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1. Introduction. Since the projective surface with affine equations

(1.1) x2
4 − 2x2

3 + x2
2 = x2

3 − 2x2
2 + x2

1 = 2

is a Segre surface (a del Pezzo surface of degree 4), its Q-rational points
can be parametrized. O. Wittenberg showed us the following rational para-
metrization:

x1(s, t) =
2s2t2 − 2s2t− 5st2 + 8st− 6s+ 2t2 − 2t
s2t2 − 3st2 + 2st+ 2s+ 2t2 − 4t+ 2

,

x2(s, t) =
s2t2 − 2s2t− 2st2 + 8st− 4s− 2t+ 2
s2t2 − 3st2 + 2st+ 2s+ 2t2 − 4t+ 2

,

x3(s, t) =
2s2t+ st2 − 4st+ 2s− 2t2 + 6t− 4
s2t2 − 3st2 + 2st+ 2s+ 2t2 − 4t+ 2

,

x4(s, t) =
s2t2 + 2s2t− 4st2 + 4st+ 4t2 − 10t+ 6
s2t2 − 3st2 + 2st+ 2s+ 2t2 − 4t+ 2

,

which gives a birational equivalence of the surface with P2 through

s = −x2 + 2x3 + x4

x1 − 2x2 − x3
and t = −x1 − 2x2 − x3

1− x1 + x2
.

In this work we are interested in characterizing the set of integer points on
the affine surface with equations (1.1).

Let A be a commutative ring with unit and of characteristic 0. A sequence
(x1, . . . , x`) of elements of A is called a Büchi sequence over A if its second
difference is the constant sequence (2): for each i ∈ {1, . . . , `− 2} it satisfies

x2
i − 2x2

i+1 + x2
i+2 = 2.

A trivial Büchi sequence will be any sequence satisfying: there exists x ∈ A
such that x2

i = (x + i)2 for all i = 1, . . . , `. Büchi’s problem over A asks
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whether there exists an integer M such that no non-trivial Büchi sequence
of length at least M exists. If such an M exists, let us write M(A) for the
smallest one, and Mf(A) for the least M such that there are only finitely
many non-trivial Büchi sequences of length M . Hence, if one proves that
Mf(A) exists, then one obtains automatically a positive answer to Büchi’s
problem for some M ≥Mf(A).

Let X4 be the (affine) variety defined by (1.1) (Büchi equations). Having
Büchi’s problem in mind, we would like to characterize the set of integer
points on X4 (actually a cofinite subset of the set of integer points would be
enough). There exists extensive literature about rational surfaces, but there
seem to be few results about polynomial parametrizations over Z.

Büchi got interested in this problem (for A = Z) when he realized that
from a positive answer to it he would be able to prove that there is no
algorithm to decide whether or not an arbitrary system of quadratic diagonal
forms over Z can represent an arbitrary given vector of integers (which, if
true, would be one of the strongest forms of the negative answer to Hilbert’s
tenth problem—see [Mat] or [D], and [L]).

Büchi’s problem remains open for the integers, but P. Vojta [Vo] showed
thatMf(Q) would be 8 (actually H. Pasten noticed that the proof goes through
for any number field) if the Bombieri conjecture were true for surfaces. It is
striking that even though we cannot prove that Büchi’s problem has a positive
answer, no non-trivial Büchi sequence of length even just 5 over Z is known to
exist. Indeed Büchi conjectured thatM(Z) = 5. See [PPV] and [BB] for a sur-
vey of results related to Büchi’s problem, and Allison [A] and Bremner [B] for
the analogous problem where the constant 2 is changed to another constant.

Büchi sequences of length 3 are not difficult to characterize over Q, and
with some divisibility conditions one obtains a complete characterization of
sequences over Z—the non-trivial ones are infinitely many—see [H, Theorem
2.1] or [PPV, Section 7]. We also know a characterization over Z that does not
require any divisibility condition (i.e. without any reference toQ)—see [SaV].
Obtaining a “good” characterization for (a cofinite subset of the set of all)
length 4 sequences of integers could be a key step in solving Büchi’s problem:
proving that no sequences of length 4 (but finitely many) can be extended
to length 5 could then be quite easier, and would prove that Mf(Z) = 5.

This work presents an effort to characterize all but finitely many Büchi
sequences of length 4 over the integers. The idea comes from an unpub-
lished paper by D. Hensley [H] from the early eighties, where a polynomial
parametrization of degree 3 for length 4 integer sequences is described, and
from a paper by R. G. E. Pinch [Pi] of 1993 where he lists (finitely) many
length 4 non-trivial Büchi sequences and shows that none of them can be
extended to a length 5 sequence.
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In Section 2 we give an explicit birational map ζ on X4, of infinite order,
and we show in Section 3 that it preserves integrality on infinitely many
integer points. In order to state our main theorem, let us introduce some
notation.

Notation 1.1. Write

f(t) = 2t2 + 10t+ 10

and for all n ∈ Z,

ξ(n, t) = (ξ1(n, t), ξ2(n, t), ξ3(n, t), ξ4(n, t)),

where ξ is defined by induction on n by

(1.2) ξ(n+ 2, t) = f(t)ξ(n+ 1, t)− ξ(n, t),
with initial values

ξ(−1, t) = (t+4,−t−3,−t−2, t+1) and ξ(0, t) = (t+1, t+2, t+3, t+4).

