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1. Introduction. Let p be an odd prime number, and ¢ a prime number
with p # £. For a number field F', let Fi,/F be the cyclotomic Z,-extension,
and F, its nth layer with Fy = F'. It is a well known theorem of Washington
[18] that when F' is an abelian field, the ¢-part of the class number hp, of
F,, is stable for sufficiently large n. For an abelian field F', we denote by
fr the conductor of F. In what follows, let F' be a real abelian field. For
simplicity, we always assume that p? { fr. For 0 < n < oo, denote by F,(f)
the cyclotomic Zg-extension over Fj,. In particular, ch? is the cyclotomic
Zy x ZLg-extension over F'. For an integer n < oo, let M),/ Fy) be the maximal
pro-¢ abelian extension unramified outside ¢, and My, = J,,~o My. Using
the above theorem of Washington, Friedman [2] proved the following:

PROPOSITION. For a real abelian field F', we have My, = MnFéﬁ) for a
sufficiently large n.

When F' is a real abelian field with ¢ { fr and £ 1 [F' : Q], an explicit
version of Washington’s theorem was obtained by Horie [9, [10, 11]. Namely,
he gave an explicit constant m = mp, ¢ depending on F', p and £ such that
the ratio hp, /hE, , is not divisible by ¢ for all n > m. The purpose of this
paper is to obtain an explicit version of Friedman’s result (under the same
assumption on F).

Before giving our results, let us introduce some notation. We put ng =
ord,(fP~1 — 1), where ord,(x) is the normalized p-adic additive valuation.
When ¢ = 2, let A, be the number of pth roots ¢ of unity such that Tr(¢) =
0 mod 2, and let B, = p — A,,. Here, Tr is the trace map from Q2((,) to
@2, Q2 being the field of 2-adic rationals. Further, for an integer £ > 2,
(. denotes a primitive kth root of unity. We define an integer w,, > 1 as
follows. We set @, = 1 when £ is a primitive root modulo p?. Otherwise,
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we put

(p—1—[p/€))-p~t if£>2o0r ng> 1,
. =
P min(Ay,, By) if { =2 and ng = 1.

Here, [z] denotes the largest integer < x. For a real abelian field F, let
m = mp be the non-p-part of the conductor fr. We put

Nppe = (lp(m)(p — 1)wp’€)¢>(pfl)
where ¢(x) is the Euler function.

THEOREM 1. Let F be a real abelian field with ¢ { fr, p*> 1 fr and
0} [F:Q]. We have My = MnFéf) when p" 1710 > Np, .

The following is an immediate consequence of Theorem 1.

COROLLARY. Under the setting of Theorem 1, the ratio hg,/hE, | is
not divisible by ¢ when p" 17" > Np, .

When m = 1, the assertion of the Corollary was given in [I3], Theo-
rem 1(I)]. It was used to show with the help of computer that when p is
an odd prime number with p < 509, the ratio hyn/hy, is odd for any n > 1
where hyn is the class number of Q(¢yn+1) ([13, Theorem 2]).

The Corollary is quite similar to an assertion obtained directly from [T,
Proposition 3] which is given in a more general setting. (A correction to this
proposition is given in [12, p. 823].) Actually, applying [11, Proposition 3]
to the setting of the Corollary, we see that hg, /hr,_, is not divisible by £ if

P > (p = )P (mp )P,

We see that the Corollary is a little sharper than this result. Horie proved
[11l Proposition 3] by using (a) some tools in Leopoldt [15], in particular,
Leopoldt’s algebraic intepretation of the analytic class number formula for
a real abelian field and (b) his new idea and technique for a very subtle
treatment on cyclotomic units. We show Theorem 1 using Horie’s idea and
technique and some tools in modern theory of cyclotomic fields, in partic-
ular, the structure theorem of local units modulo cyclotomic units and the
Iwasawa main conjecture.

REMARK 1. When p = 3, Friedman and Sands [3] gave an explicit ver-
sion of the theorems of Washington and Friedman. Their method depends
on the fact that the roots of unity in Zs, the ring of 3-adic integers, are £1.
A reason that we excluded the case p = 2 is that their method can apply also
to this case. The method of Horie [9, [10, [11] and this paper is completely
different from theirs.

This paper is organized as follows. In Section 2, we give (1) a “A-
decomposed version” (Theorem 2) of Theorem 1 in terms of the lambda
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invariant associated to an f-adic L-function, and (2) another version (Theo-
rem 3) of Theorem 1 in terms of minus class groups. In Section 3, we prove
Theorem 2 postponing the proof of a key lemma (Lemma 3). In Section 5,
we prove Lemma 3 after preparing several lemmas in Section 4.

2. Theorems

2.1. A-decomposed version of Theorem 1. We denote by Z; and Qy
the ring of f-adic integers and the field of f-adic rationals, respectively, and
by Qy a fixed algebraic closure of Q. Let G be a finite abelian group and y
a Qg-valued character of G. Let X be a module over Z,[G]. When £ 1 |G/, let
X (x) be the x-component of X. Then we have a canonical decomposition

X =P Xk

where y runs over a complete set of representatives of the Q-conjugacy
classes of the Qy-valued characters of G. Letting X = X ® Qp, we denote
by X (x) the x-component of the Q;[G]-module X. For the definition of the
x-component and some of its properties, see Tsuji [17, Section 2].

