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Preliminary notation. This paper uses the following notation through-
out. Given two real-valued functions f, g with domain D, we write

• f � g or f = O(g) if there is a constant γ such that f(x) ≤ γg(x)
for all x ∈ D. The implicit constant γ may be different each time this
notation is used.
• f ≈ g if f � g and g � f .

Given two sets A,B ⊆ Fq, we define:

• the sumset A+B = {a+ b : a ∈ A, b ∈ B},
• the product set A ·B = {ab : a ∈ A, b ∈ B},
• the ratio set A

B = {ab−1 : a ∈ A, b ∈ B, b 6= 0}.

1. Introduction

1.1. Incidences. This paper is about incidences between points and
lines in a plane. A point is incident to a line if it lies on that line, and a
single point can be incident to more than one line if they cross at that point.
An established problem is to find upper bounds for the number of incidences
between finite sets of points and lines of given cardinality.

Specifically, fix a field F and an integer n, and let P and L be finite
sets of points and lines respectively in the plane F × F with |P | = |L| = n.
Define

I(P,L) = |{(p, l) ∈ P × L : p ∈ l}|
to be the cardinality of the set of incidences between P and L. The prob-
lem is to establish upper bounds on I(P,L). A straightforward exercise in
combinatorics [13] shows that one always has I(P,L)� n3/2. So non-trivial
incidence bounds are those of the form I(P,L)� n3/2−ε for positive ε.
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1.2. Known bounds. Different bounds are known for different choices
of the field F . Things are largely settled in the settings F = R and F = C.
The result ε = 1/6 was obtained in these settings, by Szeméredi and Trotter
[12] and Tóth [14] respectively. In both cases, the bound holds uncondition-
ally and is sharp up to multiplicative constants.

Much less is known in the finite field setting F = Fq. It is certainly not
possible to have a non-trivial bound that holds in all cases, as the trivial
bound I(P,L) ≈ n3/2 is achieved when P = F × F and L is the set of
lines determined by pairs of points in P . So one must impose some extra
conditions.

In this setting Vinh [15] obtained I(P,L) � n2/q + q1/2n, which gives
non-trivial bounds for n = qα with 1 < α < 2. For smaller sets in finite
fields, explicit bounds are known only when the field is of prime order p.
The best-known such result is due to Helfgott and Rudnev [6] who proved
ε ≥ 1/10678 when n < p. This result is unlikely to be best-possible, and
followed work of Bourgain, Katz and Tao [2] which established the existence
of a non-trivial ε > 0 so long as n < p2−δ(ε), but did not quantify it.

1.3. Extending Helfgott–Rudnev to general finite fields. The
Helfgott–Rudnev bound is known only in Fp, and so one would like to extend
it to general (i.e. not necessarily prime) finite fields Fq. In particular, it would
be good to extend it to Fp2 , as this is in some respects a finite analogue of C.
However, general finite fields can have subfields, and so stronger conditions
than just cardinality are required on P . This is because, as with the example
above, if K is a subfield of F then the trivial bound I(P,L) ≈ n3/2 can be
achieved when P is the subplane K ×K.

It is therefore interesting to find conditions on P ⊆ Fq × Fq for which
an explicit Helfgott–Rudnev-type bound holds for any L with |L| = |P |.
A natural condition to try imposing on P would be to insist that it is “not
too close” to being a copy of a subplane, for example by ensuring that
its projection onto either the x- or y-axis is “not too close” to a copy of
a subfield. However, the currently-known approaches for proving Helfgott–
Rudnev-type bounds rely on first applying a projective transformation to P ,
which could disrupt such a condition. So any condition must, additionally,
be preserved by projective transformations.

1.4. Results. We present an incidence result in Fq, which holds so long
as P satisfies certain conditions. Informally, these are that the projection
A(P ) of P onto some coordinate axis has no more than half-dimensional
interaction with large subfields G of Fq, where “large” will be defined relative
to the cardinality n = |P |.

By no more than “half-dimensional interaction”, we mean that A(P )
does not intersect an affine copy of G in more than |G|1/2 places, and in-
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tersects no more than |G|1/2 distinct translates of G. Since the motivation
is that such sets are a long way from being fields, we shall call them “anti-
fields”.

Definition 1. Let F be a field and λ > 0.

(1) Let A ⊆ F . Then

(a) A is a (1, λ)-antifield if |A ∩ (aG + b)| ≤ max{λ, |G|1/2} for all
subfields G of F and all a, b ∈ F .

(b) A is a (1, λ)-strong-antifield if it is a (1, λ)-antifield and, for
every subfield G with |G| ≥ λ, it intersects strictly fewer than
max{λ, |G|1/2}/2 distinct translates G+ b of G.

(2) Let P ⊂ F × F . Then

(a) P is a (2, λ)-antifield if the set {x : (x, y) ∈ P} is a (1, λ)-
antifield.

(b) P is a (2, λ)-strong-antifield if the set {x : (x, y) ∈ P} is a
(1, λ)-strong-antifield.

Note that since one can always apply a change of basis, the projection
can in fact be onto any vector multiple of Fq.

Parts (1)(a) and (2)(a) of the definition are motivated by work of Katz
and Shen [7] generalising sum-product bounds in Fp to Fq. Parts (1)(b) and
(2)(b) are motivated by the need to avoid disruption by projective trans-
formations. A key idea, which shall be seen later, is that certain projective
images of a strong antifield will always be antifields.

We are now able to state the result:

Theorem 1. There is an absolute constant γ such that if F is a fi-
nite field, P and L are sets of points and lines respectively in F × F with
|P | = |L| = n, and P is additionally a (2, γn2560/6419)-strong-antifield, then
I(P,L)� n3/2−1/12838.

1.5. Examples. Most of this paper is concerned with the proof of The-
orem 1. But since it is not necessarily obvious that many point sets should
satisfy the conditions of the theorem, we shall first show that it is easy
to construct examples in the important cases q = p2 and q = p4. This is
demonstrated by the following two corollaries; the first demonstrates the
requirement for limited interaction with subfields, and the second demon-
strates how one can ignore “small” subfields.

Corollary 1 (Construction when q = p2). Let t be a defining element
of Fp2 over Fp, so that Fp2 = Fp + tFp. Let P ⊆ Fp2 ×Fp2 with |P | = n, and
define A = A(P ) = {x : (x, y) ∈ P}. Suppose that |A| � p and A =

⋃
j∈J Aj

where J ⊆ Fp with |J | � max{p1/2, n2560/6419}, and Aj ⊆ Fp + jt with
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|Aj | � max{p1/2, n2560/6419} for each j ∈ J . Then I(P,L) � n3/2−1/12838

for all sets L of lines in Fp2 × Fp2 with |L| = n.

