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1. Introduction. Representations of integers by quadratic forms have
been of interest since the 17th century. Fermat, Euler and Lagrange worked
on representations of such forms as x2 + y2, x2 + 2y2 and x2 + y2 + z2 +w2

over the rational integers. Gauss discovered those integers expressible by the
sum of three squares. In the 19th century further results were obtained on
a variety of quadratic forms. This included finding the number of represen-
tations of an integer by some of the above-mentioned forms. See Dickson [7,
Ch. X] for more background and information.

In the early 20th century, Götzky showed that the sum of four squares
represented all totally positive integers in the field of Q(

√
5). Later Cohn

proved that the sum of four squares represented all totally positive integers
in Q(

√
2) and Q(

√
3) with even coefficients on the radical. Using theta func-

tions and modular forms, Götzky and Cohn were able to get the number of
such representations. See Götzky [8] and Cohn [2, 3, 4] for details.

We say that a form is universal if it represents all totally positive integers
in a given number field. Also, we define classical quadratic forms as those
that have cross product terms divisible by 2.

Other results during and just before the 20th century included proofs
of the universality of the sum of four squares by different methods, for
example, quaternion algebras and the Geometry of Numbers. In the 1990’s
demonstrations of universality of quadratic forms over quadratic number
fields were developed using the theory of lattices and p-adic numbers. The
situation for classical forms with three variables over real quadratic fields was
completely determined (see Kim, Chan and Rhagavan [11]). Very recently,
the case of classical forms of four variables over Q(

√
5) was resolved (see

Lee [12]).
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In 2002 the author was able to prove the universality portion of Götzky’s
result using Geometry of Numbers. The existence of representations for
Cohn’s result in the ring Q(

√
2) and another proof for Q(

√
5) were later

developed by the author using both quaternion rings and Geometry of Num-
bers. In the current paper, these results are extended to an integral quater-
nary quadratic form over Q(

√
5). It is believed that the main result of this

paper is new, and is the first case of the universality of an integral nonclas-
sical form over a quadratic field. See Deutsch [5, 6] for details on the earlier
results.

We follow the notation of Deutsch [6] for quaternions and quadratic
fields. A quick review of that notation suffices. Bold Roman font will be used
for quaternions, e.g. q is a typical quaternion. The ring of all quaternions
is denoted H. Each element of H has a conjugate, denoted q. There is a
quaternionic norm N(q) = q · q, sometimes called the reduced norm.

Lower case Roman letters will be used for real numbers or variables.
Lower case Greek letters will correspond to elements of a real quadratic
field. The conjugate with respect to the field is denoted by a star, e.g. α∗ is
the conjugate of α. The field norm is defined as N(α) = α ·α∗. The context
will make clear whether the field norm or the quaternionic norm is being
used.

In addition, for a real ring R and quaternions q1, . . . ,q4, the R-module
generated by these quaternions is denoted R[q1,q2,q3,q4]. For example,
the Hurwitz quaternions are defined as H = Z[1, i, j, (1 + i + j + k)/2]. The
last module generator in this list is called h in honor of Hurwitz. H can be
shown to be a norm Euclidean ring. Further details are found in Hurwitz
[10], Deutsch [6], Baake and Moody [1].

2. The quadratic form G. We now introduce the quadratic form
under consideration. Set g(x, y) = x2 + xy + y2, and let G(x, y, z, w) =
g(x, y) + g(z, w). The universality of G ought to present a smaller prob-
lem in some sense to that of the universality of the sum of four squares.
The form analogous to g for the sum of four squares is simply the sum of
two squares f(x, y) = x2 + y2. Note that the discriminants of the related
nonhomogeneous quadratic forms x2 + x + 1 and x2 + 1 are 3 and 4 re-
spectively. It should be pointed out that in Dickson’s chapter on quadratic
forms, G is practically the first form to be claimed universal over Z (see
Dickson [7, Ch. X]).

Set % = (1 +
√

3 i)/2. Then the Z-module generated by 1 and % is the
ring of integers of the field E = Q(

√
−3). It is easy to see that the norm of a

typical element of E, namely x+ y%, is simply g(x, y). Applying the general
product identity for norms over the complex numbers, we find that there is
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a formula of the type

(2.1) g(x1, y1) · g(x2, y2) = g(X,Y ).

