A Banach space determined by the Weil height

by

DANIEL ALLCOCK and JEFFREY D. VAALER (Austin, TX)

1. Introduction. Let k be an algebraic number field of degree d over \mathbb{Q} , v a place of k and k_v the completion of k at v. We select two absolute values from the place v. The first is denoted by $\| \|_v$ and defined as follows:

- (i) if $v \mid \infty$ then $\parallel \parallel_v$ is the unique absolute value on k_v that extends the usual absolute value on $\mathbb{Q}_{\infty} = \mathbb{R}$,
- (ii) if v | p then $|| ||_v$ is the unique absolute value on k_v that extends the usual *p*-adic absolute value on \mathbb{Q}_p .

The second absolute value is denoted by $| |_v$ and defined by $|x|_v = ||x||_v^{d_v/d}$ for all x in k_v , where $d_v = [k_v : \mathbb{Q}_v]$ is the local degree. If $\alpha \neq 0$ is in k then these absolute values satisfy the product formula

(1.1)
$$\prod_{v} |\alpha|_{v} = 1.$$

Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and $\overline{\mathbb{Q}}^{\times}$ the multiplicative group of nonzero elements in $\overline{\mathbb{Q}}$. The *absolute*, *logarithmic Weil height* (or simply the *height*)

$$h:\overline{\mathbb{Q}}^{\times}\to[0,\infty)$$

is defined as follows. Let α be a nonzero algebraic number; we select an algebraic number field k containing α , and then

(1.2)
$$h(\alpha) = \sum_{v} \log^+ |\alpha|_v,$$

where the sum on the right of (1.2) is over all places v of k. It can be shown that $h(\alpha)$ is well defined because the right hand side of (1.2) does not depend

²⁰⁰⁰ Mathematics Subject Classification: 11J25, 11R04, 46B04.

Key words and phrases: Weil height.

The research of both authors was supported by the National Science Foundation, DMS-06-00112 and DMS-06-03282, respectively.

on the field k. By combining (1.1) and (1.2) we obtain the useful identity

(1.3)
$$2h(\alpha) = \sum_{v} |\log |\alpha|_{v}|,$$

where | | (an absolute value without a subscript) is the usual archimedean absolute value on \mathbb{R} .

Let $\operatorname{Tor}(\overline{\mathbb{Q}}^{\times})$ denote the torsion subgroup of $\overline{\mathbb{Q}}^{\times}$ and write

$$\mathcal{G} = \overline{\mathbb{Q}}^{\times} / \mathrm{Tor}(\overline{\mathbb{Q}}^{\times})$$

for the quotient group. If ζ is a point in $\operatorname{Tor}(\overline{\mathbb{Q}}^{\times})$, then it is immediate from (1.2) that $h(\alpha) = h(\zeta \alpha)$ for all points α in $\overline{\mathbb{Q}}^{\times}$. Thus h is constant on each coset of the quotient group \mathcal{G} , and so we may regard the height as a map

$$h: \mathcal{G} \to [0,\infty).$$

The height has the following well known properties (see [1,Section 1.5]):

(i) $h(\alpha) = 0$ if and only if α is the identity element in \mathcal{G} ,

(ii)
$$h(\alpha^{-1}) = h(\alpha)$$
 for all α in \mathcal{G} ,

(iii) $h(\alpha\beta) \leq h(\alpha) + h(\beta)$ for all α and β in \mathcal{G} .

These conditions imply that the map $(\alpha, \beta) \mapsto h(\alpha\beta^{-1})$ defines a metric on the group \mathcal{G} and therefore induces a metric topology. Our objective in this paper is to determine the completion of \mathcal{G} with respect to this metric.

Let r/s denote a rational number, where r and s are relatively prime integers and s is positive. If α is in $\overline{\mathbb{Q}}^{\times}$ and ζ_1 and ζ_2 are in $\operatorname{Tor}(\overline{\mathbb{Q}}^{\times})$, then all roots of the two polynomial equations

$$x^s - (\zeta_1 \alpha)^r = 0$$
 and $x^s - (\zeta_2 \alpha)^r = 0$

belong to the same coset in \mathcal{G} . If we write $\alpha^{r/s}$ for this coset, we find that

$$(r/s, \alpha) \mapsto \alpha^{r/s}$$

defines a scalar multiplication in the abelian group \mathcal{G} . This shows that \mathcal{G} is a vector space (written multiplicatively) over the field \mathbb{Q} of rational numbers. Moreover, we have (see [1, Lemma 1.5.18])

(1.4)
$$h(\alpha^{r/s}) = |r/s|h(\alpha).$$

Therefore the map $\alpha \mapsto h(\alpha)$ is a norm on the vector space \mathcal{G} with respect to the usual archimedean absolute value | | on its field \mathbb{Q} of scalars. From these observations we conclude that the completion of \mathcal{G} is a Banach space over the field \mathbb{R} of real numbers. It remains now to give an explicit description of this Banach space.

Let Y denote the set of all places y of the field $\overline{\mathbb{Q}}$. Let $k \subseteq \overline{\mathbb{Q}}$ be an algebraic number field such that k/\mathbb{Q} is a Galois extension. At each place v

of k we write

(1.5)
$$Y(k,v) = \{y \in Y : y \mid v\}$$

for the subset of places of Y that lie over v. Clearly, we can express Y as the disjoint union

(1.6)
$$Y = \bigcup_{v} Y(k, v),$$

where the union is over all places v of k. If y is a place in Y(k, v) we select an absolute value $|| ||_y$ from y such that the restriction of $|| ||_y$ to k is equal to $|| ||_v$. As the restriction of $|| ||_v$ to \mathbb{Q} is one of the usual absolute values on \mathbb{Q} , it follows that this choice of the normalized absolute value $|| ||_y$ does not depend on k.

In Section 2 we show that each subset Y(k, v) can be expressed as an inverse limit of finite sets. This determines a totally disconnected, compact, Hausdorff topology in Y(k, v). Then (1.6) implies that Y is a totally disconnected, locally compact, Hausdorff space. Again the topology in Y does not depend on the field k. We also show that the absolute Galois group $\operatorname{Aut}(\overline{\mathbb{Q}}/k)$ acts transitively and continuously on the elements of each compact, open subset Y(k, v).