Let F be a real abelian field (with p? { fr). For a while, we do not
assume that ¢ { frp and ¢ 1 [F : Q]. Let A = Gal(F/Q), and let Ay and Ay
be the ¢-part and the non-¢-part of A, respectively. Let I, = Gal(F,,/F) =

Gal(F#)/Fg). We put
Gn = Gal(M,,/F?) and G, = G, ® Q.

It is known that G,, is a free Z,-module of finite rank. This follows from
Iwasawa [14, Theorem 18] and Ferrero and Washington [1, Theorem|. We
naturally regard the groups G, and G, as modules over the groups defined
above. To prove Theorem 1, it suffices to show that G, (¢,) = {0} for each
Qq-valued character of Iy, of order p"® (when p"tl=m0 > N Fpe)- This is
equivalent to the condition dim én(z/;n) = 0 as G, is free over Z,. Here,
dim(x) denotes the dimension over Q.

Let ¢ = ¢ or 4 according as ¢ > 3 or £ = 2, and let wj (z)0)* — Z)
be the Teichmiiller character of conductor ¢. For a Dirichlet character ¥,
we denote by f, the conductor of x. Let x be a nontrivial Qy-valued even
Dirichlet character such that ¢2 { f, (resp. 8 fy) when £ > 3 (resp. £ = 2).
Namely, x is of the first kind. We denote by O, = Z,[x] the subring of Q,
generated by the values of x over Z,, and by {2, the field of fractions of O,.
Iwasawa constructed a power series g, (T') € O, [[T]] associated to the ¢-adic
L-function Ly(s, x) by

1) Gul(14 )" = 1) = SLels,)
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where ¢, is the least common multiple of ¢ and the conductor of . By [,
9x(T') is not divisible by £. Let A, be the A-invariant of the power series g.
We have A\, = 0 if and only if

1

2) 90(0) = 5Le0,2) = (1= (o7 )(O) - 5By

is an f-adic unit. Here, B, ! is the generalized Bernoulli number.
XY

Let F be again a real abelian field (with p? { fr). For Qp-valued char-
acters w and ¢ of Ay, and Ay, we regard the character x = wpiy, of
Gal(F,/Q) = A x I, as a primitive Dirichlet character and use the above
notation. Then it is known that the Iwasawa main conjecture for the minus
class groups (= Mazur and Wiles [I6, Theorem] and Wiles [20, Theorem
6.2]) implies

dim gn(wn) = Z [wapn : @Z] : )\wgml}n»
w, ¢
where w (resp. @) runs over a complete set of representatives of the Q-
conjugacy classes of the Qg-valued characters of A, (resp. Ag). For this, see
Greenberg [6, [7]; [6, Proposition 1] for the case ¢ > 3; and [6, Proposition 2]
and some arguments in pp. 42-43 of [7] for the case ¢ = 2.

Proof of Proposition. It follows from [2] that Ay, = 0 for sufficiently
large n. Hence, we obtain the assertion. =

In what follows, unless otherwise stated, we always assume that ¢ 1 fr,
p?{ fr and £{[F : Q]. Then the above formula for dim G(¢,) becomes

dim G (vn) = Y [Py, : Q- Mgy,
©

where ¢ runs over a complete set of representatives of the Qg-conjugacy
classes of the Qg-valued characters of A = Gal(F/Q). As the invariant Ay,
depends only on the characters ¢ and 1, we may and will replace the base
field F' with the real abelian field corresponding to .

Now, let ¢ be a Qy-valued even Dirichlet character of order d = dy,
F = F, the real abelian field corresponding to ¢, and A = Gal(#/Q). We
can regard ¢ as an injective homomorphism A — Q. Let m = my, be the
non-p-part of the conductor of ¢. We put

Ny = (£d(m)(p — 1)wy,e)? Y.

From what we have remarked above, Theorem 1 is an immediate conse-
quence of the following

THEOREM 2. Under the above setting, assume that ¢ + m, ¢ {1 d and
>t fo. Then Ao, = 0 for any 1, when p"t17m0 > N,
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In some cases, the assertion of Theorem 2 holds for a wider class of
Dirichlet characters because of the following lemma.

LEMMA 1. Let ¢ and v, be as in Theorem 2. Let @ be a Qp-valued even
Dirichlet character with £ { fo and p? 1 fo whose order is a power of {.
Assume that the sets of prime numbers dividing the conductors foy, and
foey, coincide. Then the condition Ayy, = 0 implies Agypy,, = 0.

Proof. We put x = ¢, m1 = fz, and mg = f, for brevity. We see
that my divides mq since the order of w is a power of ¢ and that of y is not
divisible by ¢. As m; (resp. mg) is relatively prime to ¢, the conductor of
wxwg_l (resp. Xwg_l) is m1l (resp. mol). We have

mlg 1 1 mlz

1 1
°B . -1 _B = cywo !

where a runs over the integers with 1 < a < mif and (a, m¢) = 1. The first
equality is just the definition, and the second one holds because of ma | my
and the assumption on m; and mg. Since wxwg_l(ﬁ) = Xwg_l(ﬁ) =0, we see
from (2) that it suffices to show

1 1
5 l,wxwg-_l = ZBI Xw;

—1mod L
where L is the prime ideal of the ¢-adic field .waw_—l. We prove this congru-
4

ence when ¢ = 2. For the case ¢ > 3, it is shown similarly. As the characters
wxwll_l and Xw4_1 are odd, we see that