Note that X and Y must arise from the product of the corresponding ele-
ments in the field E. More specifically, we find that

(2.2) (x2
1 + x1y1 + y2

1) · (x2
2 + x2y2 + y2

2) = X2 +XY + Y 2,

where

(2.3) X = x1x2 − y1y2, Y = x1y2 + x2y1 + y1y2.

Also, using the quaternion module Q(
√

3 i) ⊕ j · Q(
√

3 i) we get a similar
result for g(x, y) + g(z, w). More precisely, with % = (1 +

√
3 i)/2 we are

looking at the Z-module generated by [1,%, j, j · %]. The norm identity for
quaternion products analogous to (2.1), (2.2) and (2.3) becomes

(2.4) (x2
1 +x1y1 + y2

1 + z2
1 + z1w1 +w2

1) · (x2
2 +x2y2 + y2

2 + z2
2 + z2w2 +w2

2)

= X2 +XY + Y 2 + Z2 + ZW +W 2,
where

(2.5)

X = x1x2 − y1y2 − w1w2 − w1z2 − z1z2,
Y = x1y2 + x2y1 + y1y2 + w1z2 − w2z1,

Z = −y1z2 − x1z2 − x2z1 + w1y2 − w2y1,

W = y1z2 − y2z1 − w1y2 − w1x2 − w2x1.

These results obviously hold in all commutative rings.

3. Universality of G over R. Recall that the universality of the sum
of four squares can be proven by recourse to the Geometry of Numbers (see
Grace [9] and Deutsch [5]). Some nontrivial modifications make it possible
to prove the universality of G by the same underlying technique.

Lemma 1. For any rational prime p, there exist integers a and b such
that

(3.1) a2 + a+ 1 + b2 ≡ 0 (mod p).

Proof. For p = 2 take a = 1 and b = 1. For odd primes, the proof
is similar to that of the well known demonstration for a2 + b2 + 1 ≡ 0
(mod p). Generally, we observe that the number of distinct elements of the
form −(b2 + 1) modulo p is (p+ 1)/2. Note that

(3.2) a2 + a ≡ a2 + (p+ 1)a ≡ (a+ (p+ 1)/2)2 + c (mod p)

for some constant c that depends on p. It follows that the number of different
elements of the form a2 + a modulo p is also (p+ 1)/2. Thus there must be
some overlap of these two sets, so there exist a and b modulo p which satisfy
(3.1).
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If we consider the basis of the lattice used in the proof of the classical
Four Squares Theorem via Geometry of Numbers as a matrix, we find that
it is

(3.3) M =


1 0 a b

0 1 −b a

0 0 p 0
0 0 0 p

 .

Setting (x, z, y, w) equal to the matrix product (m, r, n, s)×M where m, n,
r, s are rational integers, we find

(3.4)

x ≡ m
y ≡ m · a− b · r
z ≡ r
w ≡ m · b+ a · r

 (mod p).

Now it is left to compute G = g(x, y) + g(z, w). Modulo p this becomes

(3.5) x2 + xy + y2 + z2 + zw + w2

≡ m2 +m2a2 − 2abmr + r2b2 +m(ma− br)

+ r2 +m2b2 + 2abmr + r2a2 + r(mb+ ar)

≡ m2(1 + a2 + a+ b2) + r2(b2 + 1 + a2 + a) ≡ 0.

It is obvious that det(M) = p2.

Lemma 2. The ellipsoidal object in R4 defined by G(x, y, z, w) < r2 is
centrally symmetric and convex. Its volume is 2

3π
2r4.

Proof. Central symmetry is obvious. Since G is the norm of a quaternion,
it is always greater than or equal to zero. To show convexity we consider
a point (x0, y0, z0, w0) and a parametrized line segment in Euclidean four-
space contained in the ellipsoidal object. Then the line is defined by the
equations

(3.6) x = x0 + tm1, y = y0 + tm2, z = z0 + tm3, w = w0 + tm4.

Here, m1, . . . ,m4 are constants, t is a real parameter. With no loss of gen-
erality we may choose the m’s so that t = 1 corresponds to the endpoint of
the line segment. Clearly, t = 0 represents the beginning of the line segment.
Taking the second derivative with respect to t of h(t) = G(x, y, z, w) we find

(3.7) h′′(t) = 2(m2
1 +m1m2 +m2

2 +m2
3 +m3m4 +m2

4).