Theorem 1.2. For each n, t ∈ Z, we have

1. ξ(n, t) = (ξ4(−n− 1, t),−ξ3(−n− 1, t),−ξ2(−n− 1, t), ξ1(−n− 1, t));
2. ξ(n, t) = (−ξ4(n,−t−5),−ξ3(n,−t−5),−ξ2(n,−t−5),−ξ1(n,−t−5));
3. ξ(n, t) is a 4-tuple of polynomials of degree |2n+ 1| in the variable t,

and with leading coefficient ±2n if n ≥ 0 and ±2−n−1 if n ≤ −1;
4. the sequence ξ(n, t) is a Büchi sequence;
5. the sequence ξ(n, t) is a trivial Büchi sequence if and only if n ∈
{−1, 0} or t ∈ {−4,−3,−2,−1}; and

6. we have
ζ(n)(t+ 1, t+ 2, t+ 3, t+ 4) = ξ(n, t)

where ζ(n) stands for the nth iterate of ζ when n is non-negative and
the (−n)th iterate of ζ−1 when n is negative.

Consequently, there are infinitely many non-trivial parametrizations of
Büchi sequences of length 4 over the integers. From items 1 and 2 of Theorem
1.2 we will deduce in Section 5 that both sequences (ξi(n, t))i (with n, t ≥ 0
fixed) and (ξi(n, t))n (with i fixed and t ≥ 0 fixed) are strictly increasing
sequences of natural numbers.

The parametrization

ξ(1, t) =
(2t3+12t2+19t+6, 2t3+14t2+31t+23, 2t3+16t2+41t+32, 2t3+18t2+49t+39)

is actually the one already appearing in Hensley’s paper [H], and as far as
we know, no other non-trivial polynomial parametrization has been known
to exist.

In Section 4, we present two more polynomial parametrizations over Z,
of degree 4, and one polynomial parametrization over Q, also of degree 4.
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Computationally, it seems that there are no other polynomial parametriza-
tions over the integers than the ones we have found, but we have not been
able to prove it.

Nor can we prove the following, which seems to be true computation-
ally: none of these parametrizations can represent an integer solution that
extends to a length 5 Büchi sequence. Indeed, consider for example the se-
quence ξ(1, t) = (x1(t), x2(t), x3(t), x4(t)) given above. Asking whether this
sequence extends, for some fixed integer t, to a length 5 sequence is asking
whether either 2x2

4−x2
3+2 (extension to the right) or 2x2

1−x2
2+2 (extension

to the left) is a square. Namely: does one of the two curves

y2 = 4t6 + 80t5 + 620t4 + 2400t3 + 4905t2 + 5020t+ 2020

or
y2 = 4t6 + 40t5 + 120t4 − 595t2 − 970t− 455

have an integer point with t 6= −4,−3,−2,−1 (for t ∈ {−4,−3,−2,−1} we
obtain trivial Büchi sequences by item 5 of Theorem 1.2)? In Section 6, we
will prove that it is enough for our purposes to work with extensions to the
right. We will show that the polynomial yn(t) = 2ξ4(n, t)2 − ξ3(n, t)2 + 2
satisfies a third order homogeneous linear recurrence. Indeed, the quantity

yn+2 − (f2 − 2)yn+1 + yn

does not depend on n. From this relation we can deduce that yn(t) cannot
be a square when, for example, t is congruent to 0 modulo 5 and n is not
congruent to 0 or −1 modulo 10 (see Lemmas 6.4 and 6.5). On the other
hand, J. Browkin showed us a way to prove that the sequences ξ(n, t) do
not extend to a 5-term sequence, but unfortunately this needs a quantity of
computations that increases together with the absolute value of n. Applying
this method, we could verify that ξ(n, t) is never a square for 0 ≤ n ≤ 6 and
any t 6= −4,−3,−2,−1 (we do not present this method in this paper).

In Section 7, we list all integer solutions that we found and that we have
not been able to parametrize (i.e., they seem not to belong to the image of
a polynomial parametrization over Z). With the first term at most 1052749,
they are 121 (counting only the strictly increasing sequences of positive
integers) and we do not know whether or not we are missing finitely many.
From the figure at the end of that section, it seems clear that the number
of points that we are “missing” is decreasing exponentially with respect to
the size of the points. None of these (non-parametrized) points can extend
to a length 5 solution, as is easily verified with a computer software.

The symbol † in the text will mean that we are using a computer soft-
ware for the formal computation (all the computations can actually be done
by hand, but some are a bit tedious). We have used exclusively the open
source software Xcas 0.8.6 and 0.9.0 for all our computations; see Giac/Xcas,
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Bernard Parisse et Renée De Graeve, version 0.8.6 (2010), http://www-
fourier.ujf-grenoble.fr/∼parisse/giac fr.html.

2. Some birational maps on X4

Notation 2.1.

1. Denote by Bir(X4) the group of birational maps on X4.
2. Let τ and µi, i = 1, 2, 3, 4, denote the following automorphisms of X4:

µ1(a, b, c, d) = (−a, b, c, d), µ2(a, b, c, d) = (a,−b, c, d),
µ3(a, b, c, d) = (a, b,−c, d), µ4(a, b, c, d) = (a, b, c,−d),

and
τ(a, b, c, d) = (d, c, b, a).