1 1 2mq 2my

B Gt = g 2= (@) Dt ) e (o)
a=1
2m1 2’ml

4mlza wxw4 (a _*ZWX% a)

and that

1 2m1 2m1

§B Ly Za Xw4 (a _*ZXW

Let X (resp. Y) be the difference of the first (resp. second) terms of the
right hand sides of (3) and (4). It suffices to show that X =Y = 0 mod L.
Since the order of w is a power of ¢ = 2, the prime ideal £ divides w(a) — 1.
As awy ' (a) = 1 mod 4, it follows that

(4)

a-wwyt(a) —a-wyt(a) =w(a) — 1 mod 4L.
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Now, we see that

2m1 2mq
X = Z(wx(a) —x(a)) = Z(w(a) —1)x(a) =0 mod L.
a=1 a=1

Similarly, we can show Y =0 mod L. =

REMARK 2. The assumption in Lemma 1 is satisfied when the conductor
of w equals p. Therefore, the assertions of Theorems 1 and 2 hold for the
real abelian field F' = Q(¢,)" even if ¢ divides [F' : Q.

2.2. Another version of Theorem 1. In this subsection, we give
another formulation of Theorem 1. Let F' be, as before, a real abelian field
with p? { fr and £ { fr. We use the same notation as in Subsection 2.1.
We put L = F(¢;) and L, = F,({;) for 0 < n < oo, so that Lo /L is
the cyclotomic Z,-extension. For an integer J = 0, denote by L, ; the jth
layer of the cyclotomic Zs-extension L / Ly. Let h,, ; be the relative class
number of L, ;. Let A, ; be the /-part of the 1deal class group of L, ;,
and let X,, = @Am] be the projective limit of A, ; with respect to the
relative norms Ly, j+1 — Ly, j for j > 0. The class group A,_1,; is naturally
regarded as a subgroup of A,, ;. Actually, it is a direct summand of A, ; (cf.
[19, Lemma 16.15]). Hence, X,,_1 is also a direct summand of X,,. We put

Bn,j = An j/An-1,j and Yy = Xp /X, g = lim B, ;.

For a while, assume that ¢ > 3. Let w; be, as before, the Teichmiiller char-
acter of conductor ¢. We identify G = Gal(L/F) = Gal(L,/F,) with the
multiplicative group (Z/¢)* through the Galois action on (p, and regard wy
as a character of G. We denote by Y;,(wy) the wy-component of the Z/[G]-
module Y,,. We obtain the following assertion from Theorems 1 and 2.

THEOREM 3. Let F be a real abelian field with ¢ { fr, p*> 1 fr and
(4 [F : Q. When p"t1=m0 > Np,,, the following assertions hold.

(I) For £ > 3, the class group Yy, (wy) is trivial, and hence By, j(wy) is
trivial for all j > 0.

(II) For € =2, the ratio h,, ;/h, _, ; is odd for all j > 0.

Proof. First, let £ > 3. As in Subsection 2.1, let x = 1, be a Q-
valued character of Gal(F,/Q) = A x I,. Regarding wyx~! as a character
of Gal(L,/Q), we denote by X, (wyx™!) (resp. Yy, (wex™ 1)) the wyx!-com-
ponent of the Gal(L,/Q)-module X, (resp Y,,). We easily see that

Yo(we) = D Yalweloon)™) = > Xnlwelprn)™)
®sPn ®s%n

where ¢ (resp. ¥y,) runs over a complete set of representatives of the Q-
conjugacy classes of the Qg-valued characters of A (resp. of I, of order p™). It
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is known that X,,(wyx 1) is a finitely generated free module over O, (cf. [19,
Corollary 13.29]). Let A} be the free rank of the O,-module Xo(wex™1). By
the Iwasawa main conjecture, the lambda invariant A} equals the invariant
Ay associated to the power series g, (7). Therefore, we immediately obtain
the assertion from Theorems 1 and 2.

Let us deal with the case £ = 2. We see that the unit index of L,, ; equals 1
by Hasse [8, Satz 22]. Hence, it follows from the class number formula [19]
Theorem 4.17] that

_ _ 1
hn,j/hnﬂ,j: H <_2B1,S01/)n9w)

@sn,0

where ¢ (resp. 9,,) runs over the Qy-valued characters of A (resp. of I},
of order p"), and # runs over the Qo-valued even Dirichlet characters of
conductor dividing 2/12. Further, w = wy is the Teichmiiller character of
conductor 4. Let x = ¢, and let g, € O,[[T]] be the power series defined
by (1). By [19, Theorem 7.10], it also satisfies

Gu(Go(1+c)° — 1) = § La(5,x0)

where (y is a 2-power root of unity associated to 6. By Theorem 2, g, is a
unit of O, [[T]] and hence

1 1
gX(CG - 1) = §L2(07X0) = _531,@1&"90)
is a 2-adic unit. Therefore, we obtain the assertion. m

REMARK 3. (I) Because of Remark 2 or Lemma 1, the assertion of The-
orem 3 holds for F' = Q((,)" even if ¢ divides [F : Q).

(IT) When F = Q((,) ", a weaker version of Theorem 3 was given in [13]
Theorem 3.

3. Proof of Theorem 2. In what follows, we fix characters ¢ and ¥,
in Theorem 2, and use the same notation as in Theorem 2. For brevity, we
write

X = pn.