Proof. We need to show that the hypotheses imply that the subset P
is a (2, γn2560/6419)-strong-antifield. To do this, we first need to show that
P is simply a (2, γn2560/6419)-antifield. Note that the only sets of the form
aFp + b with a, b ∈ Fp2 are given by Fp + jt and tFp + k, where j, k range
over Fp. Note further that (Fp + jt) ∩ (tFp + k) = {jt + k}. We know by
assumption that

|A ∩ (Fp + jt)| � max{p1/2, n2560/6419}
for each j ∈ Fp. Observe that

|A ∩ (tFp + k)| =
∑
j∈Fp

|A ∩ (tFp + k) ∩ (Fp + jt)|

= #{j ∈ Fp : |A ∩ (Fp + jt)|}
≤ |J | � max{p1/2, n2560/6419}.

So we conclude that P is a (2, γn2560/6419)-antifield. Since |J | � max{p1/2,
n2560/6419}, it is also a (2, γn2560/6419)-strong-antifield, as required.

Corollary 2 (Construction when q = p4). Let t be a defining element
of Fp4 over Fp2, so that Fp4 = Fp2 + tFp2. Let P ⊆ Fp4 × Fp4 with |P | =
n � p6419/2560, and define A = A(P ) = {x : (x, y) ∈ P}. Suppose that
|A| � p2 and A =

⋃
j∈J Aj where J ⊆ Fp2 with |J | � max{p, n2560/6419},

and Aj ⊆ Fp2 + jt with |Aj | � max{p, n2560/6419} for each j ∈ J . Then
I(P,L)� n3/2−1/12838 for all sets L of lines in Fp4 × Fp4 with |L| = n.

Proof. We need to show that the hypotheses imply that the subset P
is a (2, γn2560/6419)-strong-antifield. Note that since n � p6419/2560, we can
ignore the subfield Fp and need check this only with respect to the subfields
Fp2 and Fp4 . This checking follows Corollary 1.

2. Structure for proving Theorem 1. The rest of the paper is con-
cerned with proving Theorem 1. This section outlines the structure of the
proof. There are two components to this. The first is a key lemma that re-
lates the algebraic and geometric structure of antifields. The second applies
this lemma, and a method of Katz and Shen [7], as part of an otherwise
technical generalisation of the Helfgott–Rudnev proof.

2.1. The first component: Relating the algebraic and geometric
structure of antifields. Recall that we defined both antifields and strong-
antifields, and that Theorem 1 is a statement about strong-antifields. The
first component of the proof of Theorem 1 is to relate the algebraic and
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geometric structure of these objects by showing that under certain projective
transformations the image of a strong-antifield is an antifield.

The formal statement is expressed in terms of cross ratios. These are
projective invariants, which means that they are preserved by projective
transformations of a line and so are important in projective geometry.

Definition 2. Let F be a field and let a, b, c, d ∈ F with a 6= d and
b 6= c. Then define the cross ratio X(a, b, c, d) by

X(a, b, c, d) =
(a− b)(c− d)
(a− d)(c− b)

.

We can now state the key lemma:

Lemma 1. Let A ⊆ F be a (1, λ)-strong-antifield and let B ⊆ F . Suppose
there is a cross-ratio-preserving injection τ : B → A (i.e. an injection τ for
which X(τ(b1), τ(b2), τ(b3), τ(b4)) = X(b1, b2, b3, b4) whenever b1, b2, b3, b4
∈ B). Then B is a (1, λ)-antifield.

2.2. The second component: Applying the first component in a
technical modification of the Helfgott–Rudnev proof. The structure
of the second component broadly follows [6]. It begins by applying Lemma 1
in an adaptation of an argument of Bourgain, Katz and Tao [2] to replace
L and P with a construction of lines and points of a certain form, at the
expense of some incidences and of passing from a strong-antifield to an
antifield.

Proposition 1. Let F be a field, and let P and L be a set of lines and
points respectively in F × F with |P | = |L| = n such that I(P,L) = n3/2−ε

for some ε > 0. Let λ ≥ 0. Then, if P is a (2, λ)-strong-antifield there exist:

(1) sets A,B ⊆ F with |A|, |B| � n1/2+ε and 0 /∈ B,
(2) a set LA of lines through the origin with gradients in A,
(3) a set LB of horizontal (i.e. gradient 0) lines with y-intercepts in B,
(4) a (2, λ)-antifield P ∗ with |P ∗| ≤ n, the points of which each lie on

the intersection of a line in LA with a line in LB,
(5) a set L∗ of lines with |L∗| ≤ n and LA, LB ⊆ L∗,

such that I(P ∗, L∗)� n3/2−5ε.

Following [6] we then generalise the definition of incidences to collinear
k-tuples for any integer k:

Definition 3. Let F be a field. Let P be a finite set of points in F ×F
and let L be a finite set of lines in F ×F . We define the number of collinear
k-tuples between P and L, denoted Ik(P,L), by

Ik(P,L) = |{(p1, . . . , pk, l) ∈ P k × L : p1, . . . , pk ∈ l}|.
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This generalises the definition of incidences because I(P,L) = I1(P,L).
Moreover, the following lemma shows that Hölder’s inequality relates inci-
dences to collinear k-tuples:

Lemma 2. Let F be a field and k ∈ N. Let P,L be sets of points and
lines in F × F . Then Ik(P,L) ≥ I(P,L)k/|L|k−1.

Proof. Define f : L → N by f(l) =
∑

p∈P δlp where δlp = 1 if p ∈ L

and 0 otherwise, i.e. f(l) is the number of points in P that are incident
to l. Note that ‖f‖k = Ik(P,L)1/k. Hölder’s inequality implies that ‖f‖1 ≤
‖f‖k‖1‖k/(k−1), which is the same as I(P,L) ≤ Ik(P,L)1/k|L|(k−1)/k.

Applying Lemma 2 with k = 3 reinterprets Proposition 1 as a lower
bound on collinear triples:

Corollary 3. With the notation in Proposition 1 and Definition 3,
we also have I3(P ∗, L(P ∗)) � n5/2−15ε, where L(P ∗) is the set of lines
determined by pairs of points in P ∗.

So we have a lower bound on collinear triples in P ∗. Separately, the
next proposition gives an upper bound on this quantity, which is obtained
by combinatorial methods. Its proof uses the method in [7] to adapt the
approach in [6].

Proposition 2. There is an absolute constant γ1 such that if:

• F is a field and A, B are finite subsets of F with 0 /∈ B,
• LA is the set of lines through the origin with gradients lying in A,
• LB is the set of horizontal lines crossing the y-axis at some b ∈ B,
• P is a set of points, each lying on the intersection of some line in LA

with some line in LB,
• T := I3(P,L(P )),
• P is, additionally, a

(
2, γ1T 65

|A|130|B|194
)
-antifield,

then
T � max

{
|A|

643
321 |B|

961
321 , |A|

535
267 |B|

799
267 , |A|

499
249 |B|

745
249
}
.

