On a question of Schinzel about the length and Mahler's measure of polynomials that have a zero on the unit circle

by
Edward Dobrowolski (Prince George)

Dedicated to Professor Andrzej Schinzel on the occasion of his 75th birthday

1. Introduction. Let $P(x)=\sum_{i=0}^{d} a_{i} x^{i}=a_{0} \prod_{i=0}^{d}\left(x-\alpha_{i}\right)$ be a polynomial in $\mathbb{C}[x]$. Its length is defined by $L(P)=\sum_{i=0}^{d}\left|a_{i}\right|$, its height by $H(P)=\max \left\{\left|a_{i}\right|: 0 \leq i \leq d\right\}$, and (for $a_{0} \neq 0$) its Mahler's measure by

$$
M(P)=\left|a_{0}\right| \prod_{i=0}^{d} \max \left\{1,\left|\alpha_{i}\right|\right\}=\exp \left(\int_{0}^{1} \log \mid P(e(\theta) \mid d \theta),\right.
$$

where $e(\theta)=e^{2 \pi i \theta}$. The last equality follows from the well known Jensen formula. For a polynomial $P \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ in several variables the length and height are defined in the same way, while its Mahler's measure is defined by

$$
\begin{equation*}
M(P)=\exp \left(\int_{[0,1]^{n}} \log \left|P\left(e\left(\theta_{1}\right), \ldots, e\left(\theta_{n}\right)\right)\right| d \theta\right) . \tag{1.1}
\end{equation*}
$$

Several authors, e.g., D, Sch08, Sch07a, Sch07b, studied the so called reduced length of a polynomial. For a polynomial P it is defined by

$$
l(P)=\inf L(P G)
$$

where G runs through all monic polynomials in $\mathbb{C}[x]$. In [Sch08], A. Schinzel stated one of the unresolved questions relating to reduced length as:

Does the inequality $L(P) \geq 2 M(P)$ hold for every polynomial $P \in \mathbb{C}[x]$ that has a zero on the unit circle?

In the cited paper Schinzel proved this inequality for several particular cases and showed that in the general case $L(P) \geq \sqrt{2} M(P)$. The purpose of this paper is to prove that in the general case we have indeed $L(P) \geq 2 M(P)$.

[^0]2. Statement of the results. It is deceptively easy to establish the inequality for polynomials up to fourth degree; not much more is required than a skillful use of the triangle inequality. However, degree five appears to be a stumbling block. Our main theorem is

Theorem 2.1. $L(P) \geq 2 M(P)$ for every $P \in \mathbb{C}[x]$ that has a zero on the unit circle.
D. Boyd conjectured B and W. Lawton proved L that Mahler's measure of a polynomial in several variables is a limit of Mahler's measures of polynomials in one variable. Thus our theorem automatically generalizes to polynomials in several variables. The only requirement is that a polynomial in $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$ has a zero on the n-dimensional torus $\mathbb{T}^{n}=$ $\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{i}\right|=1, i=1, \ldots, n\right\}$.

Corollary 2.2. Suppose that $P \in \mathbb{C}[\mathbf{z}]$, where $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$, has a zero on \mathbb{T}^{n}. Then $L(P) \geq 2 M(P)$.

In particular, our result is valid for linear forms $\mathcal{L}_{\mathbf{a}}(\mathbf{z})=a_{1} z_{1}+\cdots+a_{n} z_{n}$. Such forms have been extensively studied. For $n=3$ an explicit formula for Mahler's measure of \mathcal{L}_{a} was established by Maillot and Cassaigne [M]. In the general case the authors of [RTV] give an estimate of $M\left(\mathcal{L}_{\mathbf{a}}\right)$ in terms of the Euclidean norm of a. However these results do not seem to be helpful in establishing our inequality. Corollary 2.2 immediately gives $L\left(\mathcal{L}_{\mathbf{a}}\right) \geq 2 M\left(\mathcal{L}_{\mathbf{a}}\right)$ if $\mathcal{L}_{\mathbf{a}}$ has a zero on \mathbb{T}^{n}. For $n=3$ the last condition means that the lengths $\left|a_{1}\right|,\left|a_{2}\right|$ and $\left|a_{3}\right|$, in the formula for $\mathcal{L}_{\mathbf{a}}(\mathbf{z})$, can form a triangle. For such forms Maillot and Cassaigne expressed $M\left(\mathcal{L}_{\mathbf{a}}\right)$ in terms of the Bloch-Wigner dilogarithm. Corollary 2.2 thus provides an interesting bound on the dilogarithm. However, we will not investigate this point in this paper.

3. Lemmas and proofs

Lemma 3.1. Let $P \in \mathbb{C}[x]$ with $\operatorname{deg}(P)=d$, and set $P^{*}(x)=\epsilon x^{d} P\left(x^{-1}\right)$ or $P^{*}(x)=\epsilon x^{d} \bar{P}\left(x^{-1}\right),|\epsilon|=1$. Then

$$
L(P) \geq 2 M(P) \Leftrightarrow L\left(P^{*}\right) \geq 2 M\left(P^{*}\right)
$$

Proof. This is obvious, since $L(P)=L\left(P^{*}\right)$ and $M(P)=M\left(P^{*}\right)$.
Lemma 3.2 (Schinzel, [Sch08, Lemma 1]). If $P \in \mathbb{C}[x]$ has a zero on the unit circle then $L(P) \geq 2 H(P)$.

