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A Banach space
determined by the Weil height

by

Daniel Allcock and Jeffrey D. Vaaler (Austin, TX)

1. Introduction. Let k be an algebraic number field of degree d over Q,
v a place of k and kv the completion of k at v. We select two absolute values
from the place v. The first is denoted by ‖ ‖v and defined as follows:

(i) if v |∞ then ‖ ‖v is the unique absolute value on kv that extends the
usual absolute value on Q∞ = R,

(ii) if v | p then ‖ ‖v is the unique absolute value on kv that extends the
usual p-adic absolute value on Qp.

The second absolute value is denoted by | |v and defined by |x|v = ‖x‖dv/d
v

for all x in kv, where dv = [kv : Qv] is the local degree. If α 6= 0 is in k then
these absolute values satisfy the product formula

(1.1)
∏
v

|α|v = 1.

Let Q be an algebraic closure of Q and Q× the multiplicative group of
nonzero elements in Q. The absolute, logarithmic Weil height (or simply the
height)

h : Q× → [0,∞)

is defined as follows. Let α be a nonzero algebraic number; we select an
algebraic number field k containing α, and then

(1.2) h(α) =
∑
v

log+ |α|v,

where the sum on the right of (1.2) is over all places v of k. It can be shown
that h(α) is well defined because the right hand side of (1.2) does not depend
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on the field k. By combining (1.1) and (1.2) we obtain the useful identity

(1.3) 2h(α) =
∑
v

|log |α|v|,

where | | (an absolute value without a subscript) is the usual archimedean
absolute value on R.

Let Tor(Q×) denote the torsion subgroup of Q× and write

G = Q×/Tor(Q×)

for the quotient group. If ζ is a point in Tor(Q×), then it is immediate from
(1.2) that h(α) = h(ζα) for all points α in Q×. Thus h is constant on each
coset of the quotient group G, and so we may regard the height as a map

h : G → [0,∞).

The height has the following well known properties (see [1, Section 1.5]):

(i) h(α) = 0 if and only if α is the identity element in G,
(ii) h(α−1) = h(α) for all α in G,
(iii) h(αβ) ≤ h(α) + h(β) for all α and β in G.

These conditions imply that the map (α, β) 7→ h(αβ−1) defines a metric on
the group G and therefore induces a metric topology. Our objective in this
paper is to determine the completion of G with respect to this metric.

Let r/s denote a rational number, where r and s are relatively prime
integers and s is positive. If α is in Q× and ζ1 and ζ2 are in Tor(Q×), then
all roots of the two polynomial equations

xs − (ζ1α)r = 0 and xs − (ζ2α)r = 0

belong to the same coset in G. If we write αr/s for this coset, we find that

(r/s, α) 7→ αr/s

defines a scalar multiplication in the abelian group G. This shows that G is a
vector space (written multiplicatively) over the field Q of rational numbers.
Moreover, we have (see [1, Lemma 1.5.18])

(1.4) h(αr/s) = |r/s|h(α).

Therefore the map α 7→ h(α) is a norm on the vector space G with respect to
the usual archimedean absolute value | | on its field Q of scalars. From these
observations we conclude that the completion of G is a Banach space over
the field R of real numbers. It remains now to give an explicit description
of this Banach space.

Let Y denote the set of all places y of the field Q. Let k ⊆ Q be an
algebraic number field such that k/Q is a Galois extension. At each place v
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of k we write

(1.5) Y (k, v) = {y ∈ Y : y | v}

for the subset of places of Y that lie over v. Clearly, we can express Y as
the disjoint union

(1.6) Y =
⋃
v

Y (k, v),

where the union is over all places v of k. If y is a place in Y (k, v) we select
an absolute value ‖ ‖y from y such that the restriction of ‖ ‖y to k is equal
to ‖ ‖v. As the restriction of ‖ ‖v to Q is one of the usual absolute values
on Q, it follows that this choice of the normalized absolute value ‖ ‖y does
not depend on k.

In Section 2 we show that each subset Y (k, v) can be expressed as an
inverse limit of finite sets. This determines a totally disconnected, compact,
Hausdorff topology in Y (k, v). Then (1.6) implies that Y is a totally discon-
nected, locally compact, Hausdorff space. Again the topology in Y does not
depend on the field k. We also show that the absolute Galois group Aut(Q/k)
acts transitively and continuously on the elements of each compact, open
subset Y (k, v).

In Section 4 we establish the existence of a regular measure λ, defined
on the Borel subsets of Y , that is positive on open sets, finite on compact
sets, and satisfies λ(τE) = λ(E) for all automorphisms τ in Aut(Q/k) and
all Borel subsets E of Y . The restriction of the measure λ to each subset
Y (k, v) is unique up to a positive multiplicative constant. We construct λ
so that

(1.7) λ(Y (k, v)) =
[kv : Qv]
[k : Q]

for each Galois extension k of Q and each place v of k. It follows from our
construction that λ does not depend on the number field k. In particular, if
l is any finite, Galois extension of Q, if w is place of l and

Y (l, w) = {y ∈ Y : y |w},

then

λ(Y (l, w)) =
[lw : Qw]

[l : Q]
.