Let e, and ey, be the idempotents of Z¢[A] and Z,[I7,] corresponding to ¢
and v, respectively:

1 J—
=4 Z Trg, (e /. (e(6) 713,
€A

1 _
e = — Z Trg, (¢yn)/@c (¥ (1) "7
p Y€l
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Choose €, € Z[A] and éy, € Z[I3,] congruent to e, and ey, modulo /,
respectively. For n > 0, let K, = Q((m, (pn+1), and K, its maximal real
subfield. We have F,, C KJ because the conductor of F), is mp"t! when
n > 1 and it is m or mp when n = 0. We put t =1 4 p™ and

e = (=2 CmGpn+1 — 1

n pn+1 ng;n_'_l o 1
The element ¢, is a cyclotomic unit of K,7. We define a cyclotomic unit ¢,
of F,, by

€n = NK,?/FTL(C”)'

The Galois group Gal(K,/K,—-1) = Gal(K, /K |) is generated by the
automorphism sending (,n+1 to {;nﬂ. Hence, we see that

(5) Nn,n—l(en) =1
where Ny, ,—1 is the norm map from F;, to F;,,_;. We put

_ Cefy
M =€ .

We denote by F the Frobenius automorphism of F), at £.
LEMMA 2. Assume thatn > ng+ordy(d). If A\, > 0, then ) =n’, mod ¢2.

Proof. Let U, be the group of semi-local units of F}, at £. Let C,, be the
group of cyclotomic units of F,, defined in Gillard [4, §2.3], and let C,, be
the topological closure of C), NU, in U,. Let

0l = e’V € Culx).

For a Qg-valued character 6 of Gal(F;,/Q), the structure of the §-component
Cn(0) is slightly complicated when 6(¢) = 1 or ngfl(f) = 1. However, x(¢) =
©(0)n(f) # 1 because 1, () is a primitive p"*t1="0th root of unity and
n+ 1 —ng > ordy(d) by assumption. Further, Xwg_l(ﬂ) =0as (1 fy. The
x-part Un(x) is a free O,-module of rank 1. By the theorem of Gillard
[0, Theorem 2] on semi-local units modulo cyclotomic units, we see that
(Un/Cp)(x) is isomorphic to O, /gy (cy) as Oy-modules, where g, is the power
series defined by (1). Since the order dp™*! of x = 1, is relatively prime
to ¢, the extension (2, /Qy is unramified. It follows that the ideal g, (cy)Oy
equals £°O, for some nonnegative integer e. Assume that A\, > 0. Then,
as gy is not a unit, it follows that g,(c,)Oy C £O,. Therefore, 7, is an
fth power in U, and hence 7, = v mod #2 for some v € F,,. As F,/Q is
unramified at ¢, v¥ = v mod ¢. Therefore, we see that

nt =0t = T nt mod (% =
The following key lemma is shown in Section 5.
LEMMA 3. If pnti=no > Ny, then 0t # nf, mod (2.
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Proof of Theorem 2. As d is a divisor of ¢(mp), the condition pmti=m0
> N, implies n > ng + ord,(d). Hence, we obtain Theorem 2 immediately
from Lemmas 2 and 3. =

4. Lemmas

4.1. Lemmas. In this section, we prepare several lemmas which are
necessary to prove Lemma 3.

LEMMA 4. Let q; (1 < i < s) be distinct prime numbers with q; # £.
Let k = T1,¢" and ko =[], ¢/* with e; > f; > 1. Let N be a number field
unramified at each q;. Let A be a finite subset of Z, and for v € 7Z, let
A, consist of integers a € A with a = v mod kg. Let Kk : A — Oy be an
arbitrary map where Oy is the ring of integers of N. Then the condition
> aca kla)Cg =0 mod £ implies 3, 4 #(a)C; =0 mod L.

Proof. Let L = N((x) and Lo = N(Cg/k,)- As N is unramified at each ¢,
the degree [L : Lo] equals kg, and hence it is not divisible by ¢. Further, for
a kth root ¢ of unity, Trz, /1, (¢) = [L : Lo]¢ or 0 according as ¢k/ko =1 or
not. Assume that X = > 4 x(a)¢f = 0 mod /. Then, taking the trace of
¢, “X to Lo, we see from the above remark that

[L: Lo - Z k(a)Cp™" = 0 mod /.
a€Aqy

The assertion follows since £ 1 [L : Lg]. m

As in Horie [9), 10], we choose a complete set V of representatives of the
quotient y,—1/{+£1} as follows, where p,_1 is the group of (p — 1)st roots of
unity in the complex number field C. Write (p —1)/2 = my - - - ms where m;
is a power of a prime number with (m;, m;) =1 for i # j. We put

V= {exp<<cl+---+cs>7r\/—l> ’()gcigmi—l (1§z’§s)}.
mq mg
The following assertion was shown in [9, Lemma 7].

LEMMA 5. Let z : V — Z be a map such that z(v) > 0 for allv € V\{1}.
If Y ey 2(v)y =0, then 2(v) =0 for allv € V.

We fix an integer n > 2ng—1 and a prime ideal p of Q(up—1) over p. Let
be the set of integers u with 1 < u < p"t! —1 satisfying vP~! = 1 mod p"+!
and v = v mod p"*! for some v € V. Then we have a bijection

we:Z =YV
sending v € Z to v € V with v = v mod "+, B

In the following, we rewrite the expression 7, = €, ‘" into a more

convenient form and show some lemmas which are necessary to prove the
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key lemma. We abbreviate

G =0GCn and (= (e
in this subsection (and Section 5). We naturally identify I, with Gal(K,/Ko)
= Gal(K," /K.