The next lemma is crucial to the proof of the theorem.
Lemma 3.3. Let $P(z)=\sum_{j \in J} a_{j} z^{d-j} \in \mathbb{C}[z]$, where $|J|=k$, be a polynomial with exactly $k \geq 3$ nonzero terms, such that $P(0) \neq 0, P(1)=0$ and P has no other zeros on the unit circle, P has at least one zero outside and at least one zero inside the unit circle. Then either there exists a polynomial Q
of degree d for which $L(Q) / M(Q)<L(P) / M(P)$, or there is an open interval I containing 0 and a continuous trajectory $I \ni t \mapsto P_{[t]}=\sum_{j \in J} a_{j}(t) z^{d-j}$ such that $P_{[0]}=P, M\left(P_{[t]}\right)=M(P), L\left(P_{[t]}\right)=L(P)$ for all $t \in I, a_{j}(t) \neq 0$ for all $j \in J$ and $t \in I$, and the modulus of the leading coefficient of $P_{[t]}$, $\left|a_{0}(t)\right|$, is strictly decreasing on I.

We leave the proof of this lemma to the last section.
3.1. Proof of Theorem 2.1. For a nonzero polynomial P define $\lambda(P)$ $=L(P) / M(P)$. Observe that the definitions of the length and Mahler's measure of P immediately imply that $\lambda(c P)=\lambda(P)$ for any nonzero constant c. Thus, without loss of generality, we can assume that P is monic; later we will relax that assumption when convenient. Further, $\lambda(P(u x))=\lambda(P(x))$ for any complex u on the unit circle, hence we can also assume without loss of generality that $P(1)=0$, i.e., the zero of P on the unit circle is $z=1$. Let

$$
\mathfrak{P}_{d}=\{P \in \mathbb{C}[z]: \operatorname{deg} P=d, P(1)=0, P \text { is monic }\}
$$

and $\mathfrak{P}=\bigcup_{d=1}^{\infty} \mathfrak{P}_{d}$. Further, let

$$
\lambda_{d}=\inf _{P \in \mathfrak{P}_{d}} \lambda(P) \quad \text { and } \quad \lambda_{0}=\inf _{P \in \mathfrak{P}} \lambda(P)
$$

Jensen's formula for $M(P)$ implies that $L(P) \geq M(P)$ for any nonzero polynomial. Hence $\lambda(P) \geq 1$. On the other hand $\lambda\left(z^{d}-1\right)=2$, so $\lambda_{d} \in[1,2]$ for all $d \in \mathbb{N}$; the same holds for λ_{0}. Clearly, $\lambda_{0}=\inf \left\{\lambda_{d}: d \geq 1\right\}$, hence the conclusion of the theorem is equivalent to

$$
\begin{equation*}
\lambda_{d}=2 \quad \text { for all } d \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

In order to prove this equality we proceed by induction on d. For $d=1$, \mathfrak{P}_{d} consists of a single polynomial $z-1$, so $\lambda_{1}=2$ trivially. Fix $d>1$ and suppose that $\lambda_{n}=2$ for all $n<d$. A priori two cases are possible:

Case 1: The value of λ_{d} is not attained at any $P \in \mathfrak{P}_{d}$.
Case 2: The value of λ_{d} is attained at some $P \in \mathfrak{P}_{d}$.
Proof of (3.1) in Case 1. For a polynomial $P(x)=\sum_{j=0}^{d} a_{j} z^{d-j}$, let $v(P)=\left(a_{0}, \ldots, a_{d}\right)$ denote the vector of its coefficients; conversely, for a vector v let $p(v)$ denote the corresponding polynomial, so that $p(v(P))=P$. By definition of λ_{d}, there is a sequence $\left\{P_{m}\right\}$ of polynomials in \mathfrak{P}_{d} such that $\lim _{m \rightarrow \infty} \lambda\left(P_{m}\right)=\lambda_{d}$. Further, $M(P)$ is a continuous function of the coefficients of P (see [L]), and so is $L(P)$ and $\lambda(P)$. Since λ_{d} is not attained and the set $v\left(\mathfrak{P}_{d}\right)$ is closed in \mathbb{C}^{d+1}, the sequence $\left\{P_{m}\right\}$ cannot contain any bounded subsequence. Hence

$$
\lim _{m \rightarrow \infty} H\left(P_{m}\right)=\infty
$$

Let $\hat{P}_{m}=P_{m} / H\left(P_{m}\right)$. We have

$$
\lim _{m \rightarrow \infty} \lambda\left(\hat{P}_{m}\right)=\lim _{m \rightarrow \infty} \lambda\left(P_{m}\right)=\lambda_{d}
$$

The definition of \hat{P}_{m} implies that $v\left(\left\{\hat{P}_{m}\right\}\right)$ lies in the compact set $\left\{\left(z_{0}, \ldots, z_{d}\right)\left|\left|z_{j}\right| \leq 1, j=0, \ldots, d\right\} \subset \mathbb{C}^{d+1}\right.$. Therefore $\left\{\hat{P}_{m}\right\}$ contains a convergent subsequence. Let \hat{P}_{0} be the limit of that subsequence. Then, by continuity, $H\left(\hat{P}_{0}\right)=1$ and $\hat{P}_{0}(1)=0$. However, since P_{m} is monic, the leading coefficient of \hat{P}_{m} is $1 / H\left(P_{m}\right)$, and $\lim _{m \rightarrow \infty} H\left(P_{m}\right)=\infty$; hence the coefficient of z^{d} in \hat{P}_{0} must be 0 . Hence $\operatorname{deg}\left(\hat{P}_{0}\right)<d$ and, by induction hypothesis, $\lambda_{d}=\lambda\left(\hat{P}_{0}\right)=2$.