Next we consider the real Banach space L1(Y,B, λ), where B denotes the
σ-algebra of Borel subsets of Y . Let

(1.8) X =
{
F ∈ L1(Y,B, λ) :

�

Y

F (y) dλ(y) = 0
}
,
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so that X is a co-dimension one linear subspace of L1(Y,B, λ). For each
point α in G we define a map fα : Y → R by

(1.9) fα(y) = log ‖α‖y.
If k is a finite Galois extension of Q that contains α, then y 7→ log ‖α‖y is
constant on each compact, open set Y (k, v), and the value of this map on
each set Y (k, v) is nonzero for only finitely many places v of k. It follows
that fα(y) is a continuous function on Y with compact support. Using (1.7)
and the product formula (1.1), we find that

�

Y

fα(y) dλ(y) =
∑
v

�

Y (k,v)

log ‖α‖y dλ(y)(1.10)

=
∑
v

[kv : Qv]
[k : Q]

log ‖α‖v =
∑
v

log |α|v = 0.

This shows that α 7→ fα(y) maps G into the subspace X . It follows easily
that

fαβ(y) = fα(y) + fβ(y) and fαr/s(y) = (r/s)fα(y),

and therefore α 7→ fα(y) is a linear map from the vector space G into X .
The L1-norm of each function fα is given by�

Y

|fα(y)| dλ(y) =
∑
v

�

Y (k,v)

|log ‖α‖y| dλv(y)(1.11)

=
∑
v

[kv : Qv]
[k : Q]

|log ‖α‖v| =
∑
v

|log |α|v| = 2h(α).

This shows that the map α 7→ fα is a linear isometry from the vector space
G with norm determined by 2h into the subspace X with the L1-norm. Let

(1.12) F = {fα(y) : α ∈ G}
denote the image of G under this linear map. Then α 7→ fα is a linear
isometry from the vector space G (written multiplicatively) onto the vector
space F (written additively). Now the completion of G is determined by
finding the closure of F in X .

Theorem 1. Let X be the co-dimension one subspace of L1(Y,B, λ)
defined by (1.8). Then F is dense in X .

It is immediate from Theorem 1 that there exists an isometric isomor-
phism from the completion of the vector space G with respect to the height
2h onto the real Banach space X .

The functions in the vector space F belong to the real vector space
Cc(Y ) of continuous functions with compact support. Hence F belongs to
the space Lp(Y,B, λ) for 1 ≤ p ≤ ∞. Theorem 1 asserts that the closure of
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F in L1(Y,B, λ) is the co-dimension one subspace X . We also determine the
closure of F with respect to the other Lp-norms.

Theorem 2. If 1 < p <∞ then F is dense in Lp(Y,B, λ).

Let C0(Y ) denote the Banach space of continuous real-valued functions
on Y which vanish at infinity, equipped with the sup-norm. As F ⊆ Cc(Y ) ⊆
C0(Y ), it is clear that the closure of F with respect to the sup-norm is a
subspace of C0(Y ).

Theorem 3. The vector space F is dense in C0(Y ).

It follows from the classification of separable Lp-spaces (see [3, pp. 14–15])
that the Banach space L1(Y,B, λ) has a Schauder basis, or simply a basis. As
X ⊆ L1(Y,B, λ) is a closed subspace of co-dimension one, it is easy to show
that X also has a basis. Then it follows from a well known result of Krein,
Milman and Rutman [4] that a basis for X can be selected from the dense
subset F . Thus there exists a sequence of distinct elements α1, α2, . . . in G
such that the corresponding collection of functions

(1.13) {fα1(y), fα2(y), . . . }

is a basis for the Banach space X . That is, for every function F in X there
exists a unique sequence of real numbers x1, x2, . . . such that

F (y) = lim
N→∞

N∑
n=1

xnfαn(y)

in L1-norm. While these remarks establish the existence of such a basis, it
would be of interest to construct an explicit example of a sequence α1, α2, . . .
in G such that the corresponding sequence of functions (1.13) forms a basis
for X .

2. Preliminary lemmas. We have stated Theorem 1 for the Weil
height on algebraic number fields. However, many of the arguments can be
given in the more general setting of a field K with a proper set of absolute
values satisfying a product formula. We now describe this situation.

Let K be a field and let v be a place of K. That is, v is an equivalence
class of nontrivial absolute values on K. We write Kv for the completion
of K at the place v. If L/K is a finite extension of fields then there exist
finitely many places w of L such that w | v. In general we have∑

w|v

[Lw : Kv] ≤ [L : K],

where Lw is the completion of L at w. We say that v is well behaved if the
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identity ∑
w|v

[Lw : Kv] = [L : K]

holds for all finite extensions L/K (see [5, Chapter 1, Section 4]).
Let MK be a collection of distinct places of K and at each place v in

MK let ‖ ‖v denote an absolute value from v. We say that the collection of
absolute values

(2.1)
{
‖ ‖v : v ∈MK

}
is proper if it satisfies the following conditions:

(i) each place v in MK is well behaved,
(ii) if α is in K× then ‖α‖v 6= 1 for at most finitely many places v

in MK ,
(iii) if α is in K× then the absolute values in (2.1) satisfy the product

formula ∏
v∈MK

‖α‖v = 1.