By (5), we can replace éy,, with &, = éy, —aNy,—1 for any a € Z[I},].
The integer ng = ord, (P~ — 1) is the largest integer such that Q.(¢,) =
Q¢(¢pro). For v € I,, the trace of ¥, (7)™t to Qu(¢,) equals p™ 01, (v)~
or 0 according as 77" = 1 or not. For a € Z with a = 1 mod p, let 7, be the
automorphism in I, such that (7 = ¢* (and (;* = (p). For an integer j, we
put

sj=1 + jptizno,

From the definition of ey, and the above remark, we can write

1 pnoil _ n—mn,
Con = Tno > Trougae(Wnls) ™)y, € ZeIE ).
=0

As in [13], we fix a € Z[I?" "] so that the number of non-zero terms of
€y, — @Npn—1 mod £ is minimal. Let .Jy,, be the set of integers j with
0 < j < p"™ —1 such that the coefficient a; of Ys; in ey, — alNpp—1 mod 4
is non-zero. Then
(6) ey, — lNp 1 = Z a;j7ys;, mod £
je‘]dln
and we obtain the following
LEMMA 6. Under the above notation, we have
Erél¢n — EZ H Ezj,ysj
jGan
for some unit € of K.
For the cardinality |Jy, |, we showed in [I3, Lemma 8] that

Let (pro = ¥ (1 + p"T1770) be a primitive p™th root of unity in Q. Using
the congruence (6), we showed the following in [I3, Lemma 9].

LEMMA 7. Under the above notation, we have
2 @G € Ze[Gro]”
jet]a/)n
when n > 2ng — 1.

Denote by B, the subfield of Q(¢) = Q((yn+1) with [B, : Q] = p™.
In other words, B, is the real abelian field associated to ,. Let D =



Class group of a cyclotomic Z, X Z¢-extension 273

Gal(K;F/B,), Dy = Gal(K;} /B, (¢)") and D = Gal(K,,/B,,). We can natu-
rally regard A = Gal(F/Q) = Gal(F,/B,,) as a quotient of D, and hence ¢
as a character of D. The operator €,Ny+ . in Zyg[D] can be written in the
form

e‘PNKZf/Fn = Z bsd mod ¢
deD
for some integers bs € Z satisfying

1 _
b5 = g Tr@[((d)/@é((‘O(é) 1) mod /.
For each § € D, there exists a unique § € D such that Sl Kt = 6 and

C = C“é for some us € 7. Let uj be an integer (defined modulo m) Such

that Co = Co . We denote by us the unique integer with 1 < us < mp™*

satisfying us = u5 mod p" ™! and us = uf mod m. We put
I=I,={us|d€D} and I ={ueTl|u=1modp"}.

There is a natural bijection between I (resp. I;) and D (resp. D;). For an

integer v with (v,mp) = 1 and v»~! = 1 mod p"T!, there exists a unique

u = us € I such that v = +u mod mp"*Tt. We put b, = bs. Let 6y be an

arbitrary element of D, and ug = us,. We easily see that

50_16@NK7¢/F7L = Z bss,0 mod £.

6eD
Hence, under the above notation, we see from Lemma 6 that
51
77n0 = 6165 : gn,'ug
with
bsgs U ~US ajbugu
C0<53]_1 a;0s, C[)C i —1 jOuq
Sy = H H H H utus; _ )
¢ C(Sts _ ] cyctusi — 1
j€dy, €D 50 j€dy, uel, >0
Here, €1 is a pth root of unity and €2 is a unit of K,,. For brevity, we put
én = gn,l-
Then we see that Lemma 3 (the key lemma) is equivalent to the following
assertion because €] = ¢/ and (e5)” = ee mod ¢? where F is the Frobenius

automorphism of K,, over 4.
LEMMA 8. Under the above notation, & ;égf; mod ¢2 when pnt1—"m0 > Ny.

REMARK 4. The condition & # ¢ mod ¢ in Lemma 8 is invariant
under the Galois action. Hence, it is equivalent to 57{ wo F fr{,uo mod ¢? for
any ug € I.

Lemma 7 and the following lemma play an important role in the proof
of Lemma 8.
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LEMMA 9. For some integer ug € I, we have

> buguC # 0 mod ¢

u€ely
in Q(Go)-

The assertion of Lemma 9 is equivalent to saying that the conclusion in
Lemma 9 holds for some ug and some primitive mth root {p of unity in the
t-adic field Qg((p). So, in what follows, we mainly work ¢-adically.

For integers k > 1 and u, we denote by [u] = [u]; the class in Z/k =
Z/kZ containing u. We can naturally identify the Galois group D with
(Z/mp)* /(J) where J = [—1]. Under this identification, we have

Dy = {[ulmp | w = 1mod p}(J)/{J).
Though the sets I and I; defined above depend on n, we see that the maps
I — D= (Z/mp)*/(J) and I, — D

sending an integer u to the class 4 = [u]m, mod (J) are bijective. Since
the value b, depends only on the class u, Lemma 9 can be rewritten in the
following form:

LEMMA 10. Let m be an integer with (m,pl) = 1. Let ¢ be an even
Dirichlet character defined modulo mp. Assume that the non-p-part of the
conductor of v equals m, and the order d of ¢ is relatively prime to £. Then

Z Trg, (ca)/a. (e (uow) ~1) ¢l # 0 mod £
u€D

for some integer ug with (up, mp) = 1 and some primitive mth root (,, of
unity. Here, u runs over the integers with 1 < u < mp—1 and u =1 mod p.