Proof of (3.1) in Case 2. Suppose that $\lambda_{d}=\lambda(P)$ for some $P \in \mathfrak{P}_{d}$. Write P as $P(z)=\sum_{i=0}^{k} c_{i} z^{n_{i}}$ where $c_{i}, i=0, \ldots, k$, are not zero, and $n_{0}>\cdots>n_{k}=0$. Let $\operatorname{gcd}\left(n_{0}, \ldots, n_{k}\right)=m$. If $m \neq 1$ then the conclusion holds by induction hypothesis, since then $P(z)=P_{1}\left(z^{m}\right)$ for a polynomial P_{1} of degree d / m with $\lambda(P)=\lambda\left(P_{1}\right)$. Consequently, in what follows we assume that $m=1$.

Claim 3.1.1. P has no other zeros on the unit circle besides $z=1$, which is a zero of order 1 .

Proof of Claim 3.1.1. Suppose first to the contrary that P has another zero $z_{0} \neq 1$ on the unit circle. The condition $\operatorname{gcd}\left(n_{0}, \ldots, n_{k}\right)=1$ implies that for some $j \neq k$, the binomial $h(z)=z^{n_{j}}-1$ does not vanish at z_{0}. Let θ_{0} be the argument of z_{0} and consider $z=e^{i \theta}, \theta \in \mathbb{R}$. Since h is continuous we can choose $\delta>0$ and an open interval I_{δ} containing θ_{0} such that $|h(z)|>\delta$ for θ in I_{δ}. Let $\rho>0$ be a small real number to be determined later, and let $s=e^{i \psi}$. Define $P_{\rho s}(z)=P(z)+\rho s h(z)$. Let $\lambda_{s}=L\left(P_{\rho s}\right) / M\left(P_{\rho s}\right)$ and $\lambda_{\text {ave }}=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\lambda_{s}\right| d \psi\right)$. We have $\log \lambda_{\text {ave }}=l_{\rho}(P)-m_{\rho}(P)$, where

$$
m_{\rho}(P)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|M\left(P_{\rho s}\right)\right| d \psi \quad \text { and } \quad l_{\rho}(P)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|L\left(P_{\rho s}\right)\right| d \psi
$$

Let $P(z)=\left(z-z_{0}\right) P_{1}(z), \kappa=\sup _{|z|=1}\left|P_{1}(z)\right|$, and $I_{\rho}=\left\{\theta:\left|\theta-\theta_{0}\right| \leq\right.$ $\left.\kappa^{-1} \rho \delta\right\}$. On I_{ρ} we have

$$
\left|P\left(e^{i \theta}\right)\right|=\left|\left(e^{i \theta}-e^{i \theta_{0}}\right) P_{1}\left(e^{i \theta}\right)\right| \leq\left|\theta-\theta_{0}\right| \kappa \leq \rho \delta
$$

while for sufficiently small $\rho, I_{\rho} \subset I_{\delta}$, so $\left|\rho h\left(e^{i \theta}\right)\right|>\rho \delta$. Hence

$$
\begin{aligned}
m_{\rho}(P) & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \log |P(z)+\rho s h(z)| d \theta d \psi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \max \{\log |P(z)|, \log |\rho h(z)|\} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log |P(z)| d \theta+\frac{1}{2 \pi} \int_{I_{\rho}}(\log |\rho h(z)|-\log |P(z)|) d \theta \\
& \geq m(P)+\frac{1}{2 \pi} \int_{I_{\rho}}\left(\log |\rho \delta|-\log \left|\left(\theta-\theta_{0}\right) \kappa\right|\right) d \theta=m(P)+\frac{\delta}{\pi \kappa} \rho .
\end{aligned}
$$

On the other hand

$$
L\left(P_{\rho s}\right)=L(P)+\left|c_{j}+\rho s\right|-\left|c_{j}\right|+\left|c_{k}-\rho s\right|-\left|c_{k}\right| .
$$

For $l \in\{j, k\}$, let $c_{l}=\left|c_{l}\right| e^{i \theta_{l}}$. Then

$$
\left|c_{j}+\rho s\right|-\left|c_{j}\right|=\sqrt{\left|c_{j}\right|^{2}+\rho^{2}+2 \rho \Re\left(\bar{c}_{j} s\right)}-\left|c_{j}\right|=\rho \cos \left(\psi-\theta_{j}\right)+\mathcal{O}\left(\rho^{2}\right)
$$

Similarly

$$
\left|c_{k}-\rho s\right|-\left|c_{k}\right|=-\rho \cos \left(\psi-\theta_{k}\right)+\mathcal{O}\left(\rho^{2}\right)
$$

Hence

$$
\left|L\left(P_{\rho s}\right)\right|=|L(P)|+\rho \cos \left(\psi-\theta_{j}\right)-\rho \cos \left(\psi-\theta_{k}\right)+\mathcal{O}\left(\rho^{2}\right)
$$

Consequently,

$$
l_{\rho}(P)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|L\left(P_{\rho s}\right)\right| d \psi=\log |L(P)|+\mathcal{O}\left(\rho^{2}\right)
$$

Thus, for sufficiently small $\rho, \log \lambda_{\text {ave }}=l_{\rho}(P)-m_{\rho}(P)<\log \lambda(P)$. Therefore for some $\rho>0$ and s on the unit circle, $\lambda\left(P_{\rho s}\right)<\lambda(P)=\lambda_{d}$, contrary to the choice of P.