The results collected above then allow us to prove Theorem 1:

Proving Theorem 1 from the propositions. Let |P | = |L| = n with
I(P,L) = n3/2−ε. If ε > 1/12838 then we are already done, so assume
that ε ≤ 1/12838. We shall find a constant γ such that ε ≥ 1/12838 so long
as P is a (2, γn1/2−1299/12838)-strong-antifield.

So let us suppose that P is a (2, γn1/2−1299/12838)-strong-antifield, where
γ is a constant to be specified. Apply Proposition 1 and Corollary 3 to obtain
a (2, γn1/2−1299/12838)-antifield P ∗ for which

(1) T := I3(P ∗, L(P ∗))� n5/2−15ε
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and for which Proposition 2 is applicable so long as

(2) γn1/2−1299/12838 ≤ γ1T
65

|A|130|B|194

where γ1 is an absolute constant. Note also that

(3) |A|, |B| � n1/2+ε.

Now, since ε ≤ 1/12838 and combining (1) and (3), we see that there is an
absolute constant γ2 such that

n1/2−1299/12838 ≤ n1/2−1299ε ≤ γ2
T 65

|A|130|B|194
.

So we can ensure that (2) holds by taking γ = γ1/γ2. We therefore have, by
Proposition 2,

(4) T � max
{
|A|

643
321 |B|

961
321 , |A|

535
267 |B|

799
267 , |A|

499
249 |B|

745
249
}
.

Comparing (1) and (4), plugging in (3), and taking logs then yields
ε ≥ 1/12838 as required.

2.3. The rest of this paper. The proof of Theorem 1 will be complete
once Propositions 1 and 2 have been established. Lemma 1 is used for proving
Proposition 1. The proofs of these three results are the subject of the rest
of the paper:

• Section 3 presents the proof of Lemma 1.
• Section 4 presents the proof of Proposition 1.
• Section 5 collects some technical lemmata that will be useful when

proving Proposition 2, some with proof and some without.
• Finally, Section 6 presents the proof of Proposition 2.

3. Proving Lemma 1. For a set A, define X(A) = {X(a, b, c, d) :
a, b, c, d ∈ A, a 6= d, b 6= c}. To prove Lemma 1 we will need the following
intermediate result:

Lemma 3. Let F be a field. Suppose A ⊆ F and there is a subfield G
of F for which X(A) ⊆ G. Then either |A ∩ (xG+ y)| ≤ 2 for all x, y ∈ F ,
or there exist x, y ∈ F such that A ⊆ xG+ y.

Proof. We show that if |A ∩ (xG+ y)| ≥ 3 then A ⊆ xG+ y. Let a, b, c
be three distinct elements of A ∩ (xG+ y) and suppose for a contradiction
that A * xG+ y. Then we can find d ∈ A with d /∈ xG+ y. So we have

a = g1x+ y, b = g2x+ y, c = g3x+ y, d = g4x+ z,

where g1, g2, g3, g4 ∈ G and (z − y)/x /∈ G. Moreover, since a, b, c are dis-
tinct, we know that g1, g2, g3 are distinct. Finally, we see that a, b, c 6= d. We
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then know by assumption that
(a− b)(c− d)
(a− d)(c− b)

∈ G.

But we also have
(a− b)(c− d)
(a− d)(c− b)

=
x(g1 − g2)(x(g3 − g4) + (y − z))

(x(g1 − g4) + (y − z))(x(g3 − g2))

=
g1 − g2
g3 − g2

·
g3 − g4 + y−z

x

g1 − g4 + y−z
x

.

Since g1, g2 and g3 are distinct, this means that

g3 − g4 + y−z
x

g1 − g4 + y−z
x

=: g5 ∈ G.

We now split into two cases, according to whether or not g5 = 1. If g5 = 1
then we obtain g3 = g1, which contradicts the fact that these two elements
are distinct. If g5 6= 1 then we obtain

y − z
x

=
g5(g1 − g4)− g3 + g4

1− g5
∈ G,

which contradicts the fact that y−z
x /∈ G. Either way, we are done.

Corollary 4. Let F be a field, G be a subfield of F , A ⊆ F be a
(1, λ)-strong-antifield, and A′ ⊆ A be such that |A′| ≥ max{λ, |G|1/2}. Then
X(A′) * G.

Proof. Suppose that there exists A′ ⊆ A with |A′| ≥ max{λ, |G|1/2} and
X(A′) ⊆ G. Then by Lemma 3, either A′ ⊆ aG + b for some a, b ∈ F , or
|A′ ∩ (aG+ b)| ≤ 2 for all a, b ∈ F .

In the former case, we have A′ ⊆ A ∩ (aG + b) and so |A ∩ (aG+ b)|
≥ max{λ, |G|1/2}. In the latter case, |A′ ∩ (G + b)| ≤ 2 for all distinct
translates G + b of G, which means that A′ and therefore A intersects at
least max{λ, |G|1/2}/2 such translates.

Either way, we contradict the fact that A is a (1, λ)-strong-antifield.

We are now in a position to prove Lemma 1.

Proof of Lemma 1. Suppose for a contradiction that there is a subfield
G of F and a, b ∈ F such that |B ∩ (aG + b)| ≥ max{λ, |G|1/2}. Let B′ =
B∩ (aG+ b). Then τ(B′) ⊆ A and |τ(B′)| = |B′| ≥ max{λ, |G|1/2}, but also
X(τ(B′)) = X(B′) ⊆ G. This contradicts Corollary 4.

4. Proof of Proposition 1. We will now use Lemma 1 to prove Propo-
sition 1. Recall that for a point p and a line l we define δpl to be 1 if p ∈ l
and 0 otherwise. We initially follow [2] and [6].
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The first step is to show that we may assume every point in P is in-
cident to � n1/2−ε and � n1/2+ε lines in L. Indeed, let P+ = {p ∈ P :
p is incident to ≥ 4n1/2+ε lines l ∈ L}. Then

I(P+, L) =
∑
p∈P+

∑
l∈L

δpl ≤
1

4n1/2+ε

∑
p∈P+

(∑
l∈L

δpl

)2

=
1

4n1/2+ε

∑
l,l′∈L

∑
p∈P+

δplδpl′ ≤
n3/2−ε

2
.

Similarly, let P− = {p ∈ P : p is incident to ≤ n1/2−ε/3 lines l ∈ L}. Then

I(P−, L) =
∑
p∈P−

∑
l∈L

δpl ≤
∑
p∈P−

n1/2−ε

3
≤ n3/2−ε

3
.