In Section 4 we establish the existence of a regular measure λ , defined on the Borel subsets of Y, that is positive on open sets, finite on compact sets, and satisfies $\lambda(\tau E) = \lambda(E)$ for all automorphisms τ in $\operatorname{Aut}(\overline{\mathbb{Q}}/k)$ and all Borel subsets E of Y. The restriction of the measure λ to each subset Y(k, v) is unique up to a positive multiplicative constant. We construct λ so that

(1.7)
$$\lambda(Y(k,v)) = \frac{[k_v : \mathbb{Q}_v]}{[k : \mathbb{Q}]}$$

for each Galois extension k of \mathbb{Q} and each place v of k. It follows from our construction that λ does not depend on the number field k. In particular, if l is any finite, Galois extension of \mathbb{Q} , if w is place of l and

$$Y(l, w) = \{ y \in Y : y \,|\, w \},\$$

then

$$\lambda(Y(l,w)) = \frac{[l_w : \mathbb{Q}_w]}{[l : \mathbb{Q}]}$$

Next we consider the real Banach space $L^1(Y, \mathcal{B}, \lambda)$, where \mathcal{B} denotes the σ -algebra of Borel subsets of Y. Let

(1.8)
$$\mathcal{X} = \Big\{ F \in L^1(Y, \mathcal{B}, \lambda) : \int_Y F(y) \, d\lambda(y) = 0 \Big\},$$

so that \mathcal{X} is a co-dimension one linear subspace of $L^1(Y, \mathcal{B}, \lambda)$. For each point α in \mathcal{G} we define a map $f_\alpha : Y \to \mathbb{R}$ by

(1.9)
$$f_{\alpha}(y) = \log \|\alpha\|_{y}.$$

If k is a finite Galois extension of \mathbb{Q} that contains α , then $y \mapsto \log \|\alpha\|_y$ is constant on each compact, open set Y(k, v), and the value of this map on each set Y(k, v) is nonzero for only finitely many places v of k. It follows that $f_{\alpha}(y)$ is a continuous function on Y with compact support. Using (1.7) and the product formula (1.1), we find that

(1.10)
$$\int_{Y} f_{\alpha}(y) d\lambda(y) = \sum_{v} \int_{Y(k,v)} \log \|\alpha\|_{y} d\lambda(y)$$
$$= \sum_{v} \frac{[k_{v} : \mathbb{Q}_{v}]}{[k : \mathbb{Q}]} \log \|\alpha\|_{v} = \sum_{v} \log |\alpha|_{v} = 0.$$

This shows that $\alpha \mapsto f_{\alpha}(y)$ maps \mathcal{G} into the subspace \mathcal{X} . It follows easily that

$$f_{\alpha\beta}(y) = f_{\alpha}(y) + f_{\beta}(y)$$
 and $f_{\alpha^{r/s}}(y) = (r/s)f_{\alpha}(y)$,

and therefore $\alpha \mapsto f_{\alpha}(y)$ is a linear map from the vector space \mathcal{G} into \mathcal{X} . The L^1 -norm of each function f_{α} is given by

(1.11)
$$\int_{Y} |f_{\alpha}(y)| d\lambda(y) = \sum_{v} \int_{Y(k,v)} |\log \|\alpha\|_{y} |d\lambda_{v}(y)$$
$$= \sum_{v} \frac{[k_{v} : \mathbb{Q}_{v}]}{[k : \mathbb{Q}]} |\log \|\alpha\|_{v} = \sum_{v} |\log |\alpha|_{v} = 2h(\alpha).$$

This shows that the map $\alpha \mapsto f_{\alpha}$ is a linear isometry from the vector space \mathcal{G} with norm determined by 2h into the subspace \mathcal{X} with the L^1 -norm. Let

(1.12)
$$\mathcal{F} = \{ f_{\alpha}(y) : \alpha \in \mathcal{G} \}$$

denote the image of \mathcal{G} under this linear map. Then $\alpha \mapsto f_{\alpha}$ is a linear isometry from the vector space \mathcal{G} (written multiplicatively) onto the vector space \mathcal{F} (written additively). Now the completion of \mathcal{G} is determined by finding the closure of \mathcal{F} in \mathcal{X} .

THEOREM 1. Let \mathcal{X} be the co-dimension one subspace of $L^1(Y, \mathcal{B}, \lambda)$ defined by (1.8). Then \mathcal{F} is dense in \mathcal{X} .

It is immediate from Theorem 1 that there exists an isometric isomorphism from the completion of the vector space \mathcal{G} with respect to the height 2h onto the real Banach space \mathcal{X} .

The functions in the vector space \mathcal{F} belong to the real vector space $C_{\rm c}(Y)$ of continuous functions with compact support. Hence \mathcal{F} belongs to the space $L^p(Y, \mathcal{B}, \lambda)$ for $1 \leq p \leq \infty$. Theorem 1 asserts that the closure of

 \mathcal{F} in $L^1(Y, \mathcal{B}, \lambda)$ is the co-dimension one subspace \mathcal{X} . We also determine the closure of \mathcal{F} with respect to the other L^p -norms.

THEOREM 2. If $1 then <math>\mathcal{F}$ is dense in $L^p(Y, \mathcal{B}, \lambda)$.

Let $C_0(Y)$ denote the Banach space of continuous real-valued functions on Y which vanish at infinity, equipped with the sup-norm. As $\mathcal{F} \subseteq C_c(Y) \subseteq C_0(Y)$, it is clear that the closure of \mathcal{F} with respect to the sup-norm is a subspace of $C_0(Y)$.

THEOREM 3. The vector space \mathcal{F} is dense in $C_0(Y)$.

It follows from the classification of separable L^p -spaces (see [3, pp. 14–15]) that the Banach space $L^1(Y, \mathcal{B}, \lambda)$ has a Schauder basis, or simply a *basis*. As $\mathcal{X} \subseteq L^1(Y, \mathcal{B}, \lambda)$ is a closed subspace of co-dimension one, it is easy to show that \mathcal{X} also has a basis. Then it follows from a well known result of Krein, Milman and Rutman [4] that a basis for \mathcal{X} can be selected from the dense subset \mathcal{F} . Thus there exists a sequence of distinct elements $\alpha_1, \alpha_2, \ldots$ in \mathcal{G} such that the corresponding collection of functions

(1.13)
$$\{f_{\alpha_1}(y), f_{\alpha_2}(y), \dots\}$$

is a basis for the Banach space \mathcal{X} . That is, for every function F in \mathcal{X} there exists a *unique* sequence of real numbers x_1, x_2, \ldots such that

$$F(y) = \lim_{N \to \infty} \sum_{n=1}^{N} x_n f_{\alpha_n}(y)$$

in L^1 -norm. While these remarks establish the existence of such a basis, it would be of interest to construct an explicit example of a sequence $\alpha_1, \alpha_2, \ldots$ in \mathcal{G} such that the corresponding sequence of functions (1.13) forms a basis for \mathcal{X} .

2. Preliminary lemmas. We have stated Theorem 1 for the Weil height on algebraic number fields. However, many of the arguments can be given in the more general setting of a field K with a proper set of absolute values satisfying a product formula. We now describe this situation.