Observe that each µi is an odd function.
3. We will call any map from the subgroup Γ1 of Bir(X4) generated by

the set {µ1, µ2, µ3, µ4, τ} a trivial involution on X4.
4. Write Γ0 for the group generated by {µ1, µ2, µ3, µ4}.
5. Write µij = µiµj and µijk = µiµjµk for any i, j, k ∈ {1, 2, 3, 4}.

Remark 2.2.

1. For all i 6= j we have µiµj = µjµi, hence Γ0 is isomorphic to (Z2)4.
2. We have τµ1 = µ4τ and τµ2 = µ3τ .
3. We have τµ14 = µ14τ and τµ23 = µ23τ .
4. For each i, τµi has order 4.

Lemma 2.3. For all i, we have τµiτ = µσ(i), where σ stands for the
permutation (1 4)(2 3) ∈ S4. Hence the group Γ0 is normal in Γ1 and the
group Γ1 is a semi-direct product Γ0 o 〈τ〉.

Proof. This is clear from the above remark.

Next we define a rational map ϕ on X4 that will turn out to be an
involution, and the map ζ that will allow us to generate all our polynomial
parametrizations.

Notation 2.4. We will consider the map ϕ from (a subset of) Q4 to Q4

defined by

(ϕ1, ϕ2, ϕ3, ϕ4) =
(
p1

q
,
p2

q
,
p3

q
,
p4

q

)
where

q(a, b, c, d) = (b− c)2(a− 2b+ c),
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p1(a, b, c, d) = − 2ab3 + ab2c+ 2ab2d+ 4abc2 − 5abcd+ ab− 2ac3

+ 2ac2d+ ac− ad+ 3b4 − 2b3c− 3b3d− 6b2c2

+ 8b2cd+ b2 + 4bc3 − 4bc2d− 5bc+ bd+ c2 + cd− 2,

p2(a, b, c, d) = − 2ab2c+ 5abc2 − 2abcd+ 2ab− 2ac3 + ac2d− ad+ 3b3c

− 8b2c2 + 3b2cd− 2b2 + 4bc3 − 2bc2d− bc+ 2bd− 2,

p3(a, b, c, d) = − 2ab3 + 5ab2c− 2ab2d− 2abc2 + abcd

+ 3ab− ac− ad+ 3b4 − 8b3c+ 3b3d+ 4b2c2 − 2b2cd

− 3b2 − bc+ 3bd+ c2 − cd− 2,

p4(a, b, c, d) = − 3ab3 + 8ab2c− 3ab2d− 4abc2 + 2abcd+ 4ab− 2ac− ad
+ 4b4 − 10b3c+ 4b3d+ 2b2c2 − 2b2cd− 4b2

+ 5bc3 − 2bc2d− bc+ 4bd− 2c4 + c3d+ 2c2 − 2cd− 2.

Observe that ϕ is an odd function (as q is odd and each pi is even); by odd
we mean that for all (a, b, c, d) ∈ X4 we have

ϕ(−a,−b,−c,−d)
= (−ϕ1(a, b, c, d),−ϕ2(a, b, c, d),−ϕ3(a, b, c, d),−ϕ4(a, b, c, d)).

Notation 2.5. Write ζ = ϕτµ14.

Lemma 2.6. The map ϕ is a rational map on X4.

Proof. This is a simple but tedious computation (note that one needs
to replace formally (†) a2 by 2b2 − c2 + 2 and d2 by 2c2 − b2 + 2 in the
expressions (ϕ2

1 − 2ϕ2
2 + ϕ2

3)(a, b, c, d) and (ϕ2
2 − 2ϕ2

3 + ϕ2
4)(a, b, c, d)). The

details are left to the reader.

Lemma 2.7. The map ϕ is an involution.

Proof. For each i, after substituting formally (†) x2
4 by 2x2

3−x2
2+2 and x2

3

by 2x2
2−x2

1 + 2 in ϕi(ϕ(x1, x2, x3, x4)) and doing the obvious simplifications
(†), one obtains xi. Note that it is not hard to prove this lemma without
the help of a computer, by using the fact (verifiable by hand) that

(ϕ1 − 2ϕ2 + ϕ3)(a, b, c, d) = a− 2b+ c,

(ϕ2 − 2ϕ3 + ϕ4)(a, b, c, d) = b− 2c+ d.

Remark 2.8. Observe that since ϕ is birational, so is ζ = ϕτµ14.

Lemma 2.9. We have τϕ = ϕτ and τζ = ζτ .

Proof. Verifying that τϕ − ϕτ = 0 needs replacing a2 by 2b2 − c2 + 2
everywhere it occurs in the expression (†). Recalling the definition of ζ =
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ϕτµ14, we have

τζτ = τ(ϕτµ14)τ = ϕµ14τ = ϕτµ14 = ζ.

Unfortunately, we do not know the presentation of the group generated
by Γ1 and ϕ. We will prove later on that the map ζ has infinite order (see
for example Corollary 5.3).