Now suppose that (2.1) is a proper set of absolute values on K and L/K
is a finite extension of fields. Let ML be the collection of places of L that
extend the places in MK . That is, if Wv(L/K) is the finite set of places w
of L such that w | v, then

ML =
⋃

v∈MK

Wv(L/K).

At each place w in Wv(L/K) we select an absolute value ‖ ‖w that extends
the absolute value ‖ ‖v on K. Then we define an equivalent absolute value
| |w from the place w by setting

log |α|w =
[Lw : Kv]
[L : K]

log ‖α‖w

for all α in L×. In general, ‖ ‖w and | |w are distinct but equivalent absolute
values on L. And we note that | |w is an absolute value because

0 <
[Lw : Kv]
[L : K]

≤ 1.

Then it follows, as in [5, Chapter 2, Section 1], that

(2.2) {| |w : w ∈ML}
is a proper set of absolute values on L. In particular, if α is in L× then the
absolute values in (2.2) satisfy the product formula∏

w∈ML

|α|w = 1.
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We assume that K ⊆ N are fields, that N/K is a (possibly infinite) Ga-
lois extension, and we write Aut(N/K) for the corresponding Galois group.
We give Aut(N/K) the Krull topology, and we briefly recall how this is
defined. Let L denote the set of intermediate fields L such that K ⊆ L ⊆ N
and L/K is a finite Galois extension. Obviously, L is partially ordered by
set inclusion. If L and M are in L then the composite field LM is in L,
L ⊆ LM , M ⊆ LM , and therefore L is a directed set. For each L in L let
Aut(L/K) denote the Galois group of automorphisms of L that fix K. If
L ⊆ M are both in L, we define πML : Aut(M/K) → Aut(L/K) to be the
map that restricts the domain of an automorphism in Aut(M/K) to the
subfield L. Then each map πML is a surjective homomorphism of groups and
πLL is the identity map. It follows that

{Aut(L/K), πML }
is an inverse system, and Aut(N/K) can be identified with the inverse (or
projective) limit:

Aut(N/K) = lim←−
L∈L

Aut(L/K).

Thus Aut(N/K) is a profinite group, and therefore is a totally disconnected,
compact, Hausdorff, topological group. We write

πL : Aut(N/K)→ Aut(L/K)

for the canonical map associated with each L in L. Then πL is continuous
and the collection of open sets

(2.3) {π−1
L (τ) : L ∈ L and τ ∈ Aut(L/K)}

is a basis for the Krull topology in Aut(N/K).
Next we assume that v is a place of the field K. That is, v is an equiva-

lence class of nontrivial absolute values on K. If L is in L we write Wv(L/K)
for the set of places w of L such that w | v. As L/K is a finite extension,
it follows that Wv(L/K) is a finite set. If L ⊆ M belong to L we define
connecting maps

ψML : Wv(M/K)→Wv(L/K)

as follows: if wM belongs to Wv(M/K) then ψML (wM ) is the unique place wL
in Wv(L/K) such that wM |wL. If L ⊆M are in L then each absolute value
on L extends to M and therefore each connecting map ψML is surjective. We
give each finite set Wv(L/K) the discrete topology so that each map ψML is
continuous. Clearly, ψLL is the identity map. We find that

{Wv(L/K), ψML }
is an inverse system of finite sets. Let

Y (K, v) = lim←−
L∈L

Wv(L/K)
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denote the inverse limit and write ψL : Y (K, v)→Wv(L/K) for the canon-
ical continuous map associated to each L in L. It follows, as in [2, Ap-
pendix 2, Section 2.4], that Y (K, v) is a nonempty, totally disconnected,
compact, Hausdorff space. Moreover (see [2, Appendix 2, Section 2.3]), the
collection of open sets

(2.4) {ψ−1
L (w) : L ∈ L and w ∈Wv(L/K)}

is a basis for the topology of Y (K, v). Clearly, each subset in the collection
(2.4) is also compact, and for each field L in L we can write

Y (K, v) =
⋃

w∈Wv(L/K)

ψ−1
L (w)

as a disjoint union of open and compact sets.
We recall that a map g : Y (K, v)→ R is locally constant if at each point

y in Y (K, v) there exists an open neighborhood of y on which g is constant.

Lemma 1. Let g : Y (K, v)→ R be locally constant. Then there exists L
in L such that for each place w in Wv(L/K) the function g is constant on
the set ψ−1

L (w).