As the expression in parentheses is the norm of a quaternion, it is always
greater than or equal to zero. Hence h(t) is a convex function of t, so the
maximum value of h on the line occurs at t = 0 or t = 1. Since both the
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values are less than or equal to r by hypothesis, the entire line segment
resides in the object of the lemma.

To find the volume of the region G ≤ r2 we note that

(3.8) G(x, y, z, w) =
(
x+

1
2
y

)2

+
3
4
y2 +

(
z +

1
2
w

)2

+
3
4
w2.

Making the linear transformation

(3.9) X = x+
1
2
y, Y =

√
3

2
y, Z = z +

1
2
w, W =

√
3

2
w

we obtain a sphere of radius r in the X, Y , Z and W coordinates. The
absolute value of the determinant of the linear transformation is 3/4. Let
vol mean volume, and B4(r) be the ball of radius r in R4. Using the inverse
linear transformation and a standard result in multivariable calculus, we
have

(3.10) vol(G ≤ r2) = vol(B4(r)) · 4
3

=
4
3
· π

2r4

2
.

See Spivak [13, p. 67] for details.

Theorem 3. The quadratic form G(x, y, z, w) is universal over Z.

Proof. We take the lattice in R4 corresponding to the matrix (3.3). This
lattice is the Z-module with basis

(3.11) {(1, 0, a, b), (0, 1,−b, a), (0, 0, p, 0), (0, 0, 0, p)}.

By Minkowski’s Theorem from the Geometry of Numbers, the region G ≤ r2
will contain a nonzero point of the lattice if

(3.12)
2
3
π2r4 ≥ 16p2.

Thus r need only satisfy r2 ≥ 1.560p. Choose r2 = 1.6p. Then a nonzero
point of the lattice exists inside G ≤ r2. Call it (x, y, z, w). For this point,
G ≡ 0 (mod p) by equation (3.5). Also, 0 < G(x, y, z, w) ≤ 1.6p, which
forces the value of G at the lattice point to equal p.

Since G represents 1, and obeys the multiplicative law of equations (2.4)
and (2.5), it follows that the theorem holds.

4. Geometry of Numbers results over quadratic fields. At this
juncture it would be advantageous to find an analogue to the statement for
sums of squares derived from Geometry of Numbers in Deutsch [6]. Namely,
there is always a representation

(4.1) κ% = α2 + β2 + γ2 + δ2,
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where % is a prime factor of a rational prime p that splits in the quadratic
field K, and α, β, γ, δ, κ are algebraic integers in K, and there is a bound
on |N(κ)| which depends only on the discriminant of K.

Such an argument is readily constructed. However, we first need to com-
pute the volume of a particular region in R8. We let D(r) be the subset of
R8 defined by

(4.2) G(x1, x2, x3, x4) +G(x5, x6, x7, x8) ≤ r2.

Lemma 4. The region D(r) is centrally symmetric and convex. It has
volume 2

27π
4r8.

Proof. As before, central symmetry is obvious. Using the linear trans-
formation of (3.9) twice, once for the variables x1, x2, x3, x4, and then again
for the variables x5, x6, x7, x8, we obtain a ball of radius r in 8-dimensional
real space. The matrix of transformation has determinant that is the square
of the determinant for the 4-dimensional case. Thus we find that

(4.3) vol(D(r)) = vol(B8(r)) · 16
9

=
16
9
· π

4r8

4!
.

Convexity follows easily from that of G. Take two points (x1, . . . , x8) and
(y1, . . . , y8) in D(r). Then we have

(4.4) G

(
x1 + y1

2
, . . . ,

x4 + y4

2

)
+G

(
x5 + y5

2
, . . . ,

x8 + y8

2

)
≤ 1

2
{G(x1, . . . , x4) +G(y1, . . . , y4) +G(x5, . . . , x8) +G(y5, . . . , y8)}

≤ 1
2
{r2 + r2} = r2.

We let O be the ring of integers in the real quadratic field K of discrim-
inant d. Let p be a rational prime which splits in O into two prime factors
p = %%∗. Then the following holds.

Lemma 5. With K, O, d and % as above, there exist κ, α, β, γ and δ
in O for which κ% = G(α, β, γ, δ) and |N(κ)| ≤ 1.49d.