Now suppose that P has a multiple zero at $z=1$. In the notation of the previous case consider again $P_{\rho s}(z)=P(z)+\rho s h(z)$. Then again $l_{\rho}(P)=\log |L(P)|+\mathcal{O}\left(\rho^{2}\right)$. However, in order to obtain a lower bound for $m_{\rho}\left(P_{\rho s}\right)$, we apply the previous argument to $\hat{P}(z)=P(z) /(z-1)$ and $\hat{h}(z)=h(z) /(z-1)$ (both quotients are polynomials in $\mathbb{C}[z])$, instead of P and h. Then $\hat{P}(1)=0, M(\hat{P}+\rho s \hat{h})=M\left(P_{\rho s}\right)$ and $\hat{h}(1) \neq 0$. Thus the same argument can be applied in the case of $z_{0}=1$, and we get the same estimate $m_{\rho}\left(P_{\rho s}\right) \geq m(P)+\frac{\delta}{\pi \kappa} \rho$, with $\kappa=\max _{|z|=1}\left|P(z) /(z-1)^{2}\right|$ and δ determined by \hat{h}. Again, this contradicts the choice of P.

Consequently, in what follows, we assume that P has exactly one zero, $z=1$, on the unit circle. Further, we can also assume that P has at least one zero outside as well as at least one zero inside the unit circle. For if P has no zeros inside the unit circle then by Lemma 3.2,

$$
\begin{equation*}
L(P) \geq 2 H(P) \geq 2|P(0)|=2 M(P) \tag{3.2}
\end{equation*}
$$

provided $P(0) \neq 0$. If P has no zeros outside the unit circle then P^{*} has no zeros inside it and by Lemma 3.1 we are reduced to the previous case. Finally, if $P(0)=0$ the induction hypothesis applies to $P(z) / z$, so we also
assume that $P(0) \neq 0$. The assumptions about P imply that it has at least three nonzero terms. Thus P satisfies all the hypotheses of Lemma 3.3.

Suppose that $\operatorname{deg}(P)=d$. Let $\hat{\mathfrak{P}}_{d}$ be the set of all polynomials of degree d satisfying all hypotheses of that lemma. Further, let $\hat{\mathfrak{P}}_{d}(P)$ be the set of all polynomials in $\hat{\mathfrak{P}}_{d}$ that have the same length and Mahler's measure as P. Let \mathfrak{A}_{0} be the set of the absolute values of the leading coefficients of all polynomials in $\hat{\mathfrak{P}}_{d}(P)$. By Lemma 3.3 for every polynomial in $\hat{\mathfrak{P}}_{d}(P)$ we can always find another one in this set with a smaller leading coefficient. Hence $\inf \mathfrak{A}_{0} \notin \mathfrak{A}_{0}$. Since the length of each polynomial in $\hat{\mathfrak{P}}_{d}(P)$ equals $L(P)$, this set is bounded and $v\left(\hat{\mathfrak{P}}_{d}(P)\right)$ is contained in a compact subset of \mathbb{C}^{d+1}. Therefore inf \mathfrak{A}_{0} is attained at some point Q of the closure $\overline{v\left(\hat{\mathfrak{P}}_{d}(P)\right)}$. Clearly

$$
Q \in \overline{v\left(\hat{\mathfrak{P}}_{d}(P)\right)} \backslash v\left(\hat{\mathfrak{P}}_{d}(P)\right)
$$

Let $p(Q)$ be the corresponding polynomial. Since length and Mahler's measure are continuous functions of the coefficients of a polynomial, we have $L(p(Q))=L(P)$ and $M(p(Q))=M(P)$. Consequently, $\lambda(p(Q))=\lambda_{d}$. Also, by continuity, $p(Q)(1)=0$. However, $p(Q) \notin \hat{\mathfrak{P}}_{d}(P)$, hence it must violate some of the properties of this set. Therefore, either $\operatorname{deg} p(Q)=d$ and $p(Q)$ has more than one zero on the unit circle or has no zeros outside or no zeros inside the unit circle or $P(0)=0$, or else $\operatorname{deg} p(Q)<d$. Since $\lambda(p(Q))=\lambda_{d}$ is minimal, the first possibility is ruled out by Claim 3.1.1. By (3.2), the next two possibilities of the case $\operatorname{deg}(p(Q))=d$ give $\lambda(p(Q))=\lambda_{d}=2$. Finally, if $p(Q)(0)=0$ then we can lower its degree by taking $p(Q)(z) / z$. Thus we are reduced to the case $\operatorname{deg}(p(Q))<d$, and $\lambda_{d}=2$ follows by induction hypothesis.

Proof of Corollary 2.2. Suppose that $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{T}^{n}$ is a zero of P. Then $\hat{P}(x)=P\left(x^{m_{1}} z_{1}, \ldots, x^{m_{n}} z_{n}\right)$ has a zero at $x=1$. The conclusion follows immediately from Theorem 2.1 and $[\mathrm{L}$, with an appropriate choice of varying exponents m_{1}, \ldots, m_{n}.
3.2. Proof of Lemma 3.3. Under the conditions of the lemma, P factors as

$$
P=P_{\text {in }} P_{0} P_{\text {out }}
$$

where

- $P_{0}(z)=z-1$,
- $P_{\text {in }}$ is monic and has all zeros inside the unit circle, and $\operatorname{deg}\left(P_{\text {in }}\right)=$ $n_{1} \geq 1$
- $P_{\text {out }}$ has all zeros outside the unit circle and is not necessarily monic, and $\operatorname{deg}\left(P_{\text {out }}\right)=n_{2} \geq 1$.