3. Büchi sequences of length 4 over Z[t]. First we prove items 3, 4
and 6 of Theorem 1.2. Item 3 comes immediately from the inductive defini-
tion of ξ, by induction on n (to the left and to the right). Item 4 is easily
verified (†) if one writes each ξi(n, t) in the form

(gi(n, t) + α(t+ i))βn − (gi(n, t)− α(t+ i))β̄n

2α
where α =

√
(t+ 1)(t+ 2)(t+ 3)(t+ 4) and β = t2 + 5t + 5 + α and β̄ =

t2 + 5t+ 5− α.
We prove item 6 by induction on n. For n = 0 it is trivial by the definition

of ξ(0, t). Suppose it is true up to n 6= 0 (negative or positive). One verifies
(†) that

ξ(n+ 1, t) = ζ(ξ(n, t))

for each n ∈ Z, hence

ξ(n+ 1, t) = ζ(ζ(n)(t+ 1, t+ 2, t+ 3, t+ 4)) = ζ(n+1)(t+ 1, t+ 2, t+ 3, t+ 4),

and since ξ(n− 1, t) = ζ(−1)(ξ(n, t)) we also have

ξ(n−1, t) = ζ(−1)(ζ(n)(t+1, t+2, t+3, t+4)) = ζ(n−1)(t+1, t+2, t+3, t+4),

which finishes the induction.

4. Other polynomial parametrizations. Note that by replacing t
by t2 in a polynomial parametrization of degree n, we obtain a polyno-
mial parametrization of degree 2n. Since there exist non-trivial polyno-
mial parametrizations of any odd degree, there are non-trivial polynomial
parametrizations of any degree.

The functions

ψ1(t) =
t4 + 17t3 + 104t2 + 262t+ 204

4
,

ψ2(t) =
t4 + 19t3 + 138t2 + 458t+ 592

4
,

ψ3(t) =
t4 + 21t3 + 168t2 + 602t+ 812

4
,

ψ4(t) =
t4 + 23t3 + 194t2 + 718t+ 984

4
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give a polynomial parametrization ψ = (ψ1, ψ2, ψ3, ψ4) over Q that takes an
integer value for each integer t not congruent to 3 modulo 4. Hence ψ(2t)
and ψ(4t + 1) are polynomial parametrizations over Z, of degree 4, which
are new (1) in the sense that they generate Büchi sequences of integers that
were not in the image of any of the ξ(n, t).

The following is another polynomial parametrization over Q, but it does
not yield any integer solution:

x1(t) =
1
3

(4t4 + 18t3 + 14t2 − 15t− 8),

x2(t) =
1
3

(4t4 + 22t3 + 36t2 + 19t+ 5),

x3(t) =
1
3

(4t4 + 26t3 + 54t2 + 35t+ 2),

x4(t) =
1
3

(4t4 + 30t3 + 68t2 + 45t+ 1).

5. Some basic properties of the sequences (ξ(n, t))n and (ξi)i. In
this section we prove items 1, 2 and 5 of Theorem 1.2 and show that for
fix t ≥ 0, the sequences (ξi(n, t))i (with n ≥ 0 fixed) and (ξi(n, t))n (with i
fixed) are strictly increasing sequences of positive integers.

A straightforward computation shows that for all n, t ∈ Z we have

(5.1) ξ4(n, t) = −ξ1(n,−t− 5) and ξ3(n, t) = −ξ2(n,−t− 5),

which easily implies the other two equalities of item 2 of Theorem 1.2.
Let us prove by induction on n that

(5.2) ξ1(n, t) = −ξ1(−n− 1,−t− 5).

This is clear for n = −1 and for n = 0 since ξ1(0, t) = t+ 1 and ξ1(−1, t) =
t + 4. Suppose that it is proven up to n + 1 (the case with decreasing n is
done similarly). Since f(t) = f(−t− 5), we have from (1.2)

ξ1(n+ 2, t) = f(t)ξ1(n+ 1, t)− ξ1(n, t)
= −f(−t− 5)ξ1(−(n+ 1)− 1,−t− 5) + ξ1(−n− 1,−t− 5)
= −(f(−t− 5)(ξ1(−n− 2,−t− 5)− ξ1(−n− 1,−t− 5))
= −ξ1(−n− 3,−t− 5),

which was to be proved.
We conclude from (5.2) and (5.1) that ξ1(n, t) = ξ4(−n − 1, t), and

replacing n by −n−1 in the latter equation we obtain ξ4(n, t) = ξ1(−n−1, t).

(1) I only know a tedious proof of this fact, using Hensley’s parametrization of length 3
sequences—see [PPV, Section 7]. I do not include it as it is not really relevant to this work.
Details are available upon request.
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This proves two of the four equalities of item 1 of Theorem 1.2. The other
two are obtained similarly.

From (5.1), we see that since

ξ(1,−2) = (0, 1,−2,−3) and ξ(1,−1) = (−3, 4, 5, 6)

are trivial sequences, also ξ(1,−3) and ξ(1,−4) are trivial sequences.

Lemma 5.1. For each n ∈ Z, the Büchi sequences ξ(n,−4), ξ(n,−3),
ξ(n,−2) and ξ(n,−1) are trivial sequences.

Proof. By the definition of ξ, we have for t = −1

ξi(n+ 2,−1) = 2ξi(n+ 1,−1)− ξi(n,−1)

for each i = 1, 2, 3, 4, with initial values for n = 0, 1 (recalling that ξ(0, t) =
(t+ 1, t+ 2, t+ 3, t+ 4)):

ξ1(0,−1) = 0, ξ1(1,−1) = −3,
ξ2(0,−1) = 1, ξ2(1,−1) = 4,
ξ3(0,−1) = 2, ξ3(1,−1) = 5,
ξ4(0,−1) = 3, ξ4(1,−1) = 6;

and for t = −2,

ξi(n+ 2,−2) = −2ξi(n+ 1,−2)− ξi(n,−2)

for each i = 1, 2, 3, 4, with initial values for n = 0, 1

ξ1(0,−2) = −1, ξ1(1,−2) = 0,
ξ2(0,−2) = 0, ξ2(1,−2) = 1,
ξ3(0,−2) = 1, ξ3(1,−2) = −2,
ξ4(0,−2) = 2, ξ4(1,−2) = −3.