Proof. At each point y in Y (K, v) there exists a field L(y) in L and a
place w(y) in Wv(L(y)/K) such that y is contained in ψ−1

L(y)(w(y)) and g is
constant on the open set ψ−1

L(y)(w(y)). By compactness there exists a finite
collection of fields L(1), . . . , L(J) in L, and for each integer j a corresponding
place w(j) in Wv(L(j)/K), such that

Y (K, v) ⊆
J⋃
j=1

ψ−1
L(j)(w

(j)),

and g is constant on each open set ψ−1
L(j)(w(j)). Let L = L(1) · · ·L(J) be the

composite field, which is obviously in L. If w is a place of L then there exists
an integer j such that

ψ−1
L (w) ∩ ψ−1

L(j)(w
(j))

is not empty. As L is a finite extension of L(j), we conclude that ψL
L(j)(w) =

w(j), and therefore

(2.5) ψ−1
L (w) ⊆ ψ−1

L(j)(w
(j)).

Then (2.5) implies that g is constant on ψ−1
L (w).

Let C(Y (K, v)) denote the real Banach algebra of real-valued contin-
uous functions on Y (K, v) with the supremum norm. Let LC(Y (K, v)) ⊆
C(Y (K, v)) denote the subset of locally constant functions.
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Lemma 2. The subset LC(Y (K, v)) is a dense subalgebra of C(Y (K, v)).

Proof. It is obvious that LC(Y (K, v)) is a subalgebra of C(Y (K, v)),
and that LC(Y (K, v)) contains the constant functions. Now suppose that
y1 and y2 are distinct points in Y (K, v). Let U1 be an open neighborhood
of y1, and U2 an open neighborhood of y2, such that U1 and U2 are disjoint.
Then there exists a field L in L and a place w in Wv(L/K) such that

y1 ∈ ψ−1
L (w) and ψ−1

L (w) ⊆ U1.

As ψ−1
L (w) is both open and compact, the characteristic function of the set

ψ−1
L (w) is a locally constant function that separates the points y1 and y2.

Then it follows from the Stone–Weierstrass theorem that the subalgebra
LC(Y (K, v)) is dense in C(Y (K, v)).

We select an absolute value from the place v of K and denote it by ‖ ‖v.
If L is in L and w is a place in Wv(L/K), we select an absolute value ‖ ‖w
from w such that the restriction of ‖ ‖w to K is equal to ‖ ‖v. As

N =
⋃
L∈L

L,

it follows that each point (wL) in Y (K, v) determines a unique absolute value
on the field N . That is, each point (wL) in Y (K, v) determines a unique place
y of N such that y | v.

Now suppose y is a place of N such that y | v. Select an absolute value
‖ ‖y from y such that the restriction of ‖ ‖y to the subfield K is equal to
‖ ‖v. If L is in L then the restriction of ‖ ‖y to L must equal ‖ ‖wL for a
unique place wL in Wv(L/K). Thus each place y of N with y | v determines
a unique point (wL) in the product∏

L∈L
Wv(L/K)

such that y |wL for each L. It is trivial to check that

ψML (wM ) = wL

whenever L ⊆M are in L. Therefore each place y of N with y | v determines
a unique point (wL) in the inverse limit Y (K, v). In view of these remarks
we may identify Y (K, v) with the set of all places y of N that lie over the
place v of K. In this way we determine a totally disconnected, compact,
Hausdorff topology in the set of all places y of N that lie over the place v
of K.

3. Galois action on places. Next we recall that the Galois group
Aut(N/K) acts on the set Y (K, v) of all places of N that lie over v. More
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precisely, if τ is in Aut(N/K) and y is in Y (K, v), then the map

(3.1) α 7→ ‖τ−1α‖y
is an absolute value on N , and the restriction of this absolute value to K
is clearly equal to ‖ ‖v. Therefore (3.1) determines a unique place τy in
Y (K, v). That is, the identity

(3.2) ‖τ−1α‖y = ‖α‖τy
holds for all α in N , for all τ in Aut(N/K), and for all places y in Y (K, v). It
is immediate that 1y = y and (στ)y = σ(τy) for all σ and τ in Aut(N/K).
Thus (τ, y) 7→ τy defines an action of the group Aut(N/K) on the set
Y (K, v). Moreover, Aut(N/K) acts transitively on Y (K, v) (see [7, Chap-
ter II, Proposition 9.1]).

Lemma 3. The function (τ, y) 7→ τy from Aut(N/K) × Y (K, v) onto
Y (K, v) is continuous.

Proof. Let L be in L and w in Wv(L/K). In view of (2.4) we must show
that

{(τ, y) ∈ Aut(N/K)× Y (K, v) : τy ∈ ψ−1
L (w)}

is open in Aut(N/K) × Y (K, v) with the product topology. For w in
Wv(L/K) we define

Ew = {(σ, z) ∈ Aut(L/K)×Wv(L/K) : σz = w}.