4.2. Proof of Lemma 10. We begin with the following simple lemma.
For an integer k > 2, let u be the group of kth roots of unity in Q.

LEMMA 11. Let m be an integer and X a subset of Z/m. Let di and da
be integers with ¢ 1 da, and d the least common multiple of di and dy. Let
X — pay, [x] & €z, be an arbitrary map. Let (,, be a fixed primitive mth
root of unity in Q. Assume that for every € € pg,,

> Trg,(ca) /@, (€€x)Gn = 0 mod £
zeX
where x Tuns over the integers with 0 <z < m — 1 and [x] € X. Then

> Tr, (s, /00 (€2) G = 0 mod £.
reX

Proof. Let 2" = Qu(¢y) and 2 = Qu({y, ). As d is the least common
multiple, we see that 2 = 2({4,). Let £2{) = Q((q,) and 29 = [ N 2. As
¢ da, the extension (2)/(2 is tame and hence Trgr/0,(Oqy) = Og, where
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096 and Op, are the rings of integers of (2 and {2y, respectively. Then,
since Ogy = Z¢[Ca,), there exists an element

o= 2066609()

€€Udy

with a. € Zy such that Tr%/go(a) = Tro/o(a) = 1. Therefore, we see that

TrQ/Qe (€z) = Tr!?/@e (€x TrQ’/Q(a)) = Z Qe Tr!?’/@é (e€z).
€€ldy

From this, we obtain the assertion. =

Let m, ¢ and d be as in Lemma 10. Choose an integer p* such that
pp* =1 mod m. For an integer v with (v,m) =1, we put v = 1+pp*(v—1).
Then we have an isomorphism ¢ : (Z/mZ)* — D; by sending the class [v],
to [v/];mp mod (J) € Dy. Let p1 = ¢ o 1. We easily see that the conductor of
the Dirichlet character ¢, equals m from the assumption on the conductor
of ¢. Clearly, the order d; of ¢ divides d.

To show Lemma 10, assume to the contrary that

D> buguin = buge €Y = 0 mod £
u€eDy v
for all ug and all (,,. Here, in the second sum, v runs over the integers with
1<wv<m-—1and (v,m)=1. For each [v] € (Z/mZ)*, we have
bugv' = Tr@z(Cd)/Qe (‘pl(v)_lw(uo)_l)’
and
G = (o)

as pp* = 1 mod m. As wug varies, the value p(ug)~! runs over all dth roots
of unity. Hence, we see by Lemma 11 (with do = d) that

vag“” =0mod ¢ with b, = TrQé(Cdl)/Qz(gol(v)*l)

where v runs over the integers with 1 <v <m — 1 and (v,m) = 1.

From the above observation, we see that to show Lemma 10, it suffices
to prove the following lemma. In the rest of this subsection, we change the
notation a little. Let m be an integer with (m,pf) = 1, and let ¢ be a
Dirichlet character of conductor m and order d with (d,¢) = 1.

LEMMA 12. Under the above setting, we have
> Trg,(cay/ (9(w) 1) # 0 mod ¢

for some primitive mth root (,, of unity in Qq, where u runs over the integers
with 1 <u <m—1 and (u,m) = 1.
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Proof. First, let m = q7* - - - ¢~ where ¢1, ..., ¢, are distinct prime num-
bers and ¢; > 2 (1 < i < r). Let mg = q1---¢ and m’ = m/mg. As the
conductor of ¢ is m, we have mg |d. Assume that the following congruence
holds for all (,:

(8) X = ZTr@Z(Cd)/Ql (np(u)fl) » =0mod /.
Let a be an integer with (a,m) = 1. By Lemma 4, we have

> Trg, e/ (9(w) )G, = 0 mod £

u=a
where u runs over the integers with 1 < u < m — 1 and v = a mod m/. For
an integer u with v = a mod m/, we can write u = a(1 + bm’) mod m for
some b with 0 < b < mg — 1. Therefore,

mo—1

Z TrQZ(Cd)/QZ(go(a)_lw(l + bm’)_l)d%0 = 0 mod /.
b=0
Here, ¢, = am’ \We see that (14 m’) is a primitive moth root of unity
and (1+bm’) = p(1+m/) since ¢ is of conductor m and e; > 2 (1 <i < 7).
As ¢(a) runs over all dth roots of unity, we obtain from Lemma 11 (with
d1 = my and d2 = d)
mo—1
— b —
Y = Z Tr@K(Cmo)/QE (gO(l + bm') 1)Cm0 = 0 mod /.
b=0
This congruence holds for any primitive mgth root (,,, of unity because
(8) holds for all {,,. We choose (n, = ¢(1 + m'). Then, since the mapping
[b]m — @(1 +bm’) is a character of the additive group Z/mg, we see that
Y = mg by orthogonality of characters. As ¢ { m, this is impossible.