Proof. We model the demonstration on the argument in Deutsch [6]. By
Lemma 1 there exist rational integers a and b for which a2 + b2 + b+ 1 ≡ 0
(mod p). This implies that a2 + b2 + b+ 1 ≡ 0 (mod %) and also modulo %∗.
We may pick ε ∈ O such that O = Z[1, ε].

The convex region of R8 is slightly modified from Deutsch [6], though the
same lattice may be used. For the convex region we use D(r). The matrix
associated with the lattice used in Deutsch [6] is
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(4.5)



1 1 0 0 a a b b

ε ε∗ 0 0 aε aε∗ bε bε∗

0 0 1 1 b b −a −a
0 0 ε ε∗ bε bε∗ −aε −aε∗

0 0 0 0 % %∗ 0 0
0 0 0 0 ε% ε∗%∗ 0 0
0 0 0 0 0 0 % %∗

0 0 0 0 0 0 ε% ε∗%∗


.

We take the Z-lattice in R8 having as basis the columns of the above matrix.
As noted in Deutsch [5, 6] the lattice can be written

(4.6) (α, α∗, β, β∗, aα+ bβ + µ%, aα∗ + bβ∗ + µ∗%∗,

bα− aβ + ν%, bα∗ − aβ∗ + ν∗%∗)

where α, β, µ and ν run through all of O(
√

5). Setting this equal to

(4.7) (x1, x5, x3, x7, x4, x8, x2, x6)

we observe that

(4.8)

x1 ≡ α
x2 ≡ b · α− a · β
x3 ≡ β
x4 ≡ a · α+ b · β

 (mod %),

x5 ≡ α∗

x6 ≡ b · α∗ − a · β∗

x7 ≡ β∗

x8 ≡ a · α∗ + b · β∗

 (mod %).

Computer algebra shows that

(4.9) G(x1, x2, x3, x4) ≡ (α2 + β2) · (1 + a2 + b+ b2) ≡ 0 (mod %).

Similarly, G(x5, x6, x7, x8) ≡ 0 (mod %∗). From Deutsch [6], the size of the
lattice is |(ε− ε∗)4%2(%∗)2| or d2p2 where d is the discriminant of the field.

To apply Geometry of Numbers, we need to find r such that the volume
of D(r) is greater than 28d2p2. Thus

(4.10)
2
27
π4r8 ≥ 28 · d2 · p2 ⇔ r8 ≥ 27 · 28

2π4
d2p2,

which yields r2 ≥
√
dp · 2.44058 . . . . Thus there exist algebraic integers, not

all zero, for which

(4.11) G(α, β, γ, δ) = κ%, G(α∗, β∗, γ∗, δ∗) = κ∗%∗

with

(4.12) κ%+ κ∗%∗ ≤ 2.4406
√
dp.
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Applying the Theorem of Arithmetic Means and Geometric Means we find

(4.13)

2
√
κ%κ∗%∗ ≤ κ%+ κ∗%∗ ≤ 2.4406

√
dp,√

κ%κ∗%∗ ≤ 1.2203
√
dp,

|κκ∗| ≤ 1.48914d.

This proves the lemma.

Corollary 6. Under the conditions of the previous lemma, in the case
of O(

√
5) we have the bound |κκ∗| ≤ 7.45.

By the argumentation in Deutsch [5] after equation (4.15), we conclude
the following.

Corollary 7. Under the conditions of Lemma 5, in the case of O(
√

5)
it is only necessary to consider the possibilities |κκ∗| ∈ {1, 4, 5}.

5. The ring of icosians I and certain of its subrings. We review
the definition and some properties of the quaternionic ring of icosians. Set
τ = (1 +

√
5)/2. Then [1, τ ] is an O(

√
5)-basis for the algebraic integers in

the field Q(
√

5). Also, τ is the fundamental unit for this ring of integers.
In the notation of Vignéras [14], the ring of icosians I is the O(

√
5)-module

with generators

(5.1)
e1 =

1
2

(1 + τ−1i + τ j), e2 =
1
2

(τ−1i + j + τk),

e3 =
1
2

(τ i + τ−1j + k), e4 =
1
2

(i + τ j + τ−1k).

It is noted that the number of units of norm one in I amounts to 120 (see
Baake and Moody [1] and Vignéras [14]). We define I0 = O(

√
5)[1, i, j,k]

and quote the following results.