So between them P+ and P− contribute only five sixths of the n3/2−ε inci-
dences. Without loss of generality we shall discard them and assume from
now on that |P | ≤ n, and that every point p ∈ P is incident to � n1/2−ε

and � n1/2+ε lines in L.
Let L1 be the set of “rich” lines in L defined by

L1 = {l ∈ L : l is incident to ≥ n1/2−ε/20 points p ∈ P}.

Let P1 be the set of points in P that are “bushy” relative to L1, defined by

P1 = {p ∈ P : p is incident to ≥ n1/2−ε/20 lines in L1}.

We need to check that P1 is non-empty. Note first that

I(P,L \ L1) =
∑
p∈P

∑
l∈L\L1

δpl ≤
∑

l∈L\L1

n1/2−ε

20
≤ n3/2−ε

20

and therefore I(P,L1)� I(P,L). Now note that

I(P \ P1, L1) =
∑

p∈P\P1

∑
l∈L1

δpl <
∑

p∈P\P1

n1/2−ε

20
≤ n3/2−ε

20
.

This means that I(P1, L1) � I(P,L1) � I(P,L) and so P1 is certainly
non-empty. Now for each p ∈ P1 let Pp be the set of points in P that are
joined to p by a line in L1. We have

|Pp| =
∑
q∈P

∑
l∈L1

δplδql =
∑
l∈L1

δpl
∑
q∈P

δql � n1/2−ε
∑
l∈L1

δpl � n1−2ε.

This means that

|P1|n1−2ε �
∑
p∈P1

|Pp| ≤
√
|P1|

√ ∑
p,q∈P1

|Pp ∩ Pq|
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where the second inequality follows by Cauchy–Schwarz. So we have

(5) |P1|n2−4ε �
∑
p,q∈P1

|Pp ∩ Pq|.

For each p ∈ P define xp to be the x-coordinate of p, and for each x ∈ F
define P x = {p ∈ P : xp = x}. It is easy to see that |P x|n1/2−ε � I(P x, L) ≤
2n and so |P x| � n1/2+ε for every x ∈ F . Plugging this into (5) yields

|P1|n2−4ε �
∑

p,q∈P1 : xp 6=xq

|Pp ∩ Pq|+
∑
p∈P1

∑
q∈Pxp

|Pp ∩ Pq|

�
∑

p,q∈P1 : xp 6=xq

|Pp ∩ Pq|+ |P1|n3/2+ε.

We can therefore fix two distinct points p, q ∈ P1 with xp 6= xq such that

|Pp ∩ Pq| �
n2−4ε

|P |
� n1−4ε.

Now let P ′ = Pp ∩ Pq and note that

I(P ′, L) =
∑
p∈P ′

∑
l∈L

δpl ≥ |P ′|n1/2−ε � n3/2−5ε.

Since I(P xp , L) ≤ n we can discard all points in P xp other than p, and
thereby assume P xp = {p}.

At this point we diverge from [2] and [6]. All we shall carry forward are
the facts that:

• |P ′|, |L| ≤ n.
• I(P ′, L)� n3/2−5ε.
• P ′ is a (2, λ)-strong-antifield.
• There are two points p, q, lying on distinct vertical lines, such that
P ′ = Pp ∩ Pq where Pp is a set of points lying on O(n1/2+ε) lines
through p, and Pq is a set of points lying on O(n1/2+ε) lines through q.
• No point in P ′ lies on the vertical line through p.

These facts are unaffected by translation and so without loss of generality
we shall assume that p is in fact the origin.

Recall that the projective plane P2(F ) is defined to be F 3 \ (0, 0, 0),
modulo dilations. We embed F × F in P2(F ) by identifying (x, y) ∈ F × F
with (x, y, 1) ∈ P2(F ). This accounts for all elements of P2(F ) apart from
those of the form (x, y, 0); these are said to lie on the line at infinity. For
our purposes, the only such point we need consider is (1, 0, 0). Every line
incident to this point has gradient 0, and is therefore horizontal. A projective
transformation is an invertible linear map from P2(F ) to itself, i.e. a 3 × 3
non-singular matrix, and has the important property that it maps points to
points and lines to lines, thereby preserving the number of incidences.



Incidence bounds over finite fields 251

Returning to the proof, we apply the projective transformation τ given
by

τ =

 0 0 1
0 1 0
1 0 0

 .

Note that:

• I(τ(P ′), τ(L)) = I(P ′, L)� n3/2−5ε.
• τ maps the y-axis to the line at infinity. In particular, it maps the

origin (which we have assumed to be p) to the point at infinity with
gradient 0, and so the points in τ(Pp) lie on O(n1/2+ε) horizontal lines.
• Since P ′ has no points on the y-axis, the image τ(P ′) is contained in
F × F .
• Since q does not lie on the y-axis, the point τ(q) lies in F ×F and not

on the line at infinity. Every point in τ(Pq) lies on one of O(n1/2+ε)
lines through τ(q).
• τ(x, y) = (1/x, y/x) for each point (x, y) with x 6= 0. So the map
x 7→ x−1 is a cross-ratio-preserving injection from {x : (x, y) ∈ τ(P ′)}
to {x : (x, y) ∈ P ′}. Since P ′ is a (2, λ)-strong-antifield, Lemma 1
implies that τ(P ) is a (2, λ)-antifield.

From the above we see that we have a (2, λ)-antifield P ∗ = τ(P ′) and a
line set L∗ = τ(L) such that:

• |P ∗|, |L∗| ≤ n.
• I(P ∗, L∗)� n3/2−5ε.
• Each point in P ∗ lies on

(a) one of O(n1/2+ε) lines in L∗ that pass through a single point s in
F × F ,

(b) one of O(n1/2+ε) horizontal lines in L∗.

The properties above are again invariant under translation and so with-
out loss of generality we may assume that s is the origin. And since each
horizontal line in P ∗ contributes at most n incidences we can discard points
to assume that 0 /∈ B. We then take A to be the set of gradients of the
O(n1/2+ε) lines through the origin, and B to be the y-intercepts of the
O(n1/2+ε) horizontal lines. This completes the proof of the proposition.

5. Lemmata for proving Proposition 2. This section collects the
technical lemmata that will be used to prove Proposition 2.

5.1. Pivoting results. We will make use of some “pivoting” results.
The first, Lemma 4, was applied in the Helfgott–Rudnev proof [6], and before
that in e.g. [5], [4], [8], [11] and [9]. It is stated here without proof.
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Lemma 4 (Pivoting lemma 1). Let F be a field, let Z ⊆ F and let
R(Z) = Z−Z

Z−Z . Let a, b ∈ F . Then if |R(Z)| ≥ |Z|2 there exist z1, z2, z3, z4 ∈
aZ + b such that for all Z ′ ⊆ Z with |Z ′| � |Z| we have

|Z|2 ≈ |(z1 − z2)Z ′ + (z3 − z4)Z ′|.