Next, write m = mymg with (my, mg) = 1 and assume that my is square
free and that m; = 1 or my = ¢f* - - - ¢¢~ where ¢1, ..., ¢, are distinct prime
numbers and e; > 2 (1 <1 <r). Let m3 (resp. m]) be an integer satisfying
mams =1 mod m;y (resp. mym; = 1 mod my). For integers x and y, we put

2 =1+momi(x —1) and 3" =1+mmi(y—1).
Then the mappings
u s (Zfm)* = (Z/m)",  [2]my = [2]m,
and
2+ @ )m2)* = @fm), [y = [ s
are injective, and (Z/m)* is the direct product of the images of ¢; and ¢s.
Let ¢; = ¢ ot; and d; be the order of ¢; with ¢ = 1,2. Then the order d

of ¢ equals the least common multiple of d; and do. Writing Cp, = (my Gy
for some primitive m;th root (,, of unity (i = 1, 2), we easily see that



Class group of a cyclotomic Z, X Z¢-extension 277

oy = ¢ Giny- Now assume that the congruence (8) holds for all ¢, under

this setting. Then, since the elements of (Z/m)* are written in the form

[2'y"]m, we obtain the following congruence for all ¢, and Gp,:

> (Z Tf@e(m/@e(901(37)*1902(y)*1)%1) Yy =0mod /.

y
Here, = (resp. y) runs over the integers with 1 < 2z < mj; — 1 (resp. 1 <
y < mg — 1) relatively prime to m (resp. mz). Choose a,, € Z congruent
to Trg,(c,)/0, (¢1(x) ' p2(y) ') modulo /. Since the above congruence holds
for all ¢, and (p,, we obtain a congruence

> (Zax,yé;”%l) Y =0mod ¢
Y x

in the global field Q((p). Let N = Q((m,) and N' = N((pm,). Since my is
square free and (my, my) = 1, we see that the Galois extension N'/N has
a normal integral basis (NIB) and that (,,, is a generator of NIB. As ¢ is
unramified at NV, it follows that

Z%,y my, = 0mod ¢
for all y. Hence, in the ¢-adic field Q((p, ), we obtain
> Trgycosa (@) ea(y) )¢, = 0mod ¢

for all y and all (;,,. As p2(y) runs over all dath roots of unity, Lemma 11
yields

Z Tr@z(Cdl)/Qz (p1 (55)71)@3;” = 0 mod ¢.

When m; = 1, this is clearly impossible. When m; > 1, we have already
shown that this congruence does not hold. =

5. Proof of Lemma 8. We use the same notation as in the previous
sections. In particular, n > 1 is a fixed integer, and (p (resp. ¢) is a primitive
mth (resp. p"*1st) root of unity. We write I = I, and J = Jy,, for brevity.
Let @ be the set of maps z from V to {0,1,...,2¢¢(m)|J|}. We put

My = g { [N (20w - 1))

where N is the norm map from Q(¢,—1) to Q. We see from (7) that M, < N,
because

|3 2w = 1| < 2060m)1] - V] = to(m)(p — 11|
129%
for each embedding Q((,—1) — C.
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We easily see that N, > p"°. Hence, the condition n > 2ng — 1 in
Lemma 7 is satisfied when p"+1=70 > N,. Therefore, as N, > M, it suffices
to derive a contradiction assuming that pnt1—m0 > My, n > 2ng — 1 and
&7 = ¢! mod £2. We prove Lemma 8 using an argument in [10, 1T}, 13]. We fix
an arbitrary integer ug € I. By Remark 4, the assumption &7 = ¢ mod ¢2
is equivalent to fin = fﬁ,uo mod /2. For j € J and u € I, let ¢ju be the
integer such that 0 < ¢;, < /¢ —1 and ¢j, = ajbyy, mod £. We put

1

G(T) = (T - Df—(T° = 1)) e Z[T).

Then we easily see that

(9) (T —1)*

(T =1)%)" = (T* =1+ (G(T))
= (T* - 1)""YT" — 1 4 £bG(T)) mod ¢>.

From the assumption &7 mod ¢2, it follows that

naug — gn U0

Céugﬁsgu -1 ) < (EfCSj“ 1 >€cj,u )
e mod £°.
]l;[];!;[[(céugéts]u _ g]};{] CéLCtsju -1

Using (9), we see that

(10) HH Cﬂugésju - Cfugéts] 14 Ecj,uG(CéLCtSju))
— H H Cfugftsju _ (g@ucésju — 1+ Ecj,uG(ngsju))

modulo #2. For each r € J and w € I, we put
hw= [ (@™ =1 and 1, = J] (@< -1
(Ju)#(rw) (Ju)#(rw)
where (j,u) runs over J x I with (j,u) # (r,w). Then we see from (10) that

(1) (TITTE e = 1) - (323 GG ) )
Jj u r w
12 = ([III e - 1) - (XX ennClegc )i, )

modulo ¢. We expand (11) and (12) as polynomials on (. Let ¥ be the set
of maps from J x I to {0,1}, and ¥, ,, the set of maps from J x I'\ {(r,w)}
to {0,1}. For maps k € ¥ and &' € ¥, ,,, we put

K) = Zfsjum(j, u), Ap(k) = Zéum(j,u)
Jyu J,u
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and
B()= Y tsjur(u), Bo(w)= Y tur'(ju).
(Ju)#(rw) (Jw)#(rw)
Further, we put
K(r, &) = w(rw)+ Y (k(,u) + ().
(F:w)#(rw)
Then we see that (11) and (12) equal

ZZZZ Crw ((g}ctsrw)C(f)‘lo(fe)-i-Bo(n’)CA(H)_HB(K/)
and

=Y S S e GGG R A B,

respectively. Let 7 be an integer with 1 <7 < /¢ —1 (resp. 0 < 7 < 1) when
¢ > 3 (resp. £ = 2). Then the terms ¢**“T and (**“T appear in (13) and
(14) from the factor G(¢{¢* ™) and G(CY¢5™™), respectively.