Further, we have

$$
\begin{equation*}
M(P)=M\left(P_{\text {out }}\right)=\left|P_{\text {out }}(0)\right| \tag{3.3}
\end{equation*}
$$

We emphasize that this equality also holds when $P_{\text {out }}$ is not monic.
Let g be any polynomial of degree no greater than $n_{2}-1$. Consider $\hat{P}_{\text {out }}(z)=P_{\text {out }}(z)+\epsilon z g(z)$. For sufficiently small complex $\epsilon, \operatorname{deg} \hat{P}_{\text {out }}=$ $\operatorname{deg} P_{\text {out }}$, and since $P_{\text {out }}$ does not vanish on the unit circle, we have

$$
\left|P_{\text {out }}(z)\right|>|\epsilon z g(z)| \quad \text { for }|z|=1
$$

By the Rouché theorem $\hat{P}_{\text {out }}$ has no zeros inside the unit circle, and since it has the same degree as $P_{\text {out }}$, all its zeros are outside the unit circle. Similarly, for any polynomial h of degree not greater than $n_{1}-1$, and any sufficiently small $\epsilon, \hat{P}_{\text {in }}(z)=P_{\text {in }}(z)+\epsilon h(z)$ is monic, has all its zeros inside the unit circle, and does not vanish at 0 . Let

$$
Q(z)=\left(P_{\text {in }}(z)+\epsilon h(z)\right) P_{0}(z)\left(P_{\text {out }}(z)+\epsilon z g(z)\right)
$$

The zeros of Q outside the unit circle coincide with the zeros of $\hat{P}_{\text {out }}$. Hence $M(Q)=M\left(\hat{P}_{\text {out }}\right)$. The definition of $\hat{P}_{\text {out }}$ guarantees that $\hat{P}_{\text {out }}(0)=P_{\text {out }}(0)$. Hence, by (3.3),

$$
M(Q)=M\left(\hat{P}_{\text {out }}\right)=\left|\hat{P}_{\text {out }}(0)\right|=\left|P_{\text {out }}(0)\right|=M(P)
$$

The construction of Q allows us to slightly modify P while preserving its Mahler's measure. We have

$$
\begin{equation*}
Q=P+\epsilon\left(z g P_{\mathrm{in}}+h P_{\mathrm{out}}\right) P_{0}+\epsilon^{2} z g h P_{0} \tag{3.4}
\end{equation*}
$$

We initially ignore the term of smaller magnitude, $\epsilon^{2} z g h P_{0}$, and examine what kind of modification of P can be obtained from the term

$$
\begin{equation*}
\epsilon\left(z g P_{\text {in }}+h P_{\text {out }}\right) P_{0} \tag{3.5}
\end{equation*}
$$

Claim 3.2.1. With suitable h and g, 3.5 is a nonzero polynomial with

$$
\left(z g P_{\text {in }}+h P_{\text {out }}\right) P_{0}=\sum_{j \in J} v_{j} z^{d-j}
$$

Note. Recall that $P(z)=\sum_{j \in J} a_{j} z^{d-j}$. Claim 3.2.1 asserts that we can construct the polynomial (3.5) in a way that modifies only the nonzero coefficients of P and does not create new terms.

Proof of Claim 3.2.1. Recall that $\operatorname{deg}(g) \leq n_{2}-1$ and $\operatorname{deg}(h) \leq n_{1}-1$. Let

$$
\begin{gather*}
z g(z)=\sum_{i=1}^{n_{2}} x_{i} z^{n_{2}-i+1} \quad \text { and } \quad h(z)=\sum_{i=1}^{n_{1}} x_{n_{2}+i} z^{n_{1}-i} \tag{3.6}\\
P_{\text {out }}(z)=\sum_{i=0}^{n_{2}} c_{i} z^{n_{2}-i} \quad \text { and } \quad P_{\text {in }}(z)=\sum_{i=0}^{n_{1}} b_{i} z^{n_{1}-i} \tag{3.7}
\end{gather*}
$$

Then

$$
\begin{equation*}
v\left(z g P_{\text {in }}+h P_{\text {out }}\right)=M X, \tag{3.8}
\end{equation*}
$$

where $X=\left[x_{1}, \ldots, x_{n_{1}+n_{2}}\right]^{T}$ and M is an $\left(n_{1}+n_{2}+1\right) \times\left(n_{1}+n_{2}\right)=d \times(d-1)$ matrix whose columns consist of 'shifted' vectors $v\left(P_{\text {in }}\right)$ and $v\left(P_{\text {out }}\right)$ and zeros. More precisely, the first n_{2} columns are

$$
\left[\begin{array}{llllll}
b_{0} & \ldots & b_{n_{1}} & 0 & \ldots & 0
\end{array}\right]^{T},\left[\begin{array}{lllllll}
0 & b_{0} & \ldots & b_{n_{1}} & 0 & \ldots & 0
\end{array}\right]^{T}, \ldots,\left[\begin{array}{llllll}
0 & \ldots & 0 & b_{0} & \ldots & b_{n_{1}}
\end{array}\right]^{T},
$$

while the remaining n_{1} are

$$
\left[\begin{array}{llllllll}
0 & c_{0} & \ldots & c_{n_{2}} & 0 & \ldots & 0
\end{array}\right]^{T},\left[\begin{array}{lllllllll}
0 & 0 & c_{0} & \ldots & c_{n_{2}} & 0 & \ldots & 0
\end{array}\right]^{T},\left[\begin{array}{llllllllll}
0 & \ldots & 0 & c_{0} & \ldots & c_{n_{2}}
\end{array}\right]^{T} .
$$