Let K be a field and let v be a place of K. That is, v is an equivalence class of nontrivial absolute values on K. We write K_v for the completion of K at the place v. If L/K is a finite extension of fields then there exist finitely many places w of L such that w | v. In general we have

$$\sum_{w|v} [L_w : K_v] \le [L : K],$$

where L_w is the completion of L at w. We say that v is well behaved if the

identity

$$\sum_{w|v} [L_w : K_v] = [L : K]$$

holds for all finite extensions L/K (see [5, Chapter 1, Section 4]).

Let \mathcal{M}_K be a collection of distinct places of K and at each place v in \mathcal{M}_K let $\| \|_v$ denote an absolute value from v. We say that the collection of absolute values

(2.1)
$$\left\{ \parallel \parallel_v : v \in \mathcal{M}_K \right\}$$

is *proper* if it satisfies the following conditions:

- (i) each place v in \mathcal{M}_K is well behaved,
- (ii) if α is in K^{\times} then $\|\alpha\|_{v} \neq 1$ for at most finitely many places v in \mathcal{M}_{K} ,
- (iii) if α is in K^{\times} then the absolute values in (2.1) satisfy the product formula

$$\prod_{v \in \mathcal{M}_K} \|\alpha\|_v = 1.$$

Now suppose that (2.1) is a proper set of absolute values on K and L/K is a finite extension of fields. Let \mathcal{M}_L be the collection of places of L that extend the places in \mathcal{M}_K . That is, if $W_v(L/K)$ is the finite set of places w of L such that $w \mid v$, then

$$\mathcal{M}_L = \bigcup_{v \in \mathcal{M}_K} W_v(L/K).$$

At each place w in $W_v(L/K)$ we select an absolute value $|| ||_w$ that extends the absolute value $|| ||_v$ on K. Then we define an equivalent absolute value $| |_w$ from the place w by setting

$$\log |\alpha|_w = \frac{[L_w : K_v]}{[L : K]} \log ||\alpha||_w$$

for all α in L^{\times} . In general, $\| \|_w$ and $| \|_w$ are distinct but equivalent absolute values on L. And we note that $| \|_w$ is an absolute value because

$$0 < \frac{[L_w:K_v]}{[L:K]} \le 1.$$

Then it follows, as in [5, Chapter 2, Section 1], that

$$(2.2) \qquad \{ \mid |_w : w \in \mathcal{M}_L \}$$

is a proper set of absolute values on L. In particular, if α is in L^{\times} then the absolute values in (2.2) satisfy the product formula

$$\prod_{w \in \mathcal{M}_L} |\alpha|_w = 1$$

284

We assume that $K \subseteq N$ are fields, that N/K is a (possibly infinite) Galois extension, and we write $\operatorname{Aut}(N/K)$ for the corresponding Galois group. We give $\operatorname{Aut}(N/K)$ the Krull topology, and we briefly recall how this is defined. Let \mathcal{L} denote the set of intermediate fields L such that $K \subseteq L \subseteq N$ and L/K is a finite Galois extension. Obviously, \mathcal{L} is partially ordered by set inclusion. If L and M are in \mathcal{L} then the composite field LM is in \mathcal{L} , $L \subseteq LM$, $M \subseteq LM$, and therefore \mathcal{L} is a directed set. For each L in \mathcal{L} let $\operatorname{Aut}(L/K)$ denote the Galois group of automorphisms of L that fix K. If $L \subseteq M$ are both in \mathcal{L} , we define $\pi_L^M : \operatorname{Aut}(M/K) \to \operatorname{Aut}(L/K)$ to be the map that restricts the domain of an automorphism in $\operatorname{Aut}(M/K)$ to the subfield L. Then each map π_L^M is a surjective homomorphism of groups and π_L^L is the identity map. It follows that

$$\operatorname{Aut}(L/K), \pi_L^M$$

is an inverse system, and $\operatorname{Aut}(N/K)$ can be identified with the inverse (or projective) limit:

$$\operatorname{Aut}(N/K) = \lim_{\stackrel{\leftarrow}{L \in \mathcal{L}}} \operatorname{Aut}(L/K).$$

Thus $\operatorname{Aut}(N/K)$ is a profinite group, and therefore is a totally disconnected, compact, Hausdorff, topological group. We write

$$\pi_L : \operatorname{Aut}(N/K) \to \operatorname{Aut}(L/K)$$

for the canonical map associated with each L in \mathcal{L} . Then π_L is continuous and the collection of open sets

(2.3)
$$\{\pi_L^{-1}(\tau) : L \in \mathcal{L} \text{ and } \tau \in \operatorname{Aut}(L/K)\}$$

is a basis for the Krull topology in $\operatorname{Aut}(N/K)$.

Next we assume that v is a place of the field K. That is, v is an equivalence class of nontrivial absolute values on K. If L is in \mathcal{L} we write $W_v(L/K)$ for the set of places w of L such that w | v. As L/K is a finite extension, it follows that $W_v(L/K)$ is a finite set. If $L \subseteq M$ belong to \mathcal{L} we define connecting maps

$$\psi_L^M: W_v(M/K) \to W_v(L/K)$$

as follows: if w_M belongs to $W_v(M/K)$ then $\psi_L^M(w_M)$ is the unique place w_L in $W_v(L/K)$ such that $w_M | w_L$. If $L \subseteq M$ are in \mathcal{L} then each absolute value on L extends to M and therefore each connecting map ψ_L^M is surjective. We give each finite set $W_v(L/K)$ the discrete topology so that each map ψ_L^M is continuous. Clearly, ψ_L^L is the identity map. We find that

$$\{W_v(L/K), \psi_L^M\}$$

is an inverse system of finite sets. Let

$$Y(K,v) = \lim_{\substack{\leftarrow \mathcal{L}}} W_v(L/K)$$

denote the inverse limit and write $\psi_L : Y(K, v) \to W_v(L/K)$ for the canonical continuous map associated to each L in \mathcal{L} . It follows, as in [2, Appendix 2, Section 2.4], that Y(K, v) is a nonempty, totally disconnected, compact, Hausdorff space. Moreover (see [2, Appendix 2, Section 2.3]), the collection of open sets

(2.4)
$$\{\psi_L^{-1}(w) : L \in \mathcal{L} \text{ and } w \in W_v(L/K)\}$$

is a basis for the topology of Y(K, v). Clearly, each subset in the collection (2.4) is also compact, and for each field L in \mathcal{L} we can write

$$Y(K,v) = \bigcup_{w \in W_v(L/K)} \psi_L^{-1}(w)$$

as a disjoint union of open and compact sets.

We recall that a map $g: Y(K, v) \to \mathbb{R}$ is *locally constant* if at each point y in Y(K, v) there exists an open neighborhood of y on which g is constant.

LEMMA 1. Let $g: Y(K, v) \to \mathbb{R}$ be locally constant. Then there exists L in \mathcal{L} such that for each place w in $W_v(L/K)$ the function g is constant on the set $\psi_L^{-1}(w)$.