Then we have

{(τ, y) ∈ Aut(N/K)× Y (K, v) : τy ∈ ψ−1
L (w)}

= {(τ, y) ∈ Aut(N/K)× Y (K, v) : πL(τ)ψL(y) = w}

=
⋃

(σ,z)∈Ew

{(τ, y) ∈ Aut(K/k)× Y (K, v) : πL(τ) = σ and ψL(y) = z}

=
⋃

(σ,z)∈Ew

π−1
L (σ)× ψ−1

L (z),

which is obviously an open subset of Aut(N/K)× Y (K, v).

4. The invariant measure. In this section it will be convenient to
write G = Aut(N/K). Let µ denote a Haar measure on the Borel subsets
of the compact topological group G normalized so that µ(G) = 1. If F is
in C(Y (K, v)) and z1 is a point in Y (K, v) then it follows from Lemma 3
that τ 7→ F (τz1) is a continuous function on G with values in R. Let z2
be a second point in Y (K, v). Because G acts transitively on Y (K, v), there
exists η in G so that ηz2 = z1. Then using the translation invariance of Haar
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measure we get

(4.1)
�

G

F (τz1) dµ(τ) =
�

G

F (τηz2) dµ(τ) =
�

G

F (τz2) dµ(τ).

It follows that the map Iv : C(Y (K, v))→ R given by

(4.2) Iv(F ) =
�

G

F (τzv) dµ(τ)

does not depend on the point zv in Y (K, v).
Let MK be a collection of distinct places of K and at each place v in

MK let ‖ ‖v denote an absolute value from v. We assume that

{‖ ‖v : v ∈MK}

is a proper collection of absolute values. Again we assume that N/K is a
(possibly infinite) Galois extension of fields. Let Y be defined by the disjoint
union

(4.3) Y =
⋃

v∈MK

Y (K, v).

Thus Y is the collection of all places y of N such that y | v for some place
v in MK . It follows that Y is a nonempty, totally disconnected, locally
compact, Hausdorff space.

Let Cc(Y ) denote the real vector space of continuous functions F : Y →R
having compact support. If F belongs to Cc(Y ) then there exists a finite
subset SF ⊆MK such that F is supported on the compact set⋃

v∈SF

Y (K, v).

In particular, we have Iv(F ) = 0 for almost all places v of MK . Therefore
we define I : Cc(Y )→ R by

(4.4) I(F ) =
∑

v∈MK

�

G

F (τzv) dµ(τ),

where zv is a point in Y (K, v) for each place v in MK . By our previous
remarks the value of each integral on the right of (4.4) does not depend
on zv, and only finitely many of those integrals are nonzero. Hence there is
no question of convergence in the sum on the right of (4.4).

Theorem 4. There exists a σ-algebra Y of subsets of Y , that contains
the σ-algebra B of Borel sets in Y , and a unique, regular measure λ defined
on Y, such that

(4.5) I(F ) =
�

Y

F (y) dλ(y)
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for all F in Cc(Y ). Moreover , the measure λ satisfies the following condi-
tions:

(i) If η is in G and F is in L1(Y,Y, λ) then

(4.6)
�

Y (K,v)

F (ηy) dλ(y) =
�

Y (K,v)

F (y) dλ(y)

at each place v in MK .
(ii) If E is in Y then

λ(E) = inf{λ(U) : E ⊆ U ⊆ Y and U is open}.
(iii) If E is in Y then

λ(E) = sup{λ(V ) : V ⊆ E and V is compact}.
(iv) If E is in Y and λ(E) = 0 then every subset of E is in Y.

Proof. Clearly, (4.4) defines a positive linear functional on Cc(Y ). By
the Riesz representation theorem (see [8, Theorems 2.14 and 2.17]), there
exists a σ-algebra Y of subsets of Y , containing the σ-algebra B of Borel
sets in Y , and a regular measure λ defined on Y, such that

(4.7) I(F ) =
�

Y

F (y) dλ(y)

for all F in Cc(Y ). If η is in G and F is in Cc(Y ), then by the translation
invariance of the Haar measure µ we have�

Y (K,v)

F (ηy) dλ(y) =
�

G

F (ητz) dµ(τ) =
�

G

F (τz) dµ(τ)(4.8)

=
�

Y (K,v)

F (y) dλ(y)

at each place v inMK . Initially (4.8) holds for all functions F in Cc(Y ). As
Cc(Y ) is dense in L1(Y,Y, λ) (see [8, Theorem 3.14]), it follows in a standard
manner that (4.8) also holds for functions F in L1(Y,Y, λ).

The properties (ii), (iii) and (iv) attributed to λ all are consequences of
the Riesz theorem.

Because the Haar measure µ satisfies µ(G) = 1, it is immediate from
(4.2) and (4.5) that λ(Y (K, v)) = 1 at each place v in MK . As the places
in MK are well behaved, we obtain a further identity for the λ-measure of
basic open sets in each subset Y (K, v).

