈ Vm.

Claim 3.2.2. If (3.10) holds for a given P, then there are distinct non-
zero indices i, j ∈ J and unique polynomials h and g such that vm =
v((zgPin + hPout)P0) ∈ Vm has all components other than v0, vi, vj equal
to 0. Further, v0 = −a0, where a0 is the leading coefficient of P.

Proof of Claim 3.2.2. Let ε̄j = āj/|aj |, or equivalently aj = εj |aj |, for
j ∈ J. Define a vector ε ∈ Cd+1 by letting its jth component be εj if j ∈ J ,
and 0 otherwise. Similarly let 1 have components 1 for j ∈ J and zero
outside J. Then (3.10) and the definition of Vm imply that Vm is orthogonal
to both ε and 1. Further, the vectors ε and 1 are linearly independent, since
by definition of ε and the fact that P (1) = 0, we have 〈v(P ), ε〉 = L(P ) 6= 0,
while 〈v(P ),1〉 = 0, where the inner product is the usual hermitian product
on Cd+1. Recall that dimVm≥k−2, so in fact we must have dimVm = k−2,
and

V0 = Vm ⊕⊥ span{1, ε}.

Since 1 and ε are linearly independent, there is a pair of indices (i, j) ∈ J×J
for which the vectors (εi, εj) and (1, 1) are linearly independent. Further,
there is such a pair for which neither i or j is 0. Indeed, otherwise we would
have εi = εj for all nonzero i and j. Hence P (1) = ε0|a0|+ εi

∑
j∈J, j 6=0 |aj |

= 0, so |a0| =
∑

j∈J, j 6=0 |aj |. The last equality however implies that P has
no zeros outside the unit circle, contrary to our assumption. Therefore we
can fix a pair (i, j) such that (εi, εj) and (1, 1) are linearly independent, and
i, j 6= 0. The system

ε̄ivi + ε̄jvj = ε̄0a0vi + vj = a0

has a unique solution (vi, vj). Define a vector vm = (v0, . . . , vd) by letting
v0 = −a0, vi and vj be the solutions of the above system, and all other
components be 0. Thus vm ∈ Vm and this vector is uniquely determined by
P for the fixed pair (i, j). Hence, there are polynomials g and h as in (3.5)
such that v((zgPin + hPout)P0) = vm. By (3.8) we have

(3.11) p(vm) = (zgPin + hPout)P0 = p(MX)P0.

The polynomials g and h are in one-to-one correspondence with the vector
X through formula (3.6). Since a vector X satisfying (3.11) exists, we have
an explicit formula

(3.12) X = (MTM)−1v(p(vm)/P0).
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Note that the matrix MTM has size (d − 1) × (d − 1) and is invertible
because rankM = d − 1. Thus we have a uniquely determined sequence of
mappings

P 7→ ε 7→ vm 7→ X 7→ (h, g).

Formula (3.4) and the particular form of vm with sufficiently small real
positive ε allow us to decrease the magnitude of the leading coefficient of
P while preserving its Mahler’s measure. Unfortunately, in the process, the
term ε2zghP0 can create new nonzero coefficients and slightly increase the
length of P. Fortunately, we shall see that this can be avoided if we change
dynamically P and vm together in an appropriate way. We can achieve this
by creating a special system of differential equations whose solution gener-
ates a trajectory of polynomials P[t] satisfying the conclusion of the lemma.

For this consider the coefficients ci and bi in (3.7) as functions of an in-
dependent real variable t, except for b0 = 1 and cn2 which we will keep con-
stant. Form the vector function Y (t) = [c0(t) . . . cn2−1(t) b1(t) . . . bn1(t)]T

and consider the initial value problem

(3.13) Y ′ = (MTM)−1v(p(vm)/P0)), Y (0) = [c0 . . . cn2−1 b1 . . . bn1 ]T.

The vector Y (t) determines the polynomials

Pout[t](z) = cn2 +

n2−1∑
i=0

ci(t)z
n2−i and Pin[t](z) = zn1 +

n1∑
i=1

bi(t)z
n1−i

such that for P[t] = Pout[t]Pin[t]P0 we have P[0] = P. The matrix M = M(Y )
is determined by Y via Pout[t] and Pin[t] in the same way as the matrix M de-
scribed by the formulas following (3.8). Similarly, vm = vm(t) is determined
by P[t] in the same way as vm by P. Thus we have a sequence of mappings

Y (t) 7→ P[t] 7→ ε(Y (t)) 7→ vm(Y (t)),

and also
Y 7→M(Y ).

Let Y = <(Y ) + i=(Y ). The system (3.13) corresponds to a pair of
systems in real variables

<(Y ′) = <((MTM)−1v(p(vm/P0))), =(Y ′) = =((MTM)−1v(p(vm/P0))).

By examining the mappings listed above we conclude that the right-hand
side functions of these systems are rational functions of the components of
<(Y ) and of =(Y ), and of the absolute values of the coefficients of P[t], which
in turn are polynomial functions of the components of Y. The coefficients
of P[0] = P correspond to Y (0) and are not zero. Therefore the coefficients
of P[t] corresponding to Y are not zero for Y in some open ball containing
Y (0). Thus on a sufficiently small open ball containing (<(Y0),=(Y0)) the
right-hand sides of the systems are continuously differentiable functions of
the vector (<(Y ),=(Y )). Consequently, the initial value problem (3.13) has
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a unique solution in some open interval I containing 0. Further, by (3.6),
(3.12), and the definition of Y (t) we have

d

dt
Pout[t]

∣∣∣∣
t=0

= zg(z) and
d

dt
Pin[t]

∣∣∣∣
t=0

= h(z).

Thus
d

dt
P[t] =

(
Pin[t]

d

dt
Pout[t] + Pout[t]

d

dt
Pin[t]

)
P0.

Hence
d

dt
P[t]

∣∣∣∣
t=0

= (Pinzg(z) + Pouth(z))P0.

Notice that this modification of P corresponds to (3.4), but we have
managed to eliminate the remainder term with ε2. Further, the vectors vm(t)
and ε(t) determined by P[t] are orthogonal for t ∈ I. Thus condition (3.10)

is satisfied and d
dtL(P[t]) = 0. Hence

L(P[t]) = L(P ), M(P[t]) = M(P ), aj(t) 6= 0 for j ∈ J
for sufficiently small t. Moreover v( ddtP[t]) = vm(t) and the first component
of vm(t) is v0 = −a0(t), where a0(t) is the leading coefficient of P[t]. Hence
d
dta0(t) = −a0(t), so that |a0(t)| = |a0|e−t is decreasing.

References

[B] D. W. Boyd, Speculations concerning the range of Mahler’s measure, Canad.
Math. Bull. 24 (1981), 453–469.

[D] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. Lon-
don Math. Soc. 38 (2006), 70–80.

[L] W. M. Lawton, A problem of Boyd concerning geometric means of polynomials,
J. Number Theory 16 (1983), 365–362.
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