Lemma 8 (Deutsch [6, Lemma 15]). For all q ∈ I there exist quaternion
units u1,u2 ∈ I of norm 1 such that u1qu2 has O(

√
5)-integer coefficients,

i.e. u1qu2 ∈ I0.

Lemma 9 (Deutsch [6, Lemma 16]). Suppose % is a prime of the ring
O(
√

5). Then there exists a unit λ of O(
√

5) and a quaternion q of I such
that N(q) = λ%.

In addition, a second subring of I plays an important role. We want the
norm of a member of this subring to equal the quadratic form G(x, y, z, w)
when the coefficients of the quaternion in a specified basis are x, y, z and w.
This subring can be developed as follows.

Recall that the quaternion h is defined as (1+ i+ j+k)/2. We note that
for any real x and y, N(x+ yh) = g(x, y) = x2 +xy+ y2. This is related the
fact that h2 − h + 1 = 0. Therefore there is a canonical embedding of the
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algebraic integers of Q(
√
−3) into the Hurwitz quaternions. Also, h ∈ I, as

computer algebra shows that

(5.2) h = e1 + (τ − 1)e2 + (τ − 1)e3 − e4.

Since the norm of a quaternion is the length of the corresponding vector
in R4, we wish to find two quaternions of length one orthogonal to the
subspace spanned by 1 and h. We may write one such vector as r = ai +
bj + ck. It would be convenient for the second vector to be equal to rh.
From the expression for r we have an equation for orthogonality via the dot
product in R4, namely a+ b+ c = 0. Set a = −b− c and substitute into the
norm 1 property. We find that 2b2 + 2bc+ 2c2 = 1. Solving for c in terms of
b we have

(5.3) c =
−b±

√
2− 3b2

2
.

Since it is necessary for the coefficients of r to be in Q(
√

5) to possibly be
an icosian, we choose b = 1/2. Taking the negative sign on the radical, we
find

(5.4) c = −1 +
√

5
4

, a =
−1 +

√
5

4
.

Computer algebra yields

(5.5) r = −τe2 + τe4, rh = −τe2 + τe3,

and also that for any real x, y, z, w we have

(5.6) N(x1+yh+zr+wrh) = x2 +xy+y2 +z2 +zw+w2 = G(x, y, z, w).

This situation is summarized in the following definition and lemma.

Definition 10. Ih is the O(
√

5)-module with generators {1,h, r, rh}.
Lemma 11. Ih is a subring of the icosians I. The norm of a typical

element of Ih is given by equation (5.6).

Table I. Multiplication table for Ih

1 h r rh

1 1 h r rh

h h −1 + h r− rh r

r r rh −1 −h

rh rh −r + rh −1 + h −1

Proof. The multiplication table for Ih is shown in Table I. Being closed
under addition and multiplication demonstrates the subring property.

6. Elements of norm 2 and 2 + τ in I and Ih. Consider an arbitrary
totally positive prime % in O(

√
5). We wish to find a representation of it
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by G(x, y, z, w) with x, y, z, w ∈ O(
√

5). If % is inert, such a representation
follows from the universality of G over Z. If % ramifies, then up to a square
unit it equals τ

√
5. As noted in Deutsch [5], we have τ

√
5 = 12 + τ2. Thus

τ
√

5 = G(1, 0, τ, 0). The only case left is when % is a factor of a rational
prime p which splits in O(

√
5).

By Lemma 5 and Corollary 7, there exist κ, α, β, γ and δ in O(
√

5) such
that κ% = G(α, β, γ, δ) and |κκ∗| ∈ {1, 4, 5}. Note that G(α, β, γ, δ) is the
norm of the quaternion α1+βh+γr+δrh. Thus G(α, β, γ, δ) is nonnegative
and the same holds for G(α∗, β∗, γ∗, δ∗). Thus κ% is totally positive. Since %
is totally positive it follows that so is κ.

As in Deutsch [5], we find that when |κκ∗| = 4 or 5 then κ must be 2
times a unit of O(

√
5) in the first case, and 2 + τ times a unit in the second

case. By moving this unit from κ to % we can take κ = 2 or 2+τ respectively.
Note that the unit must be totally positive as 2 or 2 + τ and the original %
are totally positive.

Lemma 12. (1 + h)I ⊆ Ih and I(1 + h) ⊆ Ih.