The next lemma is a quick and well-known result that is a necessary tool
for the lemma that follows it:

Lemma 5. Let F be a field, let Z ⊆ F and let R(Z) = Z−Z
Z−Z . If x /∈ R(Z)

then |Z + xZ| ≈ |Z|2.

Proof. Clearly |Z + xZ| � |Z|2, so we seek |Z + xZ| � |Z|2. If there
exist z1, z2, z3, z4 ∈ Z with z2 6= z4 and z1 + xz2 = z3 + xz4, then we can
write x = (z1 − z3)/(z2 − z4), which contradicts the fact that x /∈ R(Z). So
there is only one way of writing each v ∈ Z + xZ in the form v = z1 + xz2
with z1, z2 ∈ Z. We therefore have |Z + xZ| = |Z|(|Z| − 1)/2 � |Z|2, as
required.

Lemma 6, due to Katz and Shen [7], generalises an approach that is
traditionally used in conjunction with Lemma 4. The generalisation means
that the result allows for the possibility of non-trivial additive subgroups.

Lemma 6 (Pivoting lemma 2). Let F be a field and let Z ⊆ F be finite
such that R(Z) = Z−Z

Z−Z is not a subfield of F . Let a, b ∈ F . Then either

1. R(aZ + b) is not closed under multiplication, in which case there exist
x1, x2, z1, z2, z3, z4 ∈ Z such that

|Z ′|2 ≤ |x1(z1 − z2)Z ′ − x2(z1 − z2)Z ′ + x1(z3 − z4)Z ′|

for all Z ′ ⊆ Z, or
2. R(aZ + b) is closed under multiplication but is not closed under ad-

dition, in which case there exist y1, y2, y3, y4 ∈ Z such that

|Z ′|2 ≤ |(y1 − y2)Z ′ + (y3 − y4)Z ′ + (y3 − y4)Z ′|

for all Z ′ ⊆ Z.

Proof. Note that R(aZ+b) = R(Z) so without loss of generality we may
assume a = 1 and b = 0.

Case 1. Since R(Z) · R(Z) 6= R(Z) there are x1, x2, x3, x4, y1, y2, y3, y4

∈ Z with
x1 − x2

x3 − x4

y1 − y2

y3 − y4
/∈ R(Z).

This can be written as
x1 − x2

x1

x1

x1 − x3

x1 − x3

x4

x4

x3 − x4

y1 − y2

y3 − y4
/∈ R(Z)
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and so there are a1, a2, b1, b2, b3, b4 ∈ Z with a1−a2
a1

b1−b2
b3−b4 /∈ R(Z). Therefore,

for any Z ′ ⊆ Z,

|Z ′|2 ≈
∣∣∣∣Z ′ + a1 − a2

a1

b1 − b2
b3 − b4

Z ′
∣∣∣∣

≤ |a1(b1 − b2)Z ′ − a2(b1 − b2)Z ′ + a1(b3 − b4)Z ′|.

This completes the proof of Case 1.

Case 2. We seek z1, z2, z3, z4 ∈ Z such that z1−z2
z3−z4 + 1 /∈ R(Z). We will

then be done, as for any Z ′ ⊆ Z we will have

|Z ′|2 ≈
∣∣∣∣Z ′ + (x1 − x2

x3 − x4
+ 1
)
Z ′
∣∣∣∣

≤ |(x1 − x2)Z ′ + (x3 − x4)Z ′ + (x3 − x4)Z ′|.

Since R(Z) +R(Z) 6= R(Z) there are x1, x2, x3, x4, y1, y2, y3, y4 ∈ Z with

x1 − x2

x3 − x4
+
y1 − y2

y3 − y4
/∈ R(Z).

On the other hand, since R(Z) · R(Z) = R(Z) there are z1, z2, z3, z4 ∈ Z
with

x1 − x2

x3 − x4

y3 − y4

y1 − y2
=
z1 − z2
z3 − z4

.

Combining these two facts gives

z1 − z2
z3 − z4

+ 1 =
x1 − x2

x3 − x4

y3 − y4

y1 − y2
+ 1 =

y3 − y4

y1 − y2

(
x1 − x2

x3 − x4
+
y1 − y2

y3 − y4

)
/∈ R(Z).

This completes the proof of Case 2 and therefore of the lemma.

We will also use the following lemma, due to Katz and Shen. A proof
can be found in [7].

Lemma 7. If R(Z) ⊆ G for some subfield G of F , then Z ⊆ aG+ b for
some a, b ∈ F .

5.2. A lemma about sumsets. The following lemma was used in the
Helfgott–Rudnev paper [6], and is originally due to Bourgain [1]:

Lemma 8. Let F be a field. Let X and Y be finite subsets of F and let
K = maxy∈Y |X + yX|. Then there exist x1, x2, x3 ∈ X such that

|(X − x1) ∩ (x2 − x3)Y | � |Y | |X|/K.

Proof. Let E be the number of solutions to the equation x1 + yx2 =
x3 + yx4 with x1, x2, x3, x4 ∈ X and y ∈ Y . Then
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E =
∑
y∈Y

∑
k∈X+yX

∣∣∣∣X ∩ (X − ky

)∣∣∣∣2 ≥∑
y∈Y

(∑
k∈X+yX

∣∣X ∩ (X−ky )∣∣)2
|X + yX|

≥ |X|
4|Y |
K

.

So there exist z1, z2 ∈ X for which the equation x1 + yz1 = z2 + yx2 has
� |X|2|Y |/K solutions (x1, x2, y) ∈ X × X × Y . In other words, if X1 =
X − z1 and X2 = X − z2 then there are � |X|2|Y |/K solutions (u, v, y) ∈
X1 × X2 × Y to the equation v = yu. By averaging, there is an element
u∗ = x∗ − z1 ∈ X1 with x∗ ∈ X such that v = yu∗ has � |Y | |X|/K
solutions. Thus

|(X − z2) ∩ (x∗ − z1)Y | = |X2 ∩ u∗Y | � |Y | |X|/K.

5.3. Standard results from additive combinatorics. We record
some standard results from additive combinatorics. The first formalises a
common technique.