We notice that M^{T} is a submatrix of a $d \times d$ Sylvester matrix $\mathbb{S}_{z P_{\text {in }}, P_{\text {out }}}$. Recall that $\operatorname{det}\left(\mathbb{S}_{z P_{\text {in }}, P_{\text {out }}}\right)=\operatorname{Res}\left(z P_{\text {in }}, P_{\text {out }}\right)$. Since $z P_{\text {in }}$ and $P_{\text {out }}$ have no common zero, rank $\mathbb{S}_{z P_{\text {in }}, P_{\text {out }}}=d$; consequently, rank $M=d-1$.

The required conditions on the polynomial (3.5) mean that it is a nonzero polynomial with no nonzero terms of the form $v_{j} z^{d-j}$ for $j \notin J$. In order to verify that this can be achieved by suitable choice of h and g we let

$$
\begin{aligned}
V_{0} & =\left\{\left(y_{0}, \ldots, y_{d}\right) \in \mathbb{C}^{d+1}: \forall_{j \notin J} y_{j}=0\right\} \\
U_{1} & =\left\{z g P_{\text {in }}+h P_{\text {out }}: g \in \mathbb{P}_{n_{2}-1}, h \in \mathbb{P}_{n_{1}-1}\right\} \subset \mathbb{P}_{d-1}, \\
U_{2} & =P_{0} U_{1}=\left\{P_{0} Q: Q \in U_{1}\right\} \subset \mathbb{P}_{d},
\end{aligned}
$$

where \mathbb{P}_{n} denotes the space of all complex polynomials of degree at most n. Since $|J|=k$ we have $\operatorname{dim} V_{0}=k$, and by (3.6),

$$
\operatorname{dim} U_{2}=\operatorname{dim} U_{1}=\operatorname{rank} M=d-1
$$

Put $V_{1}=v\left(U_{1}\right)$ and $V_{2}=v\left(U_{2}\right)$. We have

$$
\operatorname{dim}\left(V_{2} \cap V_{0}\right) \geq d-1+k-(d+1)=k-2 .
$$

Put $V_{m}=V_{2} \cap V_{0}$. Since $k \geq 3$, $\operatorname{dim} V_{m} \geq 1$. By (3.8) and (3.6) there are g and h such that $v\left(\left(z g P_{\text {in }}+h P_{\text {out }}\right) P_{0}\right) \in V_{m}$. Let $\mathbf{v}_{m}=v\left(\left(z g P_{\text {in }}+h P_{\text {out }}\right) P_{0}\right)=$ $\left(v_{0}, \ldots, v_{d}\right)$. Then $v_{j}=0$ for $j \notin J$, and

$$
p\left(v\left(\left(z g P_{\text {in }}+h P_{\text {out }}\right) P_{0}\right)\right)=\sum_{j \in J} v_{j} z^{d-j},
$$

which proves the claim.
Now fix h and g satisfying Claim 3.2.1. By (3.4) we have

$$
\begin{equation*}
L(Q)=L\left(\sum_{j \in J}\left(a_{j}+\epsilon v_{j}\right) z^{d-j}\right)+\mathcal{O}\left(\epsilon^{2}\right) . \tag{3.9}
\end{equation*}
$$

Write $\epsilon=t u$, where t is a positive real number and $|u|=1$. Suppose that $\left.\frac{d}{d t} L(Q)\right|_{t=0} \neq 0$ for some u on the unit circle. Then by choosing an appropriate sufficiently small t we can make $L(Q)<L(P)$, while still having $M(Q)=M(P)$ and $\operatorname{deg} Q=\operatorname{deg} P$. Then $L(Q) / M(Q)<L(P) / M(P)$ and the first case of the conclusion of the lemma occurs. Otherwise, we have
$\left.\frac{d}{d t} L(Q)\right|_{t=0}=0$ for any u on the unit circle and all $\mathbf{v}_{m} \in V_{m}$. This is equivalent to

$$
\begin{equation*}
\sum_{j \in J} v_{j} \frac{\bar{a}_{j}}{\left|a_{j}\right|}=0 \tag{3.10}
\end{equation*}
$$

for every $\mathbf{v}_{m} \in V_{m}$.
Claim 3.2.2. If (3.10) holds for a given P, then there are distinct nonzero indices $i, j \in J$ and unique polynomials h and g such that $\mathbf{v}_{m}=$ $v\left(\left(z g P_{\text {in }}+h P_{\text {out }}\right) P_{0}\right) \in V_{m}$ has all components other than v_{0}, v_{i}, v_{j} equal to 0 . Further, $v_{0}=-a_{0}$, where a_{0} is the leading coefficient of P.