Proof. At each point y in Y(K, v) there exists a field $L^{(y)}$ in \mathcal{L} and a place $w^{(y)}$ in $W_v(L^{(y)}/K)$ such that y is contained in $\psi_{L^{(y)}}^{-1}(w^{(y)})$ and g is constant on the open set $\psi_{L^{(y)}}^{-1}(w^{(y)})$. By compactness there exists a finite collection of fields $L^{(1)}, \ldots, L^{(J)}$ in \mathcal{L} , and for each integer j a corresponding place $w^{(j)}$ in $W_v(L^{(j)}/K)$, such that

$$Y(K,v) \subseteq \bigcup_{j=1}^{J} \psi_{L^{(j)}}^{-1}(w^{(j)}),$$

and g is constant on each open set $\psi_{L^{(j)}}^{-1}(w^{(j)})$. Let $L = L^{(1)} \cdots L^{(J)}$ be the composite field, which is obviously in \mathcal{L} . If w is a place of L then there exists an integer j such that

$$\psi_L^{-1}(w) \cap \psi_{L^{(j)}}^{-1}(w^{(j)})$$

is not empty. As L is a finite extension of $L^{(j)}$, we conclude that $\psi_{L^{(j)}}^L(w) = w^{(j)}$, and therefore

(2.5)
$$\psi_L^{-1}(w) \subseteq \psi_{L^{(j)}}^{-1}(w^{(j)}).$$

Then (2.5) implies that g is constant on $\psi_L^{-1}(w)$.

Let C(Y(K, v)) denote the real Banach algebra of real-valued continuous functions on Y(K, v) with the supremum norm. Let $LC(Y(K, v)) \subseteq C(Y(K, v))$ denote the subset of locally constant functions.

LEMMA 2. The subset LC(Y(K, v)) is a dense subalgebra of C(Y(K, v)).

Proof. It is obvious that LC(Y(K, v)) is a subalgebra of C(Y(K, v)), and that LC(Y(K, v)) contains the constant functions. Now suppose that y_1 and y_2 are distinct points in Y(K, v). Let U_1 be an open neighborhood of y_1 , and U_2 an open neighborhood of y_2 , such that U_1 and U_2 are disjoint. Then there exists a field L in \mathcal{L} and a place w in $W_v(L/K)$ such that

$$y_1 \in \psi_L^{-1}(w)$$
 and $\psi_L^{-1}(w) \subseteq U_1$.

As $\psi_L^{-1}(w)$ is both open and compact, the characteristic function of the set $\psi_L^{-1}(w)$ is a locally constant function that separates the points y_1 and y_2 . Then it follows from the Stone–Weierstrass theorem that the subalgebra LC(Y(K, v)) is dense in C(Y(K, v)).

We select an absolute value from the place v of K and denote it by $|| ||_v$. If L is in \mathcal{L} and w is a place in $W_v(L/K)$, we select an absolute value $|| ||_w$ from w such that the restriction of $|| ||_w$ to K is equal to $|| ||_v$. As

$$N = \bigcup_{L \in \mathcal{L}} L,$$

it follows that each point (w_L) in Y(K, v) determines a unique absolute value on the field N. That is, each point (w_L) in Y(K, v) determines a unique place y of N such that y | v.

Now suppose y is a place of N such that y | v. Select an absolute value $|| ||_y$ from y such that the restriction of $|| ||_y$ to the subfield K is equal to $|| ||_v$. If L is in \mathcal{L} then the restriction of $|| ||_y$ to L must equal $|| ||_{w_L}$ for a unique place w_L in $W_v(L/K)$. Thus each place y of N with y | v determines a unique point (w_L) in the product

$$\prod_{L \in \mathcal{L}} W_v(L/K)$$

such that $y \mid w_L$ for each L. It is trivial to check that

$$\psi_L^M(w_M) = w_L$$

whenever $L \subseteq M$ are in \mathcal{L} . Therefore each place y of N with y | v determines a unique point (w_L) in the inverse limit Y(K, v). In view of these remarks we may identify Y(K, v) with the set of all places y of N that lie over the place v of K. In this way we determine a totally disconnected, compact, Hausdorff topology in the set of all places y of N that lie over the place vof K.

3. Galois action on places. Next we recall that the Galois group $\operatorname{Aut}(N/K)$ acts on the set Y(K, v) of all places of N that lie over v. More

precisely, if τ is in Aut(N/K) and y is in Y(K, v), then the map

(3.1)
$$\alpha \mapsto \|\tau^{-1}\alpha\|_y$$

is an absolute value on N, and the restriction of this absolute value to K is clearly equal to $\| \|_v$. Therefore (3.1) determines a unique place τy in Y(K, v). That is, the identity

(3.2)
$$\|\tau^{-1}\alpha\|_y = \|\alpha\|_{\tau y}$$

holds for all α in N, for all τ in $\operatorname{Aut}(N/K)$, and for all places y in Y(K, v). It is immediate that 1y = y and $(\sigma\tau)y = \sigma(\tau y)$ for all σ and τ in $\operatorname{Aut}(N/K)$. Thus $(\tau, y) \mapsto \tau y$ defines an action of the group $\operatorname{Aut}(N/K)$ on the set Y(K, v). Moreover, $\operatorname{Aut}(N/K)$ acts transitively on Y(K, v) (see [7, Chapter II, Proposition 9.1]).

LEMMA 3. The function $(\tau, y) \mapsto \tau y$ from $\operatorname{Aut}(N/K) \times Y(K, v)$ onto Y(K, v) is continuous.

Proof. Let L be in \mathcal{L} and w in $W_v(L/K)$. In view of (2.4) we must show that

$$\{(\tau, y) \in \operatorname{Aut}(N/K) \times Y(K, v) : \tau y \in \psi_L^{-1}(w)\}$$

is open in $\operatorname{Aut}(N/K) \times Y(K, v)$ with the product topology. For w in $W_v(L/K)$ we define

$$E_w = \{ (\sigma, z) \in \operatorname{Aut}(L/K) \times W_v(L/K) : \sigma z = w \}.$$

Then we have

$$\begin{aligned} \{(\tau, y) \in \operatorname{Aut}(N/K) \times Y(K, v) &: \tau y \in \psi_L^{-1}(w) \} \\ &= \{(\tau, y) \in \operatorname{Aut}(N/K) \times Y(K, v) : \pi_L(\tau)\psi_L(y) = w \} \\ &= \bigcup_{(\sigma, z) \in E_w} \{(\tau, y) \in \operatorname{Aut}(K/k) \times Y(K, v) : \pi_L(\tau) = \sigma \text{ and } \psi_L(y) = z \} \\ &= \bigcup_{(\sigma, z) \in E_w} \pi_L^{-1}(\sigma) \times \psi_L^{-1}(z), \end{aligned}$$

which is obviously an open subset of $\operatorname{Aut}(N/K) \times Y(K, v)$.