Theorem 5. If L is in L and w is a place in Wv(L/K), then

(4.9) λ(ψ−1
L (w)) =

[Lw : Kv]
[L : K]

.
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Proof. Let τ be in G. Then

τψ−1
L (w) = {τy ∈ Y (K, v) : ψL(y) = w}(4.10)

= {y ∈ Y (K, v) : πL(τ−1)ψL(y) = w}
= {y ∈ Y (K, v) : ψL(y) = πL(τ)w} = ψ−1

L (πL(τ)w).

Now let w1 and w2 be distinct places in Wv(L/K). Select τ in G so that
πL(τ)w2 = w1. Then (4.10) implies that

τψ−1
L (w2) = ψ−1

L (w1),

and using (4.6) we find that

λ{ψ−1
L (w2)} = λ{ψ−1

L (w1)}.

Because

(4.11) Y (K, v) =
⋃

w∈Wv(L/K)

ψ−1
L (w)

is a disjoint union of |Wv(L/K)| distinct sets, the sets on the right of (4.11)
all have equal λ-measure, and λ(Y (K, v)) = 1, we conclude that

(4.12) λ(ψ−1
L (w)) = |Wv(L/K)|−1.

As v is well behaved we have

(4.13) [L : K] =
∑

w∈Wv(L/K)

[Lw : Kv].

Because L/K is a Galois extension, all local degrees [Lw : Kv] for w in
Wv(L/K) are equal, and we conclude from (4.13) that

(4.14) |Wv(L/K)| = [L : K]
[Lw : Kv]

.

The identity (4.9) now follows from (4.12) and (4.14).

Let LCc(Y ) be the algebra of locally constant, real-valued functions
on Y having compact support. Clearly, LCc(Y ) ⊆ Cc(Y ).

Lemma 4. Let g belong to LCc(Y ). Then there exists L in L such that
for each place w in ML the function g is constant on the set ψ−1

L (w).

Proof. Let Sg ⊂MK be a finite set of places of K such that the support
of g is contained in the compact set

Vg =
⋃
v∈Sg

Y (K, v).

For each place v in Sg we apply Lemma 1 to the restriction of g to Y (K, v).
Thus there exists a field L(v) in L such that for each place w′ in Wv(L(v)/K),
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the function g is constant on ψ−1
L(v)(w′). Let L be the compositum of the finite

collection of fields
{L(v) : v ∈ Sg}.

Clearly, L belongs to L.
Let w be a place in ML. If w | v and v /∈ Sg, then g is identically zero

on ψ−1
L (w), and in particular it is constant on this set. If w | v and v ∈ Sg,

then w |w′ for a unique place w′ in Wv(L(v)/K). Because

ψ−1
L (w) ⊆ ψ−1

L(v)(w
′)

and g is constant on ψ−1
L(v)(w′), it is obvious that g is constant on ψ−1

L (w).

Lemma 5. For 1 ≤ p < ∞ the set LCc(Y ) is dense in Lp(Y,B, λ).
Moreover , LCc(Y ) is dense in C0(Y ) with respect to the sup-norm.

Proof. Let 1 ≤ p <∞. Because Cc(Y ) is dense in Lp(Y,B, λ), it suffices
to show that if F is in Cc(Y ) and ε > 0, then there exists a function g in
LCc(Y ) such that { �

Y

|F (y)− g(y)|p dλ(y)
}1/p

< ε.

Let SF ⊆MK be a nonempty, finite set of places such that F is supported
on the compact set

VF =
⋃
v∈SF

Y (K, v).

For each v in SF we apply Lemma 2 to the restriction of F to Y (K, v). Thus
there exists a locally constant function gv : Y (K, v)→ R such that

(4.15) sup{|F (y)− gv(y)| : y ∈ Y (K, v)} < |SF |−1/pε.

Now define g : Y → R by

(4.16) g(y) =
{
gv(y) if y ∈ Y (K, v) and v ∈ SF ,
0 if y ∈ Y (K, v) and v /∈ SF .

Then g is locally constant and supported on the compact set VF . Therefore
g belongs to LCc(Y ). As λ(Y (K, v)) = 1 at each place v in MK , we get{ �

Y

|F (y)− g(y)|p dλ(y)
}1/p

=
{ ∑
v∈SF

�

Y (K,v)

|F (y)− gv(y)|p dλ(y)
}1/p

<
{ ∑
v∈SF

|SF |−1εp
}1/p

≤ ε.

This proves the first assertion of the lemma.
As Cc(Y ) is dense in C0(Y ) with respect to the sup-norm, the second

assertion of the lemma follows by the same argument. In this case we select
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the locally constant functions gv : Y (K, v)→ R so that

sup{|F (y)− gv(y)| : y ∈ Y (K, v)} < ε.

Then we define g : Y → R as in (4.16). Again we find that g belongs to
LCc(Y ), and the inequality

sup{|F (y)− g(y)| : y ∈ Y } < ε

is obvious.