Proof of Claim 3.2.2. Let $\bar{\varepsilon}_{j}=\bar{a}_{j} /\left|a_{j}\right|$, or equivalently $a_{j}=\varepsilon_{j}\left|a_{j}\right|$, for $j \in J$. Define a vector $\varepsilon \in \mathbb{C}^{d+1}$ by letting its j th component be ε_{j} if $j \in J$, and 0 otherwise. Similarly let $\mathbf{1}$ have components 1 for $j \in J$ and zero outside J. Then (3.10) and the definition of V_{m} imply that V_{m} is orthogonal to both ε and 1. Further, the vectors ε and $\mathbf{1}$ are linearly independent, since by definition of $\boldsymbol{\varepsilon}$ and the fact that $P(1)=0$, we have $\langle v(P), \varepsilon\rangle=L(P) \neq 0$, while $\langle v(P), \mathbf{1}\rangle=0$, where the inner product is the usual hermitian product on \mathbb{C}^{d+1}. Recall that $\operatorname{dim} V_{m} \geq k-2$, so in fact we must have $\operatorname{dim} V_{m}=k-2$, and

$$
V_{0}=V_{m} \oplus^{\perp} \operatorname{span}\{\mathbf{1}, \varepsilon\}
$$

Since 1 and ε are linearly independent, there is a pair of indices $(i, j) \in J \times J$ for which the vectors $\left(\varepsilon_{i}, \varepsilon_{j}\right)$ and $(1,1)$ are linearly independent. Further, there is such a pair for which neither i or j is 0 . Indeed, otherwise we would have $\varepsilon_{i}=\varepsilon_{j}$ for all nonzero i and j. Hence $P(1)=\varepsilon_{0}\left|a_{0}\right|+\varepsilon_{i} \sum_{j \in J, j \neq 0}\left|a_{j}\right|$ $=0$, so $\left|a_{0}\right|=\sum_{j \in J, j \neq 0}\left|a_{j}\right|$. The last equality however implies that P has no zeros outside the unit circle, contrary to our assumption. Therefore we can fix a pair (i, j) such that $\left(\varepsilon_{i}, \varepsilon_{j}\right)$ and $(1,1)$ are linearly independent, and $i, j \neq 0$. The system

$$
\bar{\varepsilon}_{i} v_{i}+\bar{\varepsilon}_{j} v_{j}=\bar{\varepsilon}_{0} a_{0} v_{i}+v_{j}=a_{0}
$$

has a unique solution $\left(v_{i}, v_{j}\right)$. Define a vector $\mathbf{v}_{m}=\left(v_{0}, \ldots, v_{d}\right)$ by letting $v_{0}=-a_{0}, v_{i}$ and v_{j} be the solutions of the above system, and all other components be 0 . Thus $\mathbf{v}_{m} \in V_{m}$ and this vector is uniquely determined by P for the fixed pair (i, j). Hence, there are polynomials g and h as in (3.5) such that $v\left(\left(z g P_{\text {in }}+h P_{\text {out }}\right) P_{0}\right)=\mathbf{v}_{m}$. By (3.8) we have

$$
\begin{equation*}
p\left(\mathbf{v}_{m}\right)=\left(z g P_{\mathrm{in}}+h P_{\mathrm{out}}\right) P_{0}=p(M X) P_{0} \tag{3.11}
\end{equation*}
$$

The polynomials g and h are in one-to-one correspondence with the vector X through formula (3.6). Since a vector X satisfying (3.11) exists, we have an explicit formula

$$
\begin{equation*}
X=\left(M^{T} M\right)^{-1} v\left(p\left(\mathbf{v}_{m}\right) / P_{0}\right) \tag{3.12}
\end{equation*}
$$

Note that the matrix $M^{T} M$ has size $(d-1) \times(d-1)$ and is invertible because $\operatorname{rank} M=d-1$. Thus we have a uniquely determined sequence of mappings

$$
P \mapsto \varepsilon \mapsto \mathbf{v}_{m} \mapsto X \mapsto(h, g)
$$

Formula (3.4) and the particular form of \mathbf{v}_{m} with sufficiently small real positive ϵ allow us to decrease the magnitude of the leading coefficient of P while preserving its Mahler's measure. Unfortunately, in the process, the term $\epsilon^{2} z g h P_{0}$ can create new nonzero coefficients and slightly increase the length of P. Fortunately, we shall see that this can be avoided if we change dynamically P and \mathbf{v}_{m} together in an appropriate way. We can achieve this by creating a special system of differential equations whose solution generates a trajectory of polynomials $P_{[t]}$ satisfying the conclusion of the lemma.

For this consider the coefficients c_{i} and b_{i} in (3.7) as functions of an independent real variable t, except for $b_{0}=1$ and $c_{n_{2}}$ which we will keep constant. Form the vector function $Y(t)=\left[c_{0}(t) \ldots c_{n_{2}-1}(t) b_{1}(t) \ldots b_{n_{1}}(t)\right]^{T}$ and consider the initial value problem

$$
\left.Y^{\prime}=\left(M^{T} M\right)^{-1} v\left(p\left(\mathbf{v}_{m}\right) / P_{0}\right)\right), \quad Y(0)=\left[\begin{array}{llllll}
c_{0} & \ldots & c_{n_{2}-1} & b_{1} & \ldots & b_{n_{1}} \tag{3.13}
\end{array}\right]^{T}
$$