4. The invariant measure. In this section it will be convenient to write $G = \operatorname{Aut}(N/K)$. Let μ denote a Haar measure on the Borel subsets of the compact topological group G normalized so that $\mu(G) = 1$. If F is in C(Y(K, v)) and z_1 is a point in Y(K, v) then it follows from Lemma 3 that $\tau \mapsto F(\tau z_1)$ is a continuous function on G with values in \mathbb{R} . Let z_2 be a second point in Y(K, v). Because G acts transitively on Y(K, v), there exists η in G so that $\eta z_2 = z_1$. Then using the translation invariance of Haar

measure we get

(4.1)
$$\int_{G} F(\tau z_1) \, d\mu(\tau) = \int_{G} F(\tau \eta z_2) \, d\mu(\tau) = \int_{G} F(\tau z_2) \, d\mu(\tau).$$

It follows that the map $I_v : C(Y(K, v)) \to \mathbb{R}$ given by

(4.2)
$$I_v(F) = \int_G F(\tau z_v) \, d\mu(\tau)$$

does not depend on the point z_v in Y(K, v).

Let \mathcal{M}_K be a collection of distinct places of K and at each place v in \mathcal{M}_K let $|| \parallel_v$ denote an absolute value from v. We assume that

$$\{\| \|_v : v \in \mathcal{M}_K\}$$

is a proper collection of absolute values. Again we assume that N/K is a (possibly infinite) Galois extension of fields. Let Y be defined by the disjoint union

(4.3)
$$Y = \bigcup_{v \in \mathcal{M}_K} Y(K, v).$$

Thus Y is the collection of all places y of N such that y | v for some place v in \mathcal{M}_K . It follows that Y is a nonempty, totally disconnected, locally compact, Hausdorff space.

Let $C_{c}(Y)$ denote the real vector space of continuous functions $F: Y \to \mathbb{R}$ having compact support. If F belongs to $C_{c}(Y)$ then there exists a finite subset $S_{F} \subseteq \mathcal{M}_{K}$ such that F is supported on the compact set

$$\bigcup_{v \in S_F} Y(K, v).$$

In particular, we have $I_v(F) = 0$ for almost all places v of \mathcal{M}_K . Therefore we define $I : C_c(Y) \to \mathbb{R}$ by

(4.4)
$$I(F) = \sum_{v \in \mathcal{M}_K} \int_G F(\tau z_v) \, d\mu(\tau),$$

where z_v is a point in Y(K, v) for each place v in \mathcal{M}_K . By our previous remarks the value of each integral on the right of (4.4) does not depend on z_v , and only finitely many of those integrals are nonzero. Hence there is no question of convergence in the sum on the right of (4.4).

THEOREM 4. There exists a σ -algebra \mathcal{Y} of subsets of Y, that contains the σ -algebra \mathcal{B} of Borel sets in Y, and a unique, regular measure λ defined on \mathcal{Y} , such that

(4.5)
$$I(F) = \int_{Y} F(y) \, d\lambda(y)$$

for all F in $C_{c}(Y)$. Moreover, the measure λ satisfies the following conditions:

(i) If η is in G and F is in $L^1(Y, \mathcal{Y}, \lambda)$ then

(4.6)
$$\int_{Y(K,v)} F(\eta y) \, d\lambda(y) = \int_{Y(K,v)} F(y) \, d\lambda(y)$$

at each place v in \mathcal{M}_K .

(ii) If E is in \mathcal{Y} then

$$\lambda(E) = \inf\{\lambda(U) : E \subseteq U \subseteq Y \text{ and } U \text{ is open}\}.$$

(iii) If E is in \mathcal{Y} then

$$\lambda(E) = \sup\{\lambda(V) : V \subseteq E \text{ and } V \text{ is compact}\}.$$

(iv) If E is in \mathcal{Y} and $\lambda(E) = 0$ then every subset of E is in \mathcal{Y} .

Proof. Clearly, (4.4) defines a positive linear functional on $C_{\rm c}(Y)$. By the Riesz representation theorem (see [8, Theorems 2.14 and 2.17]), there exists a σ -algebra \mathcal{Y} of subsets of Y, containing the σ -algebra \mathcal{B} of Borel sets in Y, and a regular measure λ defined on \mathcal{Y} , such that

(4.7)
$$I(F) = \int_{Y} F(y) \, d\lambda(y)$$

for all F in $C_{c}(Y)$. If η is in G and F is in $C_{c}(Y)$, then by the translation invariance of the Haar measure μ we have

(4.8)
$$\int_{Y(K,v)} F(\eta y) d\lambda(y) = \int_{G} F(\eta \tau z) d\mu(\tau) = \int_{G} F(\tau z) d\mu(\tau)$$
$$= \int_{Y(K,v)} F(y) d\lambda(y)$$

at each place v in \mathcal{M}_K . Initially (4.8) holds for all functions F in $C_c(Y)$. As $C_c(Y)$ is dense in $L^1(Y, \mathcal{Y}, \lambda)$ (see [8, Theorem 3.14]), it follows in a standard manner that (4.8) also holds for functions F in $L^1(Y, \mathcal{Y}, \lambda)$.

The properties (ii), (iii) and (iv) attributed to λ all are consequences of the Riesz theorem.

Because the Haar measure μ satisfies $\mu(G) = 1$, it is immediate from (4.2) and (4.5) that $\lambda(Y(K, v)) = 1$ at each place v in \mathcal{M}_K . As the places in \mathcal{M}_K are well behaved, we obtain a further identity for the λ -measure of basic open sets in each subset Y(K, v).

THEOREM 5. If L is in \mathcal{L} and w is a place in $W_v(L/K)$, then

(4.9)
$$\lambda(\psi_L^{-1}(w)) = \frac{[L_w : K_v]}{[L : K]}.$$

Proof. Let τ be in G. Then

(4.10)
$$\tau \psi_L^{-1}(w) = \{ \tau y \in Y(K, v) : \psi_L(y) = w \}$$
$$= \{ y \in Y(K, v) : \pi_L(\tau^{-1})\psi_L(y) = w \}$$
$$= \{ y \in Y(K, v) : \psi_L(y) = \pi_L(\tau)w \} = \psi_L^{-1}(\pi_L(\tau)w).$$

Now let w_1 and w_2 be distinct places in $W_v(L/K)$. Select τ in G so that $\pi_L(\tau)w_2 = w_1$. Then (4.10) implies that

$$\tau \psi_L^{-1}(w_2) = \psi_L^{-1}(w_1),$$

and using (4.6) we find that

$$\lambda\{\psi_L^{-1}(w_2)\} = \lambda\{\psi_L^{-1}(w_1)\}.$$

Because

(4.11)
$$Y(K,v) = \bigcup_{w \in W_v(L/K)} \psi_L^{-1}(w)$$

is a disjoint union of $|W_v(L/K)|$ distinct sets, the sets on the right of (4.11) all have equal λ -measure, and $\lambda(Y(K, v)) = 1$, we conclude that

(4.12)
$$\lambda(\psi_L^{-1}(w)) = |W_v(L/K)|^{-1}$$

As v is well behaved we have

(4.13)
$$[L:K] = \sum_{w \in W_v(L/K)} [L_w:K_v].$$

Because L/K is a Galois extension, all local degrees $[L_w : K_v]$ for w in $W_v(L/K)$ are equal, and we conclude from (4.13) that

(4.14)
$$|W_v(L/K)| = \frac{[L:K]}{[L_w:K_v]}.$$

The identity (4.9) now follows from (4.12) and (4.14).