5. The completion of G. In this section we return to the situation
considered in the introduction. We let K = Q, N = Q, and we let MQ
be the set of all places of Q. Then Y is the set of all places of Q, and
Y is a nonempty, totally disconnected, locally compact, Hausdorff space.
By Theorem 4 there exists a σ-algebra Y of subsets of Y , containing the σ-
algebra B of Borel sets in Y , and a measure λ on Y, satisfying the conclusions
of that result. The basic identity (1.7) is verified by Theorem 5. Then the
map

(5.1) α 7→ fα(y)

defined by (1.9) is a linear map from the Q-vector space

G = Q×/Tor(Q×)

(written multiplicatively) into the vector space Cc(Y ). The identity
(1.10) implies that each function fα(y) belongs to the closed subspace X ⊆
L1(Y,B, λ) defined by (1.8). It follows from basic properties of the height,
and in particular (1.4), that

α 7→ 2h(α)

defines a norm on G with respect to the usual archimedean absolute value
on Q. Then (1.11) shows that (5.1) defines a linear isometry of G into the
subspace X .

Lemma 6. Let k be an algebraic number field and let v 7→ tv be a real-
valued function defined on the set of all places v of k. If

(5.2)
∑
v

tv log |α|v = 0

for all α in k×/Tor(k×), then the function v 7→ tv is constant.

Proof. Let S be a finite set of places of k containing all archimedean
places, and assume that the cardinality of S is s ≥ 2. We write Rs for the
s-dimensional real vector space of column vectors x = (xv) having rows
indexed by places v in S. In particular, we write t = (tv) for the column
vector in Rs formed from the values of the function v 7→ tv restricted to S.
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And we write u = (uv) for the column vector in Rs such that uv = 1 for
each v in S.

Let
US(k) = {η ∈ k : |η|v = 1 for all v /∈ S}

denote the multiplicative group of S-units in k. By the S-unit theorem
(stated as [6, Theorem 3.5]), there exist multiplicatively independent ele-
ments ξ1, . . . , ξs−1 in US(k) which form a fundamental system of S-units.
Write

M = ([kv : Qv] log ‖ξr‖v)

for the associated (s − 1) × s real matrix, where r = 1, . . . , s − 1 indexes
rows and v in S indexes columns. As the S-regulator does not vanish, the
matrix M has rank s− 1. Hence the null space

N = {x ∈ Rs : Mx = 0}

has dimension 1. From the product formula we have Mu = 0. Therefore N
is spanned by the vector u. By hypothesis we have Mt = 0, and it follows
that t is a scalar multiple of u. That is, the function v 7→ tv is constant
on S. As S is arbitrary the lemma is proved.

We now prove Theorem 1. Let E1 denote the closure of F in X . As F is
a vector space over the field Q, it follows that E1 is a vector space over R,
and therefore E1 is a closed linear subspace of X . If E1 is a proper subspace
then it follows from the Hahn–Banach theorem (see [9, Theorem 3.5]) that
there exists a continuous linear functional Φ : X → R such that Φ vanishes
on E1, but Φ is not the zero linear functional on X . We will show that such
a Φ does not exist, and therefore we must have E1 = X .

Let Φ : X → R be a continuous linear functional that vanishes on E1,
but Φ is not the zero linear functional on X . It follows from (1.8) that
X⊥ ⊆ L∞(Y,B, λ) is the one-dimensional subspace spanned by the constant
function 1. As the dual space X ∗ can be identified with the quotient space
L∞(Y,B, λ)/X⊥, there exists a function ϕ(y) in L∞(Y,B, λ) such that ϕ(y)
and the constant function 1 are linearly independent, and

Φ(F ) =
�

Y

F (y)ϕ(y) dλ(y)

for all F in X . Because Φ vanishes on E1 we have

(5.3)
�

Y

fα(y)ϕ(y) dλ(y) = 0

for each function fα in F .
Now let k be a number field in L and let α be in k×/Tor(k×) ⊆ G. From

(4.9) and (5.3) we find that
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0 =
∑
v

{ �

ψ−1
k (v)

log ‖α‖yϕ(y) dλ(y)
}

(5.4)

=
∑
v

{ �

ψ−1
k (v)

ϕ(y) dλ(y)
}

log ‖α‖v

=
∑
v

{
λ(ψ−1

k (v))−1
�

ψ−1
k (v)

ϕ(y) dλ(y)
}

log |α|v.

It follows from Lemma 6 that the function

v 7→ λ(ψ−1
k (v))−1

�

ψ−1
k (v)

ϕ(y) dλ(y)

is constant on the set of places v of k. We write c(k) for this constant.
Let k ⊆ l be number fields in L, and let v be a place of k. Using (4.9)

and (4.14) we have

λ(ψ−1
k (v)) = |Wv(l/k)|λ(ψ−1

l (w))

for all places w in the set Wv(l/k). This leads to the identity

c(l) = |Wv(l/k)|−1
∑

w∈Wv(l/k)

{
λ(ψ−1

l (w))−1
�

ψ−1
l (w)

ϕ(y) dλ(y)
}

(5.5)

= λ(ψ−1
k (v))−1

∑
w∈Wv(l/k)

{ �

ψ−1
l (w)

ϕ(y) dλ(y)
}

= λ(ψ−1
k (v))−1

�

ψ−1
k (v)

ϕ(y) dλ(y) = c(k).