We extract terms of the form ¢* with
x=> 2u—1 (=[] 20u—1)
j?u u

modulo p"*1="0 from (13) and (14), and apply Lemma 4. For this purpose,
we consider the following conditions for each r € J:

(15) ts,wt + A(k) +tB(k Z 20y — 1 mod p" im0,
ju

(16) srwt + tA(k) + B(k Z 20y — 1 mod p" 1m0,
] u

Ast =1+ p", the two conditions are equivalent. Let us show the following:

CLAIM. For each r € J, the conditions (15) and (16) are satisfied if and
only if w =1 mod p"*', 7 =4 —1, k(j,u) = 1 for all (j,u) € J x I and
K (4,u) =1 for all (j,u) € J x I with (j,u) # (r,w).

Proof. We easily obtain the “if” part of the assertion from the definitions
of A(k) and B(k’). Let us show the “only if” part. Put

(D@ = ww) — #,w) if u  w,
J
E(Q—/ﬁ(r,w)—i—Z(Q—/ﬁ(j,w) —n'(j,w))) —7 ifu=w.
J#r

Ty =
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As s; = 1 mod p" 17" we see that the conditions (15) and (16) are equiv-
alent to
(17) Z zyu — 1 =0 mod p" "0,
uel

Further, we see that

0 <m, <20J]
and that
(18) Ty =0o0r —7

modulo ¢ according as u # w or u = w. The reduction map (Z/mp"*1)* —
(Z/p™*1)* induces a surjection I — T (sending us to u} in the notation of
Subsection 4.1). We easily see that the map I — Z is ¢(m)-to-1. Let iy be
the image of w under this map. For each i € Z, we put

U=t

where u runs over the elements of I with u = i mod p™*!. Then the condition
(17) is equivalent to

(19) Z yii — 1 =0 mod p" 1m0,
€T
Further, we have

(20) 0 <yi < 2Lp(m)]J|
and
(21) yi=0or —7

modulo ¢ according as i # ip or i = ig. Let v = wy,(i) € V and g(v) = ;.
Then v =i mod E"*1. From (19), we obtain

X = Zg(u)u —1=0mod p"tt="e,
vey
It follows that
N(X) = 0mod p"ti—"o,

where N is the norm map from Q({y,—1) to Q. Now, from (20) and the
assumption p?t1=m0 > M, , we obtain X = 0. Therefore, by Lemma 5, we
see that g(v) = 0 or 1 according as v # 1 or = 1. It follows from (21) that
io =1 (i.e., w = 1 mod p"™') and 7 = ¢ — 1. Further, y; = 0 or 1 according
as i # 19 = 1 or i = 1. Hence, we obtain z,, = 0 or 1 according as u # w
or u = w, considering the congruence (18) for u = 1 mod p"*!. Now, we see
that x(j,u) = 1 for all (j,u) € J x I and /(j,u) =1 for all (j,u) € J x I

with (j,u) # (r,w). =
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In view of the Claim, we put

A=A(k) = Zﬁsju and Ay = Ap(k) = qu.
Jru 7,u
Further, for each » € J and w € I with w = 1 mod p"*!, we put

B(r,w) = B(x') = Z Usju = A — ls,w,
() #(r,w)
By(w) = By(x') = Z lu = Ay — lw.
() #(rw)

From the congruence (11) = (12) mod ¢, we see by the Claim and Lemma 4
(with k& = p"*! and kg = p"T17"0) that

! WL— Srw(£— w W
Z Z e (€ 1)Ct rw(l 1)C640+BO( )CAthB( w)
= Z Z/Cﬁwcév(f*l)gsrw(f—l)<§0+Bo(w)CtA+B(r,w) mod ¢
T w

where in Z;U, w runs over the subset I; of I. Using (* = (, we see that

/
Z Z CT,wCO_thST (0—1)+(14+t)A—Llsrt

_ Z Zlcnwc(;wcsr(g—1)+(1+t)A—fsr mod .

Taking the complex conjugation of both sides and multiplying by ¢(1+9)4,

we obtain / /
D> ewC =0 erwC ¢ mod L.

T
Letting Cyro = ¢P"7 " and ¢, = ¢?", we have (" = (Cny and (' =
CCpCI’;nO. Now, noting that ¢, = by, mod ¢, we see from the above con-
gruence that

/
C(Gp—1)- Z buno o Zarcgno = 0 mod /.
As ¢(¢p — 1) is relatively prime to ¢, it follows that

S b -3 arCing =0 mod £.

Taking the Galois conjugate over QQ shows that this congruence holds for
any primitive mth (resp. p"°th) root (o (resp. (pno) of unity. We fix an
arbitrary (pno. We see from Lemma 7 that there exists some prime ideal £
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of Q(¢pro) over £ such that -, a,(Jny # 0 mod L. Hence,

Z,bwuo (¥ =0mod L

for any prime ideal £ of Kpng—1 = Q(Co, pro) over L. We see that this
congruence holds for any primitive mth root (y of unity since Q((p) and
Q(¢pno ) are linearly disjoint over Q. Therefore,

Z/bqu o =0mod ¢

for all ug € I, which contradicts Lemma 9. Now, we have completed the
proof of Lemma 8.
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