Proof. Computer algebra shows that (1 + h)en ∈ Ih for n = 1, . . . , 4.
For example

(6.1) (1 + h)e2 = −τ1 + τh + τ∗r.

Similar results hold if the factors are taken in the opposite order.

Since the quaternionic norm of 1 + h is 3, for every prime % ∈ O(
√

5)
there is an element of Ih with norm 3%. Given an element of Ih of norm
2%, it may be reasonable to try to come up with some linear combination
that would produce an element of that ring with norm %. The next lemmas
proceed down this path.

Lemma 13. There are 24 elements of norm 2 in I0. There are 48 ele-
ments of norm 2 + τ in I0.

Proof. Take a typical element q in I0 and consider its norm. Write q as

(6.2) q = α1 + βi + γj + δk.

Then the norm is just the sum α2+· · ·+δ2. Since the coefficients are elements
of O(

√
5) we may write α = a+bτ . Thus α2 = a2+b2+(2ab+b2)τ . Similarly

for β, γ and δ. For the case of norm 2, equating the norm of q with 2 + 0τ
in the ring O(

√
5) we find that

(6.3)
2 = a2 + b2 + sum of other squares,

0 = 2ab+ b2 + further sum.

Thus |a| and |b| are less than or equal to
√

2. Similar inequalities hold for
β, γ and δ. A computer scan, written in C, produces the 24 elements of
norm 2. A similar scan yields the 48 elements of norm 2 + τ .
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Lemma 14. There are exactly 600 elements of norm 2 in I. There are
exactly 720 elements of norm 2 + τ in I.

Proof. Let s be an element of I with norm 2. Then by Lemma 8 there
exist quaternion units u1, u2 of norm 1 for which u1su2 ∈ I0. Since the
quaternionic norm of this product is 2, it follows that the product must be
one of the 24 elements of norm 2 mentioned in Lemma 13. Thus all elements
of norm 2 in I are of the form u1ru2 where r ∈ I0 and of norm 2 while u1, u2

are units of I of norm 1.
It is well known that there are exactly 120 elements of norm 1 in I (see

Baake and Moody [1] or Vignéras [14]). The determination of the complete
set of elements of norm 2 in I is thus a finite computation. The way chosen
to proceed was to scan the coefficients of all possible products u1ru2 in the
basis for I. After expressing these coefficients in the basis [1, τ ] for O(

√
5),

the maximum absolute value of the latter coefficients was computed. This
turned out to be 2. Then an ordered scan of all possible linear combinations
of the basis of I with O(

√
5) coefficients less than or equal to 2 was made,

yielding the 600 distinct elements of norm 2. The first scan was done using
a computer algebra system, while the second scan was done in C.

The same method was used to construct the 720 distinct elements of I of
norm 2 + τ . The corresponding maximum absolute value for the coefficients
was 3.

Lemma 15. For each of the 600 elements q of norm 2 in I there exists
a quaternionic unit u ∈ I and a number field unit α ∈ O(

√
5) such that

(6.4) N(vq− (1 + h)u) = α.

(Here v equals either 1 or 1 + r.) The same holds for the 720 elements of
norm 2 + τ in I.

Proof. A scan using computer algebra demonstrates the existence of u
and v for each element of I under consideration. See Table II for examples.

Table II. Linear combinations of elements of I of norm 2 + τ as in equation (6.4)

Quaternion q Unit u v α

...
...

...
...

[τ − 1]e1 − 2τe2 + [τ + 1]e3 −e1 − τe2 + e3 + e4 1 + r 1

[τ − 1]e1 − 2τe2 + 2e3 −e1 − τe2 + e3 + τe4 1 τ + 1

[τ − 1]e1 − 2τe2 + 2e3 + e4 τe2 − τe3 1 + r 8τ + 5

[τ − 1]e1 − τe2 − τe3 + τe4 −e1 − τe2 + τe4 1 1

[τ − 1]e1 − τe2 − τe3 + [τ + 1]e4 τe2 − τe4 1 + r 8τ + 5
...

...
...

...
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7. End of proof. We are now prepared to prove the result on repre-
sentation by G for O(

√
5).

Theorem 16. Let % be a totally positive prime factor of a rational prime
p which splits in O(

√
5). Then there exists a quaternion q ∈ Ih such that

N(q) = λ% where λ is a unit of O(
√

5).