Thus there exists a real number C such that C = c(k) for all fields k in L.
Let g belong to LCc(Y ). By Lemma 4 there exists a number field l in L

such that g is constant on ψ−1
l (w) for each place w of l. Therefore

�

Y

g(y)ϕ(y) dλ(y) =
∑
w

{ �

ψ−1
l (w)

g(y)ϕ(y) dλ(y)
}

(5.6)

= C
∑
w

{
λ(ψ−1

l (w))g(ψ−1
l (w))

}
= C

∑
w

{ �

ψ−1
l (w)

g(y) dλ(y)
}

= C
�

Y

g(y) dλ(y).

By Lemma 5 the set LCc(Y ) is dense in L1(Y,B, λ), and we conclude from
(5.6) that �

Y

F (y)ϕ(y) dλ(y) = C
�

Y

F (y) dλ(y)
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for all F in L1(Y,B, λ). This shows that ϕ(y) = C in L∞(Y,B, λ), and so
contradicts our assumption that ϕ(y) and the constant function 1 are linearly
independent. Hence the continuous linear functional Φ does not exist, and
therefore E1 = X . This proves Theorem 1.

6. Proof of Theorems 2 and 3. We suppose that 1 < p <∞ and write
Ep for the closure of F in Lp(Y,B, λ). As before, Ep is a closed linear subspace.
By the Hahn–Banach theorem it suffices to show that if Φ : Lp(Y,B, λ)
→ R is a continuous linear functional that vanishes on Ep, then in fact Φ is
identically zero on Lp(Y,B, λ).

Let p−1 + q−1 = 1, and let ϕ(y) be an element of Lq(Y,B, λ) such that

Φ(F ) =
�

Y

F (y)ϕ(y) dλ(y)

for all F in Lp(Y,B, λ). We assume that Φ vanishes on Ep, and then we have

(6.1)
�

Y

fα(y)ϕ(y) dλ(y) = 0

for each function fα in F .
Let k be a number field in L and let α be in k×/Tor(k×) ⊆ G. As before,

we apply (4.9) and (5.3) to obtain the identity (5.4). Then Lemma 6 implies
that the function

(6.2) v 7→ λ(ψ−1
k (v))−1

�

ψ−1
k (v)

ϕ(y) dλ(y)

is constant on the set of places v of k. Now, however, we apply Hölder’s
inequality and find that∑
v

∣∣∣λ(ψ−1
k (v))−1

�

ψ−1
k (v)

ϕ(y) dλ(y)
∣∣∣q

≤
∑
v

{
λ(ψ−1

k (v))−1
�

ψ−1
k (v)

|ϕ(y)|q dλ(y)
}
≤ [k : Q]

�

Y

|ϕ(x)|q dλ(y) <∞.

This shows that the constant value of the function (6.2) is zero. Thus we
have �

ψ−1
k (v)

ϕ(y) dλ(y) = 0

for all k in L and for all places v of k. It follows using Lemma 4 that�

Y

g(y)ϕ(y) dλ(y) = 0

for all g in LCc(Y ). By Lemma 5 the set LCc(Y ) is dense in Lp(Y,B, λ),
and we conclude that the continuous linear functional Φ is identically zero.
This completes the proof of Theorem 2.
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Next we suppose that E∞ is the closure of F in C0(Y ). Again it suffices
to show that if Φ : C0(Y )→ R is a continuous linear functional that vanishes
on E∞, then Φ is identically zero on C0(Y ). If Φ is such a linear functional,
then by the Riesz representation theorem (see [8, Theorem 6.19]) there exists
a regular signed measure ν, defined on the σ-algebra B of Borel sets in Y ,
such that

Φ(F ) =
�

Y

F (y) dν(y)

for all F in C0(Y ). Moreover, we have ‖Φ‖ = ‖ν‖, where ‖Φ‖ is the norm of
the linear functional Φ and ‖ν‖ is the total variation of the signed measure ν.
We assume that Φ vanishes on E∞, and therefore�

Y

fα(y) dν(y) = 0

for each function fα in F . By arguing as in the proof of Theorem 2, we
conclude that for each number field k in L the function

(6.3) v 7→ λ(ψ−1
k (v))−1ν(ψ−1

k (v)),

defined on the set of all places v of k, is constant. As∑
v

|λ(ψ−1
k (v))−1ν(ψ−1

k (v))| ≤ [k : Q]
∑
v

|ν(ψ−1
k (v))| ≤ [k : Q]‖ν‖ <∞,

we conclude that the value of the constant function (6.3) is zero. This shows
that

ν(ψ−1
k (v)) = 0

for all k in L and for all places v of k. It follows as before that

Φ(g) =
�

Y

g(y) dν(y) = 0

for all g in LCc(Y ). As LCc(Y ) is dense in C0(Y ) by Lemma 5, we find that
Φ is identically zero on C0(Y ). This proves Theorem 3.
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