Let $LC_{c}(Y)$ be the algebra of locally constant, real-valued functions on Y having compact support. Clearly, $LC_{c}(Y) \subseteq C_{c}(Y)$.

LEMMA 4. Let g belong to $LC_{c}(Y)$. Then there exists L in \mathcal{L} such that for each place w in \mathcal{M}_{L} the function g is constant on the set $\psi_{L}^{-1}(w)$.

Proof. Let $S_g \subset \mathcal{M}_K$ be a finite set of places of K such that the support of g is contained in the compact set

$$V_g = \bigcup_{v \in S_g} Y(K, v).$$

For each place v in S_g we apply Lemma 1 to the restriction of g to Y(K, v). Thus there exists a field $L^{(v)}$ in \mathcal{L} such that for each place w' in $W_v(L^{(v)}/K)$, the function g is constant on $\psi_{L^{(v)}}^{-1}(w')$. Let L be the compositum of the finite collection of fields

$$\{L^{(v)}: v \in S_g\}.$$

Clearly, L belongs to \mathcal{L} .

Let w be a place in \mathcal{M}_L . If w | v and $v \notin S_g$, then g is identically zero on $\psi_L^{-1}(w)$, and in particular it is constant on this set. If w | v and $v \in S_g$, then w | w' for a unique place w' in $W_v(L^{(v)}/K)$. Because

$$\psi_L^{-1}(w) \subseteq \psi_{L^{(v)}}^{-1}(w')$$

and g is constant on $\psi_{L^{(v)}}^{-1}(w')$, it is obvious that g is constant on $\psi_{L}^{-1}(w)$.

LEMMA 5. For $1 \leq p < \infty$ the set $LC_{c}(Y)$ is dense in $L^{p}(Y, \mathcal{B}, \lambda)$. Moreover, $LC_{c}(Y)$ is dense in $C_{0}(Y)$ with respect to the sup-norm.

Proof. Let $1 \leq p < \infty$. Because $C_{\rm c}(Y)$ is dense in $L^p(Y, \mathcal{B}, \lambda)$, it suffices to show that if F is in $C_{\rm c}(Y)$ and $\varepsilon > 0$, then there exists a function g in $LC_{\rm c}(Y)$ such that

$$\left\{ \int_{Y} |F(y) - g(y)|^p \, d\lambda(y) \right\}^{1/p} < \varepsilon.$$

Let $S_F \subseteq \mathcal{M}_K$ be a nonempty, finite set of places such that F is supported on the compact set

$$V_F = \bigcup_{v \in S_F} Y(K, v).$$

For each v in S_F we apply Lemma 2 to the restriction of F to Y(K, v). Thus there exists a locally constant function $g_v : Y(K, v) \to \mathbb{R}$ such that

(4.15)
$$\sup\{|F(y) - g_v(y)| : y \in Y(K, v)\} < |S_F|^{-1/p} \varepsilon.$$

Now define $g: Y \to \mathbb{R}$ by

(4.16)
$$g(y) = \begin{cases} g_v(y) & \text{if } y \in Y(K, v) \text{ and } v \in S_F, \\ 0 & \text{if } y \in Y(K, v) \text{ and } v \notin S_F. \end{cases}$$

Then g is locally constant and supported on the compact set V_F . Therefore g belongs to $LC_c(Y)$. As $\lambda(Y(K, v)) = 1$ at each place v in \mathcal{M}_K , we get

$$\begin{cases} \int_{Y} |F(y) - g(y)|^p d\lambda(y) \end{cases}^{1/p} = \left\{ \sum_{v \in S_F} \int_{Y(K,v)} |F(y) - g_v(y)|^p d\lambda(y) \right\}^{1/p} \\ < \left\{ \sum_{v \in S_F} |S_F|^{-1} \varepsilon^p \right\}^{1/p} \le \varepsilon. \end{cases}$$

This proves the first assertion of the lemma.

As $C_{\rm c}(Y)$ is dense in $C_0(Y)$ with respect to the sup-norm, the second assertion of the lemma follows by the same argument. In this case we select the locally constant functions $g_v: Y(K, v) \to \mathbb{R}$ so that

$$\sup\{|F(y) - g_v(y)| : y \in Y(K, v)\} < \varepsilon$$

Then we define $g: Y \to \mathbb{R}$ as in (4.16). Again we find that g belongs to $LC_{c}(Y)$, and the inequality

$$\sup\{|F(y) - g(y)| : y \in Y\} < \varepsilon$$

is obvious.

5. The completion of \mathcal{G} . In this section we return to the situation considered in the introduction. We let $K = \mathbb{Q}$, $N = \overline{\mathbb{Q}}$, and we let $\mathcal{M}_{\mathbb{Q}}$ be the set of all places of \mathbb{Q} . Then Y is the set of all places of $\overline{\mathbb{Q}}$, and Y is a nonempty, totally disconnected, locally compact, Hausdorff space. By Theorem 4 there exists a σ -algebra \mathcal{Y} of subsets of Y, containing the σ algebra \mathcal{B} of Borel sets in Y, and a measure λ on \mathcal{Y} , satisfying the conclusions of that result. The basic identity (1.7) is verified by Theorem 5. Then the map

$$(5.1) \qquad \qquad \alpha \mapsto f_{\alpha}(y)$$

defined by (1.9) is a linear map from the \mathbb{Q} -vector space

$$\mathcal{G} = \overline{\mathbb{Q}}^{\times} / \mathrm{Tor}(\overline{\mathbb{Q}}^{\times})$$

(written multiplicatively) into the vector space $C_{\rm c}(Y)$. The identity (1.10) implies that each function $f_{\alpha}(y)$ belongs to the closed subspace $\mathcal{X} \subseteq L^1(Y, \mathcal{B}, \lambda)$ defined by (1.8). It follows from basic properties of the height, and in particular (1.4), that

$$\alpha \mapsto 2h(\alpha)$$

defines a norm on \mathcal{G} with respect to the usual archimedean absolute value on \mathbb{Q} . Then (1.11) shows that (5.1) defines a linear isometry of \mathcal{G} into the subspace \mathcal{X} .