Proof. By the discussion before Lemma 12 we know there exists q =
α1+βh+γr+δrh such that κ% = N(q) = G(α, β, γ, δ) and |κκ∗| ∈ {1, 4, 5}.
Note q ∈ Ih. If |κκ∗| = 1 we are done. As for the other two cases, again by
the discussion before Lemma 12, we may write 2λ% or (2 + τ)λ% = N(q)
with λ a totally positive unit of O(

√
5).

Consider the right greatest common divisor of q and % in the norm
Euclidean ring I. Call this quaternion s. Then we have

(7.1) s = aq + b%, N(s) |N(q), N(s) |N(%) = %2.

From the last two relations we have N(s) | 2% (or (2 + τ)%) and N(s) | %2, so
N(s) | %. We note that % must be relatively prime to 2 and 2 + τ as % comes
from a splitting prime of O(

√
5). Taking quaternionic conjugates in the first

equation, we have

(7.2) s = q a + %b.

By multiplying we find

(7.3) N(s) = ss = N(q)N(a) + %c

for some c ∈ I. However, c must be a real number as the rest of the equation
is composed of real numbers. It is shown in Deutsch [5] that R∩ I is O(

√
5),

so c is in this ring. It follows that % |N(s). Thus we conclude N(s) = % up
to a totally positive unit.

Since s is a right divisor of q we may write q = ts, t ∈ I. This implies
that N(t) = 2λ1 or (2 + τ)λ1 as the case may be, for λ1 a totally posi-
tive unit. Thus we may write λ1 = τ2n with n ∈ Z. This also shows that
N(s) = λλ−1

1 %.
By Lemma 15 there exists v ∈ Ih and a quaternionic unit u ∈ I such

that

(7.4) N(vτ−nt− (1 + h)u) = α

with α a unit of O(
√

5). As α is the norm of a quaternion, it is totally
positive. Set u = τ−nu1. Then u1 ∈ I and

(7.5) N(vτ−nt− (1 + h)τ−nu1) = α, N(vt− (1 + h)u1) = τ2nα.
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Thus
(7.6) N(vts− (1 + h)u1s) = N(vt− (1 + h)u1) ·N(s)

= τ2nαλλ−1
1 % = λα%.

By Lemma 12, (1 + h)u1s ∈ Ih. Also, q = ts ∈ Ih and v ∈ Ih. It follows
that there is an element of Ih with norm % times a unit of O(

√
5).

Corollary 17. Let η be a totally positive integer in O(
√

5). Then there
exists a quaternion q ∈ Ih such that N(q) = η.

Proof. By Deutsch [5, Theorem 10] we may write η as a product of
totally positive primes. Each such totally positive prime is a unit times the
norm of a quaternion in Ih. But that unit must be an even power of τ , say
τ2n, as it is totally positive. Absorbing τn into the quaternion results in a
new element of Ih whose norm is the totally positive prime factor under
consideration.

The corollary now follows from equations (2.4) and (2.5).

Theorem 18. The quadratic form G(x, y, z, w) is universal for O(
√

5).

Proof. This follows from Corollary 17, Lemma 11 and equation (5.6).

8. Other quadratic fields. Computations in other quadratic fields of
small norm show that G(x, y, z, w) is not universal. In particular, among
fields with odd discriminant, G is not universal for Q(

√
13) and Q(

√
17).

For those of even discriminant, non-universality holds for Q(
√

2) and Q(
√

3).
A conjecture may be warranted at this stage.

9. Remarks on the computations. Two computers were used in the
computations mentioned above. One was a pc with Pentium dual core P920
cpu and one gigabyte of RAM. The other was a 2003 era laptop with a
Pentium 4 chip running at 2.6 gigahertz, and 256 megabytes of RAM. Most
of the computations were done on the laptop, but certain large scale verifi-
cations were moved to the pc. It turned out that the pc was 20 to 30 per
cent faster on the same calculations.

The software used in both cases was LINUX Slackware 11.0, MAXIMA
5.9.0, MAXIMA 5.14.0 and Python 2.5. MAXIMA was built on top of the
ANSI version of GNU Common Lisp 2.6.6 or 2.6.7. Python was compiled
using GNU GCC 3.4.6. The latter was also used to compile all C programs.
The LINUX kernel version was 2.4.33.3.
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