Lemma 9 (Popularity pigeonholing). Let X be a finite set and let f :
X → [1, N ] be a function. Then there is a subset Y ⊆ X with |Y | �∑

x∈X f(x)/N such that for any y ∈ Y we have f(y)�
∑

x∈X f(x)/|X|.
Proof. Let Y = {x ∈ X : f(x) ≥ α} where α =

∑
x∈X f(x)/(2|X|). We

seek to show that |Y | �
∑

x∈X f(x)/N . We see this as follows:∑
x∈X

f(x) =
∑

x : f(x)≥α

f(x) +
∑

x : f(x)<α

f(x) ≤ N |Y |+ α|X|.

So we have

|Y | ≥
∑

x∈X f(x)− α|X|
N

=
∑

x∈X f(x)
2N

�
∑

x∈X f(x)
N

.

We will use the following form of the Plünnecke–Ruzsa inequality, due
to Ruzsa [10]:

Lemma 10 (Plünnecke–Ruzsa inequality). Let X,B1, . . . , Bk⊆Fp. Then∣∣∣ k∑
j=1

Bj

∣∣∣� ∏k
j=1 |X +Bj |
|X|k−1

.

The following lemma is a version of the Balog–Szemerédi–Gowers theo-
rem. A proof can be found in [13], but this appears to have a typographical
error which leads to a factor of K4

1 , rather than the correct exponent of 5
below. See [3] for a proof yielding the exponent of 5.

Lemma 11 (Balog–Szemerédi–Gowers). Let X,Y be finite subsets of a
field. Suppose that there is a subset G ⊆ X × Y such that

|G| ≥ |X| |Y |/K1 and |X +G Y | ≤ K2|X|1/2|Y |1/2.
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Then there exist X ′ ⊆ X and Y ′ ⊆ Y with

|X ′| � |X|/K1, |Y ′| � |Y |/K1

such that
|X ′ + Y ′| � K5

1K
3
2 |X|1/2|Y |1/2.

A proof of the following “covering” result can be found in [11].

Lemma 12 (Covering lemma). Let G be a group and B,C ⊆ G be finite.
Let ε ∈ (0, 1). Then the number of translates of C required to cover (1−ε)|B|
elements of B is Oε(|B + C|/|C|).

6. Proof of Proposition 2. This section uses the results of Section 5
to prove Proposition 2.

6.1. Structure of the proof. We shall assume that P is a (2, λ)-
antifield for some λ, and then show that the conclusion of the proposition
follows when λ ≈ T 65/(|A|130|B|194).

The proof of Proposition 2 uses the following three claims, whose proofs
are deferred. We shall first see how they are applied to prove the proposition.

Claim 1. There is a subset C ⊆ Fq with |C| � T 5/(|A|10|B|14) such
that for each c ∈ C there is a pair of (1, λ)-antifields A1

c , A
2
c ⊆ F with

|A1
c |, |A2

c | �
T

|A| |B|3
,(6)

|A1
c + cA2

c | �
|A|11|B|15

T 5
.(7)

Moreover, there exists c∗ ∈ C such that, writing A∗ = Ac∗, we have

(8) |A1
c ∩A1

∗|, |A2
c ∩A2

∗| �
T 4

|A|7|B|12

for all c ∈ C.

Claim 2. The following bounds hold for each c ∈ C:

|A1
c +A1

c |, |A2
c +A2

c | �
|A|23|B|33

T 11
,(9)

|c∗A2
c + cA2

c | �
|A|59|B|87

T 29
,(10)

|c∗A2
∗ + cA2

c | �
|A|89|B|132

T 44
,(11)

|c∗A2
∗ + cA2

∗| �
|A|119|B|177

T 59
.(12)

Claim 3. There exists an integer Γ with

(13) Γ � |A|
48|B|72

T 24
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such that given any c ∈ ±C, x ∈ Fq, and D ⊆ A2
∗, a constant proportion of

cD + x can be covered with Γ translates of A1
∗.

6.2. Proof of Proposition 2, assuming claims. Apply Lemma 8
with X = A2

∗, Y = (1/c∗)C and, by inequality (12), K � |A|119|B|177/T 59.
This provides a1, a2, a3 ∈ A2

∗ such that∣∣∣∣(A2
∗ − a1) ∩ a2 − a3

c∗
C

∣∣∣∣� |A2
∗| |C|
K

� T 65

|A|130|B|194
.

For convenience, define Z = (A2
∗ − a1) ∩ a2−a3

c∗
C, to give the lower bound

(14) |Z| � T 65

|A|130|B|194
.

We seek an upper bound for |Z| with which to compare (14). There are
three possible cases:

1. R(Z) is not closed under multiplication. By Lemma 6 there are then
c1, c2, d1, d2, d3, d4 ∈ C such that for every Z ′ ⊆ Z with |Z ′| � |Z| we
have

|Z|2 � |c1(d1 − d2)Z ′ − c2(d1 − d2)Z ′ + c1(d3 − d4)Z ′|.
2. R(Z) is closed under multiplication but is not closed under addi-

tion. By Lemma 6 there are then c1, c2, c3, z4 ∈ C such that for every
Z ′ ⊆ Z with |Z ′| � |Z| we have

|Z|2 � |(c1 − c2)Z ′ + (c1 − c2)Z ′ + (c3 − c4)Z ′|.
3. R(Z) is a field, G say. Lemma 7 implies that in this case Z ⊆ aG+ b

for some a, b ∈ F . So, collecting together various facts, we have:

• Z ⊆ A2
∗ − a1.

• A2
∗ is a (1, λ)-antifield, and therefore so is A2

∗ − a1.
• Z ⊆ aG+ b for some a, b ∈ F .
• |Z| � T 65/(|A|130|B|194).

So for some λ ≈ T 65/(|A|130|B|194), the definition of a (2, λ)-antifield im-
plies that |Z| ≤ |G|1/2 = |R(Z)|1/2. Lemma 4 then implies that there are
c1, c2, c3, c4 ∈ C such that for every Z ′ ⊆ Z with |Z ′| � |Z| we have

|Z|2 � |(c1 − c2)Z ′ + (c3 − c4)Z ′|.
6.2.1. Dealing with Case 1. Given any Z ′ ⊆ Z with |Z ′| � |Z| and any

E ⊆ A2
∗ with |E| � |A2

∗|, apply Lemma 10 with X = c1(d1−d2)E and k = 3
to get

|Z|2 � |c1(d1 − d2)Z ′ − c2(d1 − d2)Z ′ + c1(d3 − d4)Z ′|

� |E + Z ′| |c1E − c2Z ′| |d1E − d2E + d3Z
′ − d4Z

′|
|A2
∗|2

.
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By definition of Γ from Claim 3, there is a subset S1 ⊆ A2
∗ with |S1| �

|A2
∗| such that d1S1 can be covered with Γ copies of A1

∗. Further, there is
a subset S2 ⊆ S1 with |S2| � |S1| � |A2

∗| such that −d2S2 can be covered
with Γ copies of A1

∗. And there is a subset S3 ⊆ S2 with |S3| � |A2
∗| such

that c1S3 can be covered with Γ copies of A1
∗. Set E = S3, so that d1E,

−d2E and c1E can be covered with Γ copies of A1
∗ each.