LEMMA 6. Let k be an algebraic number field and let $v \mapsto t_v$ be a realvalued function defined on the set of all places v of k. If

(5.2)
$$\sum_{v} t_v \log |\alpha|_v = 0$$

for all α in $k^{\times}/\operatorname{Tor}(k^{\times})$, then the function $v \mapsto t_v$ is constant.

Proof. Let S be a finite set of places of k containing all archimedean places, and assume that the cardinality of S is $s \ge 2$. We write \mathbb{R}^s for the s-dimensional real vector space of column vectors $\boldsymbol{x} = (x_v)$ having rows indexed by places v in S. In particular, we write $\boldsymbol{t} = (t_v)$ for the column vector in \mathbb{R}^s formed from the values of the function $v \mapsto t_v$ restricted to S.

And we write $\boldsymbol{u} = (u_v)$ for the column vector in \mathbb{R}^s such that $u_v = 1$ for each v in S.

Let

$$U_S(k) = \{\eta \in k : |\eta|_v = 1 \text{ for all } v \notin S\}$$

denote the multiplicative group of S-units in k. By the S-unit theorem (stated as [6, Theorem 3.5]), there exist multiplicatively independent elements ξ_1, \ldots, ξ_{s-1} in $U_S(k)$ which form a fundamental system of S-units. Write

$$M = ([k_v : \mathbb{Q}_v] \log \|\xi_r\|_v)$$

for the associated $(s-1) \times s$ real matrix, where $r = 1, \ldots, s-1$ indexes rows and v in S indexes columns. As the S-regulator does not vanish, the matrix M has rank s-1. Hence the null space

$$\mathcal{N} = \{ \boldsymbol{x} \in \mathbb{R}^s : M \boldsymbol{x} = \boldsymbol{0} \}$$

has dimension 1. From the product formula we have Mu = 0. Therefore \mathcal{N} is spanned by the vector u. By hypothesis we have Mt = 0, and it follows that t is a scalar multiple of u. That is, the function $v \mapsto t_v$ is constant on S. As S is arbitrary the lemma is proved.

We now prove Theorem 1. Let \mathcal{E}_1 denote the closure of \mathcal{F} in \mathcal{X} . As \mathcal{F} is a vector space over the field \mathbb{Q} , it follows that \mathcal{E}_1 is a vector space over \mathbb{R} , and therefore \mathcal{E}_1 is a closed linear subspace of \mathcal{X} . If \mathcal{E}_1 is a proper subspace then it follows from the Hahn–Banach theorem (see [9, Theorem 3.5]) that there exists a continuous linear functional $\Phi : \mathcal{X} \to \mathbb{R}$ such that Φ vanishes on \mathcal{E}_1 , but Φ is not the zero linear functional on \mathcal{X} . We will show that such a Φ does not exist, and therefore we must have $\mathcal{E}_1 = \mathcal{X}$.

Let $\Phi : \mathcal{X} \to \mathbb{R}$ be a continuous linear functional that vanishes on \mathcal{E}_1 , but Φ is not the zero linear functional on \mathcal{X} . It follows from (1.8) that $\mathcal{X}^{\perp} \subseteq L^{\infty}(Y, \mathcal{B}, \lambda)$ is the one-dimensional subspace spanned by the constant function 1. As the dual space \mathcal{X}^* can be identified with the quotient space $L^{\infty}(Y, \mathcal{B}, \lambda)/\mathcal{X}^{\perp}$, there exists a function $\varphi(y)$ in $L^{\infty}(Y, \mathcal{B}, \lambda)$ such that $\varphi(y)$ and the constant function 1 are linearly independent, and

$$\Phi(F) = \int_{Y} F(y)\varphi(y) \, d\lambda(y)$$

for all F in \mathcal{X} . Because Φ vanishes on \mathcal{E}_1 we have

(5.3)
$$\int_{Y} f_{\alpha}(y)\varphi(y) \, d\lambda(y) = 0$$

for each function f_{α} in \mathcal{F} .

Now let k be a number field in \mathcal{L} and let α be in $k^{\times}/\operatorname{Tor}(k^{\times}) \subseteq \mathcal{G}$. From (4.9) and (5.3) we find that

294

(5.4)
$$0 = \sum_{v} \left\{ \int_{\psi_{k}^{-1}(v)} \log \|\alpha\|_{y} \varphi(y) \, d\lambda(y) \right\}$$
$$= \sum_{v} \left\{ \int_{\psi_{k}^{-1}(v)} \varphi(y) \, d\lambda(y) \right\} \log \|\alpha\|_{v}$$
$$= \sum_{v} \left\{ \lambda(\psi_{k}^{-1}(v))^{-1} \int_{\psi_{k}^{-1}(v)} \varphi(y) \, d\lambda(y) \right\} \log |\alpha|_{v}.$$

It follows from Lemma 6 that the function

$$v \mapsto \lambda(\psi_k^{-1}(v))^{-1} \int\limits_{\psi_k^{-1}(v)} \varphi(y) \, d\lambda(y)$$

is constant on the set of places v of k. We write c(k) for this constant.

Let $k \subseteq l$ be number fields in \mathcal{L} , and let v be a place of k. Using (4.9) and (4.14) we have

$$\lambda(\psi_k^{-1}(v)) = |W_v(l/k)|\lambda(\psi_l^{-1}(w))$$

for all places w in the set $W_v(l/k)$. This leads to the identity

(5.5)
$$c(l) = |W_{v}(l/k)|^{-1} \sum_{w \in W_{v}(l/k)} \left\{ \lambda(\psi_{l}^{-1}(w))^{-1} \int_{\psi_{l}^{-1}(w)} \varphi(y) \, d\lambda(y) \right\}$$
$$= \lambda(\psi_{k}^{-1}(v))^{-1} \sum_{w \in W_{v}(l/k)} \left\{ \int_{\psi_{l}^{-1}(w)} \varphi(y) \, d\lambda(y) \right\}$$
$$= \lambda(\psi_{k}^{-1}(v))^{-1} \int_{\psi_{k}^{-1}(v)} \varphi(y) \, d\lambda(y) = c(k).$$

Thus there exists a real number C such that C = c(k) for all fields k in \mathcal{L} .