Solving the eight recurrence relations above, we obtain

ξ(n,−1) = (−3n, 3n+ 1, 3n+ 2, 3n+ 3),
ξ(n,−2) = (−1)n(n− 1,−n, n+ 1, n+ 2),

which are clearly trivial sequences. From (5.1), we have

ξ1(n,−3) = −ξ4(n,−2), ξ2(n,−3) = −ξ3(n,−2),
ξ4(n,−3) = −ξ1(n,−2), ξ3(n,−3) = −ξ2(n,−2),

hence
ξ(n,−3) = (−1)n(−n− 2,−n− 1, n,−n+ 1),

and

ξ1(n,−4) = −ξ4(n,−1), ξ2(n,−4) = −ξ3(n,−1),
ξ4(n,−4) = −ξ1(n,−1), ξ3(n,−4) = −ξ2(n,−1),
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hence
ξ(n,−4) = (−3n− 3,−3n− 2,−3n− 1, 3n),

which are also clearly trivial sequences.

Lemma 5.2. If (un) is a sequence of integers satisfying u1 > u0 > 0 and
un+2 = αun+1 − un for each n ≥ 0, with α ≥ 2, then un+1 > (α− 1)un > 0
for all n ≥ 1.

Proof. We have

u2 = αu1 − u0 = (α− 1)u1 + u1 − u0 > (α− 1)u1 > 0.

Suppose that un+1 > (α− 1)un > 0 for some n ≥ 1. We have

un+2 = αun+1 − un > αun+1 −
un+1

α− 1
≥ (α− 1)un+1.

Corollary 5.3. For each i = 1, . . . , 4, we have

ξi(n+ 1, t) > (2t2 + 10t+ 9)ξi(n, t)

for each t ≥ 0 and n ≥ 1.

Proof. Fix t ≥ 0. We apply Lemma 5.2 to the sequence un = ξi(n, t)
for each i = 1, . . . , 4. By the definition of ξ, the un satisfy the recurrence
relation un+2 = αun+1 − un, with

α = f(t) = 2t2 + 10t+ 10 ≥ 2

and

u1 =


ξ1(1, t) = 2t3 + 12t2 + 19t+ 6 > t+ 1 = ξ1(0, t) = u0 > 0 if i = 1,
ξ2(1, t) = 2t3 + 14t2 + 31t+ 23 > t+ 2 = ξ2(0, t) = u0 > 0 if i = 2,
ξ3(1, t) = 2t3 + 16t2 + 41t+ 32 > t+ 3 = ξ3(0, t) = u0 > 0 if i = 3,
ξ4(1, t) = 2t3 + 18t2 + 49t+ 39 > t+ 4 = ξ4(0, t) = u0 > 0 if i = 4,

so in each case we can apply Lemma 5.2.

Lemma 5.4. If (vn) and (wn) are sequences of integers both satisfying
the same recurrence relation un+2 = αun+1−un for each n ≥ 0, with α ≥ 2,
and u1 > u0 > 0, and moreover w0 ≥ v0 and w1 − w0 > v1 − v0, then

wn+1 − vn+1 > (α− 1)(wn − vn) > 0

for all n ≥ 1.

Proof. We have

w2 − v2 = αw1 − w0 − (αv1 − v0)
= (α− 1)(w1 − v1) + w1 − w0 − (v1 − v0)
> (α− 1)(w1 − v1) > (α− 1)(w0 − v0) ≥ 0.
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If for some n ≥ 1 we have wn+1 − vn+1 > (α− 1)(wn − vn) > 0 then

wn+2 − vn+2 = αwn+1 − wn − (αvn+1 − vn)
= α(wn+1 − vn+1)− (wn − vn)

> α(wn+1 − vn+1)− wn+1 − vn+1

α− 1
≥ (α− 1)(wn+1 − vn+1) > 0.

Corollary 5.5. For each n ≥ 1 and each t ≥ 0, the sequence ξ(n, t) is a
strictly increasing non-trivial Büchi sequence of positive integers. Moreover,
for each i = 1, 2, 3 and for each n ≥ 1 we have

ξi+1(n+ 1, t)− ξi(n+ 1, t) > (2t2 + 10t+ 9)(ξi+1(n, t)− ξi(n, t)).

Proof. Fix t ≥ 0. We will apply Lemma 5.4 to the sequences vn = ξ1(n, t)
and wn = ξ2(n, t), for n ≥ 0. By the definition of ξ, both vn and wn satisfy
the recurrence relation un+2 = αun+1 − un with

α = f(t) = 2t2 + 10t+ 10 ≥ 2.