The vector $Y(t)$ determines the polynomials

$$
P_{\mathrm{out}[t]}(z)=c_{n_{2}}+\sum_{i=0}^{n_{2}-1} c_{i}(t) z^{n_{2}-i} \quad \text { and } \quad P_{\mathrm{in}[t]}(z)=z^{n_{1}}+\sum_{i=1}^{n_{1}} b_{i}(t) z^{n_{1}-i}
$$

such that for $P_{[t]}=P_{\text {out }[t]} P_{\text {in }[t]} P_{0}$ we have $P_{[0]}=P$. The matrix $M=M(Y)$ is determined by Y via $P_{\text {out }[t]}$ and $P_{\text {in }[t]}$ in the same way as the matrix M described by the formulas following (3.8). Similarly, $\mathbf{v}_{m}=\mathbf{v}_{m}(t)$ is determined by $P_{[t]}$ in the same way as \mathbf{v}_{m} by P. Thus we have a sequence of mappings

$$
Y(t) \mapsto P_{[t]} \mapsto \varepsilon(Y(t)) \mapsto \mathbf{v}_{m}(Y(t))
$$

and also

$$
Y \mapsto M(Y)
$$

Let $Y=\Re(Y)+i \Im(Y)$. The system (3.13) corresponds to a pair of systems in real variables

$$
\Re\left(Y^{\prime}\right)=\Re\left(\left(M^{T} M\right)^{-1} v\left(p\left(\mathbf{v}_{m} / P_{0}\right)\right)\right), \quad \Im\left(Y^{\prime}\right)=\Im\left(\left(M^{T} M\right)^{-1} v\left(p\left(\mathbf{v}_{m} / P_{0}\right)\right)\right)
$$

By examining the mappings listed above we conclude that the right-hand side functions of these systems are rational functions of the components of $\Re(Y)$ and of $\Im(Y)$, and of the absolute values of the coefficients of $P_{[t]}$, which in turn are polynomial functions of the components of Y. The coefficients of $P_{[0]}=P$ correspond to $Y(0)$ and are not zero. Therefore the coefficients of $P_{[t]}$ corresponding to Y are not zero for Y in some open ball containing $Y(0)$. Thus on a sufficiently small open ball containing $\left(\Re\left(Y_{0}\right), \Im\left(Y_{0}\right)\right)$ the right-hand sides of the systems are continuously differentiable functions of the vector $(\Re(Y), \Im(Y))$. Consequently, the initial value problem 3.13) has
a unique solution in some open interval I containing 0 . Further, by (3.6), (3.12), and the definition of $Y(t)$ we have

$$
\left.\frac{d}{d t} P_{\text {out }[t]}\right|_{t=0}=z g(z) \quad \text { and }\left.\quad \frac{d}{d t} P_{\text {in }[t]}\right|_{t=0}=h(z)
$$

Thus

$$
\frac{d}{d t} P_{[t]}=\left(P_{\mathrm{in}[t]} \frac{d}{d t} P_{\mathrm{out}[t]}+P_{\mathrm{out}[t]} \frac{d}{d t} P_{\mathrm{in}[t]}\right) P_{0}
$$

Hence

$$
\left.\frac{d}{d t} P_{[t]}\right|_{t=0}=\left(P_{\text {in }} z g(z)+P_{\text {out }} h(z)\right) P_{0}
$$

Notice that this modification of P corresponds to (3.4), but we have managed to eliminate the remainder term with ϵ^{2}. Further, the vectors $\mathbf{v}_{m}(t)$ and $\varepsilon(t)$ determined by $P_{[t]}$ are orthogonal for $t \in I$. Thus condition (3.10) is satisfied and $\frac{d}{d t} L\left(P_{[t]}\right)=0$. Hence

$$
L\left(P_{[t]}\right)=L(P), \quad M\left(P_{[t]}\right)=M(P), \quad a_{j}(t) \neq 0 \text { for } j \in J
$$

for sufficiently small t. Moreover $v\left(\frac{d}{d t} P_{[t]}\right)=\mathbf{v}_{m}(t)$ and the first component of $\mathbf{v}_{m}(t)$ is $v_{0}=-a_{0}(t)$, where $a_{0}(t)$ is the leading coefficient of $P_{[t]}$. Hence $\frac{d}{d t} a_{0}(t)=-a_{0}(t)$, so that $\left|a_{0}(t)\right|=\left|a_{0}\right| e^{-t}$ is decreasing.

References

[B] D. W. Boyd, Speculations concerning the range of Mahler's measure, Canad. Math. Bull. 24 (1981), 453-469.
[D] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70-80.
[L] W. M. Lawton, A problem of Boyd concerning geometric means of polynomials, J. Number Theory 16 (1983), 365-362.
[M] V. Maillot, Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France (N.S.) 80 (2000) (vi +129 pp.), 107-109.
[RTV] F. Rodriguez-Villegas, R. Toledano and J. D. Vaaler, Estimates for Mahler's measure of a linear form, Proc. Edinburgh Math. Soc. 47 (2004), 473-494.
[Sch08] A. Schinzel, The reduced length of a polynomial with complex coefficients, Acta Arith. 133 (2008), 73-81.
[Sch07a] A. Schinzel, The reduced length of a polynomial with real coefficients, in: Selecta, Vol. 1, Eur. Math. Soc., Zürich, 2007, 658-691.
[Sch07b] A. Schinzel, The reduced length of a polynomial with real coefficients II, Funct. Approx. Comment. Math. 37 (2007), 445-459.

Edward Dobrowolski
Department of Mathematics and Satistics
University of Northern British Columbia
3333 University Way
Prince George, BC V2N 4Z9, Canada
E-mail: dobrowoe@unbc.ca

[^0]: 2010 Mathematics Subject Classification: Primary 12D99; Secondary 26C99. Key words and phrases: length, Mahler's measure.