Let g belong to $LC_{c}(Y)$. By Lemma 4 there exists a number field l in \mathcal{L} such that g is constant on $\psi_{l}^{-1}(w)$ for each place w of l. Therefore

(5.6)
$$\int_{Y} g(y)\varphi(y) \, d\lambda(y) = \sum_{w} \left\{ \int_{\psi_{l}^{-1}(w)} g(y)\varphi(y) \, d\lambda(y) \right\}$$
$$= C \sum_{w} \left\{ \lambda(\psi_{l}^{-1}(w))g(\psi_{l}^{-1}(w)) \right\}$$
$$= C \sum_{w} \left\{ \int_{\psi_{l}^{-1}(w)} g(y) \, d\lambda(y) \right\} = C \int_{Y} g(y) \, d\lambda(y).$$

By Lemma 5 the set $LC_{c}(Y)$ is dense in $L^{1}(Y, \mathcal{B}, \lambda)$, and we conclude from (5.6) that

$$\int_{Y} F(y)\varphi(y) \, d\lambda(y) = C \int_{Y} F(y) \, d\lambda(y)$$

for all F in $L^1(Y, \mathcal{B}, \lambda)$. This shows that $\varphi(y) = C$ in $L^{\infty}(Y, \mathcal{B}, \lambda)$, and so contradicts our assumption that $\varphi(y)$ and the constant function 1 are linearly independent. Hence the continuous linear functional Φ does not exist, and therefore $\mathcal{E}_1 = \mathcal{X}$. This proves Theorem 1.

6. Proof of Theorems 2 and 3. We suppose that $1 and write <math>\mathcal{E}_p$ for the closure of \mathcal{F} in $L^p(Y, \mathcal{B}, \lambda)$. As before, \mathcal{E}_p is a closed linear subspace. By the Hahn–Banach theorem it suffices to show that if $\Phi : L^p(Y, \mathcal{B}, \lambda) \to \mathbb{R}$ is a continuous linear functional that vanishes on \mathcal{E}_p , then in fact Φ is identically zero on $L^p(Y, \mathcal{B}, \lambda)$.

Let $p^{-1} + q^{-1} = 1$, and let $\varphi(y)$ be an element of $L^q(Y, \mathcal{B}, \lambda)$ such that

$$\Phi(F) = \int_{Y} F(y)\varphi(y) \, d\lambda(y)$$

for all F in $L^p(Y, \mathcal{B}, \lambda)$. We assume that Φ vanishes on \mathcal{E}_p , and then we have

(6.1)
$$\int_{Y} f_{\alpha}(y)\varphi(y) \, d\lambda(y) = 0$$

for each function f_{α} in \mathcal{F} .

Let k be a number field in \mathcal{L} and let α be in $k^{\times}/\text{Tor}(k^{\times}) \subseteq \mathcal{G}$. As before, we apply (4.9) and (5.3) to obtain the identity (5.4). Then Lemma 6 implies that the function

(6.2)
$$v \mapsto \lambda(\psi_k^{-1}(v))^{-1} \int_{\psi_k^{-1}(v)} \varphi(y) \, d\lambda(y)$$

is constant on the set of places v of k. Now, however, we apply Hölder's inequality and find that

$$\begin{split} \sum_{v} & \left| \lambda(\psi_{k}^{-1}(v))^{-1} \int_{\psi_{k}^{-1}(v)} \varphi(y) \, d\lambda(y) \right|^{q} \\ & \leq \sum_{v} \left\{ \lambda(\psi_{k}^{-1}(v))^{-1} \int_{\psi_{k}^{-1}(v)} |\varphi(y)|^{q} \, d\lambda(y) \right\} \leq [k:\mathbb{Q}] \int_{Y} |\varphi(x)|^{q} \, d\lambda(y) < \infty. \end{split}$$

This shows that the constant value of the function (6.2) is zero. Thus we have

$$\int_{\psi_k^{-1}(v)} \varphi(y) \, d\lambda(y) = 0$$

for all k in \mathcal{L} and for all places v of k. It follows using Lemma 4 that

$$\int_{Y} g(y)\varphi(y) \, d\lambda(y) = 0$$

for all g in $LC_{c}(Y)$. By Lemma 5 the set $LC_{c}(Y)$ is dense in $L^{p}(Y, \mathcal{B}, \lambda)$, and we conclude that the continuous linear functional Φ is identically zero. This completes the proof of Theorem 2.

Next we suppose that \mathcal{E}_{∞} is the closure of \mathcal{F} in $C_0(Y)$. Again it suffices to show that if $\Phi : C_0(Y) \to \mathbb{R}$ is a continuous linear functional that vanishes on \mathcal{E}_{∞} , then Φ is identically zero on $C_0(Y)$. If Φ is such a linear functional, then by the Riesz representation theorem (see [8, Theorem 6.19]) there exists a regular signed measure ν , defined on the σ -algebra \mathcal{B} of Borel sets in Y, such that

$$\Phi(F) = \int_{Y} F(y) \, d\nu(y)$$

for all F in $C_0(Y)$. Moreover, we have $\|\Phi\| = \|\nu\|$, where $\|\Phi\|$ is the norm of the linear functional Φ and $\|\nu\|$ is the total variation of the signed measure ν . We assume that Φ vanishes on \mathcal{E}_{∞} , and therefore

$$\int_{Y} f_{\alpha}(y) \, d\nu(y) = 0$$

for each function f_{α} in \mathcal{F} . By arguing as in the proof of Theorem 2, we conclude that for each number field k in \mathcal{L} the function

(6.3)
$$v \mapsto \lambda(\psi_k^{-1}(v))^{-1}\nu(\psi_k^{-1}(v)),$$

defined on the set of all places v of k, is constant. As

$$\sum_{v} |\lambda(\psi_k^{-1}(v))^{-1} \nu(\psi_k^{-1}(v))| \le [k : \mathbb{Q}] \sum_{v} |\nu(\psi_k^{-1}(v))| \le [k : \mathbb{Q}] \|\nu\| < \infty,$$

we conclude that the value of the constant function (6.3) is zero. This shows that

$$\nu(\psi_k^{-1}(v)) = 0$$

for all k in \mathcal{L} and for all places v of k. It follows as before that

$$\Phi(g) = \int_{Y} g(y) \, d\nu(y) = 0$$

for all g in $LC_{c}(Y)$. As $LC_{c}(Y)$ is dense in $C_{0}(Y)$ by Lemma 5, we find that Φ is identically zero on $C_{0}(Y)$. This proves Theorem 3.

References

- E. Bombieri and W. Gubler, *Heights in Diophantine Geometry*, Cambridge Univ. Press, New York, 2006.
- [2] J. Dugundji, *Topology*, Allyn and Bacon, Boston, 1966.
- [3] W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in: Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss (eds.), Elsevier, New York, 2001, 1–84.
- [4] M. Krein, D. Milman and M. Rutman, A note on bases in Banach space, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff (4) 16 (1940), 106–110 (in Russian).
- [5] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York, 1983.
- [6] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN–Polish Sci. Publ., Warszawa, 1974.

[7] J. Neukirch, Algebraic Number Theory, Springer, New York, 1999.

[8] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.

[9] —, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.

Department of Mathematics University of Texas Austin, TX 78712, U.S.A. E-mail: allcock@math.utexas.edu vaaler@math.utexas.edu

Received on 24.6.2008

(5748)

298