By the definition of ξ, we have

v1 = ξ1(1, t) = 2t3 + 12t2 + 19t+ 6 > t+ 1 = ξ1(0, t) = v0 > 0,

w1 = ξ2(1, t) = 2t3 + 14t2 + 31t+ 23 > t+ 2 = ξ2(0, t) = w0 > 0,
w0 = ξ2(0, t) = t+ 2 > t+ 1 = ξ1(0, t) = v0,

and

w1 − w0 = 2t3 + 14t2 + 30t+ 21 > 2t3 + 12t2 + 18t+ 5 = v1 − v0,

so all the hypotheses of Lemma 5.4 are satisfied and we deduce that ξ2(n, t)−
ξ1(n, t) is a positive integer for each n ≥ 0, and for each n ≥ 1 we have

ξ2(n+ 1, t)− ξ1(n+ 1, t) > (f(t)− 1)(ξ2(n, t)− ξ1(n, t)).

In particular, since f(t)− 1 ≥ 9 and ξ2(1, t)− ξ1(1, t) = 2t2 + 12t+ 17 ≥ 17,
the difference ξ2(n, t) − ξ1(n, t) is greater than 1 for each n ≥ 1, so the
sequence ξ(n, t) is non-trivial.

The other two cases are verified similarly.

We conclude this section with a characterization of the trivial sequences
among the sequences of the form ξ(n, t), which proves item 5 of Theorem 1.2.

Corollary 5.6. The sequence ξ(n, t) is trivial if and only if t∈ {−4,−3,
−2,−1} or n ∈ {−1, 0}.

Proof. By Lemma 5.1 we need only prove that if t /∈ {−4,−3,−2,−1}
and n /∈ {−1, 0} then ξ(n, t) is not a trivial Büchi sequence. By Corollary
5.5, we may suppose that moreover we have n � 1 or t � 0.
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Case n ≤ −2 and t ≥ 0. Since −n−1 ≥ 1, by Corollary 5.5 the sequence

(ξ1(−n− 1, t), ξ2(−n− 1, t), ξ3(−n− 1, t), ξ4(−n− 1, t))

is non-trivial, hence so is (ξ4(−n − 1, t),−ξ3(−n − 1, t),−ξ2(−n − 1, t),
ξ1(−n− 1, t)), which is ξ(n, t) by item 1 of Theorem 1.2.

Case n ≥ 0 and t ≤ −5. Since −t−5 ≥ 0, by Corollary 5.5 the sequence

(ξ1(n,−t− 5), ξ2(n,−t− 5), ξ3(n,−t− 5), ξ4(n,−t− 5))

is non-trivial, hence so is (−ξ4(n,−t − 5),−ξ3(n,−t − 5),−ξ2(n,−t − 5),
−ξ1(n,−t− 5)), which is ξ(n, t) by item 2 of Theorem 1.2.

Case n ≤ −2 and t ≤ −5. Since −n−1 ≥ 1 and −t−5 ≥ 0, by Corollary
5.5 the sequence

(ξ1(−n−1,−t−5), ξ2(−n−1,−t−5), ξ3(−n−1,−t−5), ξ4(−n−1,−t−5))

is non-trivial, hence so is

(−ξ1(−n−1,−t−5), ξ2(−n−1,−t−5), ξ3(−n−1,−t−5),−ξ4(−n−1,−t−5)),

which is ξ(n, t) by combining items 1 and 2 of Theorem 1.2.

6. A family of curves associated to length 5 sequences. Each
length 4 integer Büchi sequence (x1, x2, x3, x4) might extend to the right or
to the left. For given integers n and t, a Büchi sequence ξ(n, t) extends to
the right if and only if the quantity

y5(n, t) := 2ξ24(n, t)− ξ23(n, t) + 2

is a square, and it extends to the left if and only if

y0(n, t) := 2ξ21(n, t)− ξ22(n, t) + 2

is a square. So for each integer n /∈ {−1, 0}, we want to know whether or
not the curves

y2 = y5(n, t) (Cr
n)

and
y2 = y0(n, t) (C`n)

have integer points at all with t /∈ {−4,−3,−2,−1} (otherwise we have
trivial sequences by Corollary 5.6). Note that by Corollary 5.6, any integer
point with t /∈ {−4,−3,−2,−1} on one of the curves Cr

n or C`n would give a
non-trivial Büchi sequence of length 5. Note also that the polynomials on the
right-hand sides have degree 2|2n+ 1| = |4n+ 2| by item 3 of Theorem 1.2.

Definition 6.1. We will say that an integer point (t, y) on Cr
n or C`n is

non-trivial if t /∈ {−4,−3,−2,−1}.
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From items 1 and 2 of Theorem 1.2, we have

y0(n, t) = 2ξ21(n, t)− ξ22(n, t) + 2 = 2ξ24(−n− 1, t)− ξ23(−n− 1, t) + 2
= y5(−n− 1, t)

for each n ∈ Z and t ∈ Z. Therefore, given n 6= −1, 0, there is a non-trivial
integer point (t, y) on C`n if and only if there is one on Cr

−n−1. Since this is
true for any integer n 6= −1, 0, we deduce that there is a non-trivial point
on C`n for some n 6= −1, 0 if and only if there is a non-trivial point on
Cr
n for some n 6= −1, 0. Hence in particular, in order to show that none

of the sequences ξ(n, t) extends to a non-trivial length 5 Büchi sequence,
it is enough to show that the polynomial y5(n, t) cannot be a square if
n /∈ {−1, 0} and t /∈ {−4,−3,−2,−1}. So from now on we will write for
simplicity

yn(t) = 2ξ24(n, t)− ξ23(n, t) + 2

for each n ∈ Z.
In the rest of this section we will show that the sequence of polynomials

yn(t) satisfies a third order linear recurrence, and then show that for some
infinite families of pairs (n, t), the quantity yn(t) is not a square. Unfortu-
nately we have not been able to cover all cases.