Similarly, recall that Z ⊆ A2
∗ − a1, and pick Z ′ ⊆ Z with |Z ′| � |Z|

such that d3Z
′,−d4Z

′ and −c2Z ′ can each be covered with Γ copies of A1
∗.

Altogether, this means that

|Z|2 � Γ 6|E + Z ′| |A1
∗ +A1

∗| |A1
∗ +A1

∗ +A1
∗ +A1

∗|
|A2
∗|2

≤ Γ 6|A2
∗ +A2

∗| |A1
∗ +A1

∗| |A1
∗ +A1

∗ +A1
∗ +A1

∗|
|A2
∗|2

.

Lemma 10 and the bound in Claim 3 then give

|Z|2 � Γ 6|A2
∗ +A2

∗| |A1
∗ +A1

∗| |A1
∗ + c∗A

2
∗|4

|A2
∗|5

� |A|
383|B|573

T 191
.

Comparing with (14) gives T � |A|643/321|B|961/321, which satisfies the
bound in the statement of the proposition.

6.2.2. Dealing with Case 2. Given any Z ′ ⊆ Z with |Z ′| � |Z| and any
E ⊆ A2

∗ with |E| � |A2
∗| we can apply Lemma 10 with X = (c1 − c2)E and

k = 2 to get

|Z|2 � |(c1 − c2)Z ′ + (c1 − c2)Z ′ + (c3 − c4)Z ′|

� |E + Z ′ + Z ′| |c1E − c2E + c3Z
′ − c4Z ′|

|A2
∗|

≤ |A
2
∗ +A2

∗ +A2
∗| |c1E − c2E + c3Z

′ − c4Z ′|
|A2
∗|

.

As in Case 1, pick Z ′ and E so that

|Z|2 � Γ 4|A2
∗ +A2

∗ +A2
∗| |A1

∗ +A1
∗ +A1

∗ +A1
∗|

|A2
∗|

.

Lemma 10 then gives

|Z|2 � Γ 4|A1
∗ + c∗A

2
∗|7

|A1
∗|2|A2

∗|4
� |A|

275|B|411

T 137
.

Comparing with (14) gives T � |A|535/267|B|799/267, which satisfies the
bound in the statement of the proposition.

6.2.3. Dealing with Case 3. As with Cases 1 and 2, pick Z ′ so that

|Z|2 � |(c1 − c2)Z ′ + (c3 − c4)Z ′| ≤ Γ 4|A1
∗ +A1

∗ +A1
∗ +A1

∗|.
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Then Lemma 10 gives

|Z|2 � Γ 4|A1
∗ + c∗A

2
∗|4

|A2
∗|3

� |A|
239|B|357

T 119
.

Comparing with (14) gives T � |A|499/249|B|745/249, which satisfies the
bound in the statement of the proposition.

The proof of the proposition is therefore complete, subject to the proofs
of Claims 1, 2 and 3, which are given below.

6.3. Proof of Claim 1. Every point in P is the intersection of a hor-
izontal line in LB (with y-coordinate lying in B) and a line through the
origin in LA (with gradient lying in A). Denote the lines in LB by hb for
each b ∈ B and the lines in LA by da for each a ∈ A. Furthermore, for each
b ∈ B define

Xb = {x ∈ F : (x, b) ∈ hb ∩ P}.

Note that Xb is a (1, λ)-antifield for each b ∈ B as it is contained in the
(1, λ)-antifield {x : (x, y) ∈ P}.

Now, the set L(P ) of lines and the set P of points generate T collinear
triples. So, by averaging, there are distinct b1, b2 ∈ B such that there are
at least T/|B|2 collinear triples (p1, p2, p3) ∈ P × P × P with p1 ∈ hb1 and
p2 ∈ hb2 .

By Lemma 9 there is then a set B′ ⊆ B with |B′| � T/(|A|2|B|2) such
that, for each b ∈ B′, there are � T/|B|3 collinear triples (p1, p2, p3) ∈
P × P × P with p1 ∈ hb1 , p2 ∈ hb2 and p3 ∈ hb.

This is the same as saying that for each b ∈ B′ there are � T/|B|3 pairs
x1 ∈ Xb1 , x2 ∈ Xb2 for which

x1

(
1− b− b1

b2 − b1

)
+ x2

(
b− b1
b2 − b1

)
∈ Xb.

So for each b ∈ B′, we can apply the Balog–Szemerédi–Gowers theorem
(Lemma 11) with

X =
(

1− b− b1
b2 − b1

)
Xb1 ,

Y =
b− b1
b2 − b1

Xb2 ,

G =
{

(x1, x2) ∈ Xb1 ×Xb2 : x1

(
1− b− b1

b2 − b1

)
+ x2

b− b1
b2 − b1

∈ Xb

}
,

|G| � T

|B|3
,
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K1 = |Xb1 | |Xb2 |
|B|3

T
,

K2 =
|Xb|

|Xb1 |1/2|Xb2 |1/2
,

to find subsets A1
b ⊆ Xb1 and A2

b ⊆ Xb2 with∣∣∣∣A1
b +

(
b1 − b2
b2 − b

− 1
)
A2
b

∣∣∣∣ =
∣∣∣∣(1− b− b1

b2 − b1

)
A1
b +

b− b1
b2 − b1

A2
b

∣∣∣∣
� |Xb|3|Xb1 |4|Xb2 |4|B|15

T 5

� |A|
11|B|15

T 5
,

|A1
b | �

T

|Xb2 | |B|3
� T

|A| |B|3
,

|A2
b | �

T

|Xb1 | |B|3
� T

|A| |B|3
.

Moreover, note that A1
b and A2

b are both (1, λ)-antifields for each b ∈ B′
as they are contained in the (1, λ)-antifields Xb1 and Xb2 respectively.

By dropping at most one element we may assume that b2 /∈ B′. Now let
C ′ =

{
b1−b2
b2−b −1 : b ∈ B′

}
and note that the map b 7→ b1−b2

b2−b −1 is a bijection.
Define sets A1

c , A
2
c by Aic = Aib(c) for each c ∈ C ′. Then we have

|C ′| = |B′| � T

|A|2|B|2
,

|A1
c + cA2

c | �
|A|11|B|15

T 5
for each c ∈ C ′,

|A1
c |, |A2

c | �
T

|A| |B|3
for each c ∈ C ′.