Lemma 6.2. If (un) is a sequence of integers with un+2 = αun+1 − un
for each n ∈ Z, then the quantity

νu(n) = u2
n+2 − (α2 − 2)u2

n+1 + u2
n

does not depend on n.

Proof. We have u2
n+2 = α2u2

n+1 + u2
n − 2αun+1un. One can then prove

the lemma by solving the induction and using some telescoping argument.
We thank J. Browkin for showing us the following more elegant proof. We
have

νu(n) = u2
n+2 − (α2 − 2)u2

n+1 + u2
n

= (α2u2
n+1 + u2

n − 2αun+1un)− (α2 − 2)u2
n+1 + u2

n

= 2u2
n+1 + 2u2

n − 2αun+1un

so it is sufficient to show that the quantity u2
n+1 + u2

n − αun+1un does not
depend on n. We have
1
2

(νu(n+ 1)−νu(n)) = u2
n+2 +u2

n+1 − αun+2un+1− (u2
n+1 +u2

n−αun+1un)

= u2
n+2 − u2

n − αun+1(un+2 − un)
= (un+2 − un)(un+2 + un − αun+1) = 0,

which proves the lemma.
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Corollary 6.3. The quantity

(6.1) νy = yn+2 − (f2 − 2)yn+1 + yn

does not depend on n ∈ Z. Moreover, since

f(t)2 − 2 = 2(2t4 + 20t3 + 70t2 + 100t+ 49),

y−1(t) = t2, y0(t) = (t+ 5)2,

and

y1(t) = 4t6 + 80t5 + 620t4 + 2400t3 + 4905t2 + 5020t+ 2020,

we have

νy = νy(−1) = −2(10t4 + 100t3 + 346t2 + 480t+ 215).

Proof. Applying Lemma 6.2 to the sequences (un)n = (ξ3(n, t))n and
(vn)n = (ξ4(n, t))n (taking α = f(t) = 2t2 + 10t+ 10), we obtain

yn+2 = 2v2
n+2 − u2

n+2 + 2

= 2((α2 − 2)v2
n+1 − v2

n + νv)− ((α2 − 2)u2
n+1 − u2

n + νu) + 2

= (α2 − 2)(2v2
n+1 − u2

n+1)− (2v2
n − u2

n) + 2νv − νu + 2

= (α2 − 2)(yn+1 − 2)− (yn − 2) + 2(v2
2 − (α2 − 2)v2

1 + v2
0)

− (u2
2 − (α2 − 2)u2

1 + u2
0) + 2

= (α2 − 2)(yn+1 − 2)− (yn − 2) + (y2 − 2)− (α2 − 2)(y1 − 2)
+ (y0 − 2) + 2

= (α2 − 2)yn+1 − yn + y2 − (α2 − 2)y1 + y0,

which proves the corollary.

Lemma 6.4. If t ∈ 5Z and n is not congruent to 0 or −1 modulo 10 then
yn(t) is not a square.

Proof. If t ∈ 5Z then νy, y−1(t) and y0(t) are multiples of 5, hence yn(t)
is a multiple of 5 for each n ∈ Z (by (6.1)). Therefore, if yn(t) is a square
then it must be a multiple of 25. Let ≡ denote congruence modulo 25. Since
(6.1) becomes

yn+2 + 2yn+1 + yn + 5 ≡ 0

and y−1 and y0 are multiples of 25, we have

y1 + 5 ≡ 0 hence y1 ≡ −5,
y2 + 2y1 + 5 ≡ 0 hence y2 ≡ 5,

y3 + 2y2 + y1 + 5 ≡ 0 hence y3 ≡ −10,

and going on like that, one finds y4 ≡ 10, y5 ≡ 10, y6 ≡ −10, y7 ≡ 5,
y8 ≡ −5, y9 ≡ 0 and finally y10 ≡ 0. So we are back to the situation of
having two consecutive multiples of 25, and the lemma is proven.
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Lemma 6.5. Assume t /∈ 5Z. We have

1. yn(t) ∈ 5Z if and only if n is congruent to 2 modulo 5;
2. assuming that n is congruent to 2 modulo 5, yn(t) ∈ 52Z if and only

if t is congruent to 21, 22, 23 or 24 modulo 25.

Therefore, if t /∈ 5Z is not congruent to 21, 22, 23 or 24 modulo 25 and n
is congruent to 2 modulo 5 then yn(t) is not a square.

Proof. Assume t /∈ 5Z. We have y−1(t) = t2 ≡5 y0(t) and νy(t) ≡5

−2t2 ≡5 −2y0(t). Note that since t2 is congruent to either 1 or −1 modulo 5,
we have f(t)2 − 2 ≡5 4t4 − 2 ≡5 2, hence (6.1) gives

yn+2 − 2yn+1 + yn + 2t2 ≡5 0.

So we have y1 − 2y0 + y−1 + 2t2 ≡5 0, hence y1 ≡5 −t2. Similarly, we find
y2 ≡5 0, y3 ≡5 −t2, y4 ≡5 t

2 and y5 ≡5 t
2. So the first item is proven.

We have

f2 − 2 ≡25 4t4 − 10t3 − 10t2 − 2 and νy ≡25 5t4 + 8t2 − 10t− 5,

so that (6.1) gives

yn+2 − (4t4 − 10t3 − 10t2 − 2)yn+1 + yn − (5t4 + 8t2 − 10t− 5) ≡25 0.

There are many congruences to verify in order to prove item 2, but with
the help of a computer program, one can use the recurrence relation above
and compute y1(t) up to y25(t) modulo 25, for t of the form 5m+ a, where
a ∈ {1, 2, 3, 4}. One sees that when n is congruent to 2 modulo 5 then

yn(5m+ a) ≡25 a(5m+ 5)

and that the sequence (yn(5m+ a))n has period 25. We can conclude since
a(5m + 5) is congruent to 0 modulo 25 if and only if m is congruent to 4
modulo 5, if and only if t is congruent to 21, 22, 23 or 24 modulo 25.

Note that one can easily derive many results in the same flavour as
Lemmas 6.4 and 6.5, by studying other congruences.

7. A list of non-parametrized integer points on X4. In this section
we list the strictly increasing sequences that we found and that are not
obtained from any of the polynomial parametrizations presented in this
paper. The first column is just the number of the row of the matrix. The
graph is a plot of the first two columns. The number of points that we are
not able to parametrize seems to go exponentially to zero.
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1 59 630 889 1088

2 83 516 725 886

3 108 6643 9394 11505

4 108 707 994 1215

5 177 878 1229 1500

6 240 839 1162 1413

7 287 11838 16739 20500

8 311 752 1017 1226

9 334 3693 5212 6379

10 386 6237 8812 10789

11 419 11020 15579 19078

12 430 801 1048 1247

13 477 3572 5029 6150

14 510 1699 2348 2853

15 514 1537 2112 2561

16 570 7879 11128 13623

17 601 4832 6807 8326

18 862 1713 2264 2705

19 883 25566 36145 44264

20 916 26605 37614 46063

21 1346 20353 28752 35201

22 1546 5257 7272 8839

23 1574 2693 3468 4099

24 1616 3353 4458 5339

25 1674 2695 3424 4023

26 1766 8837 12372 15101

27 1812 11587 16286 19905

28 2066 6963 9628 11701

29 2437 13062 18311 22360

30 2477 15876 22315 27274

31 2636 20685 29134 35633

32 3048 5047 6454 7605

33 3051 11578 16087 19584

34 3247 9746 13395 16244

35 3333 36682 51769 63360

36 3673 5478 6821 7940

37 4090 5701 6948 8003

38 4743 36806 51835 63396

39 5148 12253 16546 19935

40 5331 15988 21973 26646

41 5781 22342 31063 37824

42 6449 25358 35277 42964

43 6504 18065 24706 29907

44 6756 33773 47282 57711

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

45 7104 9823 11938 13731

46 7234 24447 33808 41089

47 7386 17033 22928 27591

48 7414 16875 22684 27283

49 7594 10997 13572 15731

50 7871 12162 15293 17884

51 8562 17089 22600 27009

52 9343 26408 36159 43790

53 9741 19460 25739 30762

54 9752 25249 34350 41501

55 10888 25561 34470 41509

56 11358 47107 65644 79995

57 12129 18232 22753 26514

58 12539 21430 27591 32608

59 12710 46491 64508 78493

60 13305 44986 62213 75612

61 13500 29971 40178 48273

62 13811 38380 52491 63542

63 13835 33596 45453 54802

64 13836 25693 33598 39969

65 14416 40737 55778 67549

66 14843 26758 34809 41320

67 15369 52022 71947 87444

68 15451 47988 66083 80194

69 18793 33744 43865 52054

70 20476 44445 59426 71327

71 21648 38497 49954 59235

72 21924 32243 39982 46449

73 22377 45328 60071 71850

74 23173 49926 66695 80024

75 23174 56283 76148 91811

76 25079 34122 41227 47276

77 27283 57918 77231 92600

78 27699 38828 47413 54666

79 31659 51412 65453 76974

80 33426 58483 75652 89589

81 34030 59119 76368 90383

82 45007 85256 111855 133246

83 49040 61729 72222 81373

84 50430 70781 86468 99717

85 51077 89226 115385 136624

86 53119 70562 84477 96404

87 55506 72097 85528 97119

88 58599 87328 108713 126534

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

89 62429 86532 105253 121114

90 63626 118165 154524 183827

91 64776 98815 123826 144573

92 68986 106617 134072 156791

93 70143 94792 114241 130830

94 77391 92440 105361 116862

95 78741 128278 163433 192264

96 79292 91693 102606 112465

97 80251 100090 116601 131048

98 81770 131541 167092 196307

99 98804 118755 135806 150943

100 107366 169275 213964 250813

101 108523 139124 164115 185774

102 117178 144071 166680 186569

103 138004 167365 192294 214343

104 154097 200846 238605 271156

105 154097 200846 238605 271156

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

106 155730 226399 279752 324447

107 158435 195324 226277 253478

108 165267 222418 267631 306240

109 183122 235379 277980 314869

110 186101 246132 294157 335374

111 225341 270018 308287 342304

112 297422 352179 399500 441781

113 311680 401551 474702 537997

114 388048 447801 500470 548101

115 421884 499235 566114 625887

116 435682 484931 529620 570821

117 646914 739327 821408 896001

118 695001 761728 823063 880134

119 740566 869223 981152 1081559

120 839833 974682 1093019 1199740

121 1052749 1157218 1253007 1341976

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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