Let Pc = A1
c×A2

c , so that |Pc| � T 2/(|A|2|B|6) for each c ∈ C ′. Cauchy–
Schwarz implies that

|C ′| T 2

|A|2|B|6
�
∑
c∈C′
|Pc| ≤ |A|

√ ∑
c,c′∈C′

|Pc ∩ Pc′ |.

So there is a c∗ ∈ C ′ such that∑
c∈C′
|Pc ∩ Pc∗ | � |C ′|

T 4

|A|6|B|12
� T 5

|A|8|B|14
.

Lemma 9 then yields a subset C ⊆ C ′ such that

|Pc ∩ Pc∗ | �
T 4

|A|6|B|12
for all c ∈ C, |C| � T 5

|A|10|B|14
.
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Note that |Pc ∩ Pc∗ | = |A1
c ∩A1

c∗ | |A2
c ∩A2

c∗ | to see that

|A1
c ∩A1

c∗ |, |A2
c ∩A2

c∗ | �
T 4

|A|7|B|12

for each c ∈ C. This completes the proof of the claim.

6.4. Proof of Claim 2. The claim is proved by repeated application
of Lemma 10 and inequalities (6)–(8):

6.4.1. Proof of (9). Lemma 10 and the inequalities (6) and (7) imply
that

|A1
c +A1

c | ≤
|A1

c + cA2
c |2

|A2
c |

� |A|
23|B|33

T 11
.

Similarly for |A2
c +A2

c |, which completes the proof of (9).

6.4.2. Proof of (10). Lemma 10, and inequalities (8) and (9), imply that

|c∗A2
c + cA2

c | ≤
|c∗A2

c + c∗(A2
c ∩A2

∗)| |cA2
c + c∗(A2

c ∩A2
∗)|

|A2
c ∩A2

∗|

� |A
2
c +A2

c |
|A2

c ∩A2
∗|
|cA2

c + c∗(A2
c ∩A2

∗)|

� |A|
30|B|45

T 15
|cA2

c + c∗(A2
c ∩A2

∗)|.

Now apply Lemma 10 again, with (7) and (8), to see that

|cA2
c + c∗(A2

c ∩A2
∗)| �

|(A1
c ∩A1

∗) + cA2
c | |c∗(A2

c ∩A2
∗) + (A1

c ∩A1
∗)|

|A1
c ∩A1

∗|

≤ |A
1
c + cA2

c | |A1
∗ + c∗A

2
∗|

|A1
c ∩A1

∗|
� |A|

29|B|42

T 14
,

which completes the proof of (10).

6.4.3. Proof of (11). Lemma 10, and inequalities (7)–(10), imply that

|c∗A2
∗ + cA2

c | ≤
|c∗A2

∗ + c∗(A2
c ∩A2

∗)| |cA2
c + c∗(A2

c ∩A2
∗)|

|A2
c ∩A2

∗|

≤ |A
2
∗ +A2

∗| |c∗A2
c + cA2

c |
|A2

c ∩A2
∗|

� |A|
89|B|132

T 44
,

which completes the proof of (11).
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6.4.4. Proof of (12). Lemma 10, and inequalities (7)–(9) and (11), imply
that

|c∗A2
∗ + cA2

∗| �
|c∗A2

∗ + c(A2
c ∩A2

∗)| |cA2
∗ + c(A2

c ∩A2
∗)|

|A2
c ∩A2

∗|

≤ |c∗A
2
∗ + cA2

c | |A2
∗ +A2

∗|
|A2

c ∩A2
∗|

� |A|
119|B|177

T 59
.

This completes the proof of (12), and therefore of the whole claim.

6.5. Proof of Claim 3. Given D ⊆ A2
∗, x ∈ Fq and c ∈ C, use the

covering lemma (Lemma 12) to cover a constant proportion of cD+ x with

|cD + (A1
c ∩A1

∗)|
|A1

c ∩A1
∗|

≤ |cA
2
∗ + (A1

c ∩A1
∗)|

|A1
c ∩A1

∗|
translates of A1

c ∩A1
∗, and hence with the same number of translates of A1

∗.
Lemma 10 and inequalities (7)–(9) then give

|cA2
∗ + (A1

c ∩A1
∗)|

|A1
c ∩A1

∗|
� |cA

2
∗ + c(A2

c ∩A2
∗)| |(A1

c ∩A1
∗) + c(A2

c ∩A2
∗)|

|A1
c ∩A1

∗| |A2
c ∩A2

∗|

≤ |A
2
∗ +A2

∗| |A1
c + cA2

c |
|A1

c ∩A1
∗| |A2

c ∩A2
∗|
� |A|

48|B|72

T 24
.

The proof is similar when c ∈ −C. This completes the proof of the claim.

Acknowledgements. The author is grateful to the referee for some
helpful comments and corrections, to Oliver Roche-Newton and Misha Rud-
nev for useful discussions and for pointing out various typographical errors
in earlier drafts, and to Nick Gill for asking some awkward questions.

References

[1] J. Bourgain, Multilinear exponential sums in prime fields under optimal entropy
condition on the sources, Geom. Funct. Anal. 18 (2009), 1477–1502.

[2] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields and ap-
plications, ibid. 14 (2004), 27–57.

[3] J. Fox and B. Sudakov, Dependent random choice, arXiv:math/0909.3271, 2009.
[4] M. Z. Garaev, An explicit sum-product estimate in Fp, Int. Math. Res. Notices 2007,

no. 11, 1–11.
[5] A. A. Glibichuk and S. V. Konyagin, Additive properties of product sets in fields

of prime order, in: Additive Combinatorics, CRM Proc. Lecture Notes 43, Amer.
Math. Soc., 2007, 279–286.

[6] H. Helfgott and M. Rudnev, An explicit incidence theorem in Fp, Mathematika 57
(2011), 135–145.

[7] N. Katz and C.-Y. Shen, Garaev’s inequality in finite fields not of prime order,
Online J. Anal. Combin. 2008, no. 3.

[8] —, —, A slight improvement to Garaev’s sum product estimate, Proc. Amer. Math.
Soc. 136 (2008), 2499–2504.

http://dx.doi.org/10.1007/s00039-008-0691-6
http://dx.doi.org/10.1007/s00039-004-0451-1
http://dx.doi.org/10.1112/S0025579310001208
http://dx.doi.org/10.1090/S0002-9939-08-09385-4


262 T. G. F. Jones

[9] L. Li, Slightly improved sum-product estimates in fields of prime order, arXiv:math/
0907.2051, 2009.

[10] I. Z. Ruzsa, An application of graph theory to additive number theory, Sci. Ser. A
Math. Sci. (N.S.) 3 (1989), 97–109.

[11] C.-Y. Shen, Quantitative sum product estimates on different sets, Electron. J. Com-
bin. 15 (2008), no. 1, 7 pp.
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