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Lower bounds for a conjecture of Erdős and Turán
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Ioannis Konstantoulas (Urbana, IL)

1. Introduction. A set A of nonnegative integers is called an asymp-
totic additive 2-basis if there exists an n0 ∈ N such that every n > n0 can
be written in at least one way in the form n = x+ y with x and y in A. The
exact number of ways n can be written as above is denoted by

r(n) := #{(x, y) ∈ A×A | x+ y = n}.
As defined, r(n) counts order, so for example it distinguishes between the
representations 3 = 1 + 2 = 2 + 1. However, the corresponding function that
does not count order is comparable to the one we use, so bounds for one
function give bounds for the other.

The great open problem concerning these objects is whether that rep-
resentation function (or any of its equivalents) can be bounded for some
basis A. The conjecture, first proposed by Erdős and Turán, says that for
any asymptotic basis A, r(n) is unbounded. This seems to be a difficult
problem and few results have been obtained, even when one asks for very
small lower bounds. The only lower bounds we are aware of before this work
belong to Erdős [3] and Dirac [2]. Erdős proved that r(n) cannot be constant
and Dirac proved, essentially, that it cannot take only two values.

Other authors ([4], [1]) have improved these results to r(n) > 5 and
r(n) > 7 for infinitely many n using computational means in the case A
represents every natural number. It is worth mentioning that the problem
they solve is completely different to ours; the assumption that A + A = N
is essential in those arguments, since the proofs can be described as follows:
define the function ρ(x) = minAx maxk≤x rA(k), where the minimum is over
all finite bases Ax that represent everything up to x. It is obvious that the
function ρ is increasing, and thus for any specific lower bound l one wants
to obtain, one needs only find an x for which ρ(x) > l (from an increasing
family of bases Ax for which the inequality is satisfied one can obtain a
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similar infinite basis via a diagonal argument described in [4]). For fixed
x, l, whether an inequality ρ(x) > l holds is a decidable problem, simply
by listing all bases Ax and computing the function. Therefore, the main
problem is to efficiently compute ρ in order to get any specific lower bound
for representations in the case of bases. When A is only assumed to be an
asymptotic basis, the truth of any inequality ρ(x) > l is not decidable so no
algorithmic procedure can give a uniform bound independent of A.

Here we prove that r(n) cannot be bounded above by five under some
assumptions weaker than A being an asymptotic basis. A strong version of
the conjecture is obtained by replacing the condition that A is an asymptotic
basis with the condition that (1) A(n) ≥ C

√
n for all large n, for some fixed

(arbitrary) C > 0. This version prompted us to search for lower bounds
solely on grounds of density of the sets in question.

The heart of our arguments lies in the generating function approach and
especially the excellent exposition of that approach in Newman’s book [5].
The main theorem in this work is the following

Theorem 1. Let A ⊂ N be such that the upper density

D = d(N \ (A+A))

of the set of numbers not represented as sums of two elements of A satisfies
the bound D < 1/10. Let r(n) count the number of representations as sums
of elements of A including order. Then r(n) > 5 for infinitely many natural
numbers.

We do not claim in any way that the condition on D is optimal. Perhaps
even with the method we use this bound can be improved, but we have
not been able to do so. The strong Erdős–Turán conjecture implies that no
condition on D is necessary to obtain such bounds.

We denote E := N\(A+A) and call it the set of exceptions. This theorem
will be proved by studying the analytic properties of the generating function
of r(n) near a convenient singularity. We include here the relevant definitions
in order to avoid confusion regarding notation.

For an arbitrary set of natural numbers A the generating function of A,
denoted by gA(z), is defined as

gA(z) =
∑
a∈A

za.

Observe that this power series converges absolutely for all z ∈ C with |z| < 1
and satisfies

gA(|z|) ≤ 1

1− |z|
for all |z| < 1

by comparing it to the full geometric series.

(1) As usual, A(n) := #{k ≤ n | k ∈ A}.
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More generally, given a numerical function f : N → C, its generating
function is defined to be

gf (z) =
∑
n∈N

f(n)xn.

This series converges in |z| < 1 if |f(n)| = O(nc) and this will be the case
with all sequences of coefficients we will encounter here. If f = χA we recover
the generating function of the set A as previously defined.

Now consider an arbitrary A ⊂ N. We drop the subscript A from the
notation of its generating function, writing g(z) instead. It is easily seen
that the generating function for the function r(n) is

(1) gr(z) = g(z)2.

Before we prove the main theorem, we will need a consequence of the
following lemma:

Lemma 2. Let A ⊂ N and g(z) be the generating function of χA. Let
d,D be the lower and upper densities of A respectively (2). Then

d ≤ lim inf
r→1−

(1− r)
r�

0

g(t)

1− t
dt ≤ lim sup

r→1−
(1− r)

r�

0

g(t)

1− t
dt ≤ D.

Proof. We only show the inequality involving the lim sup and D since
the rest is similar. It is easy to see that

1

1− z
g(z) =

∑
n∈N

A(n)zn.

Therefore integrating term by term and bearing in mind the uniform con-
vergence in the closed disk D(0, r), we get

r�

0

1

1− t
g(t) dt =

∑
n∈N

A(n)

n+ 1
rn+1.

From the definition of upper density, for every ε > 0 there are only finitely
many n ∈ N such that A(n)/n > D + ε. Denote the maximal such n by N
and write the above as

(2) These are the lim infn→∞ and lim supn→∞ of the quantity A(n)/n respectively,
usually denoted by d and d.
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r�

0

1

1− t
g(t) dt =

∑
n≤N

A(n)

n+ 1
rn+1 +

∑
n>N

A(n)

n+ 1
rn+1

≤
∑
n≤N

A(n)

n+ 1
rn+1 + (D + ε)

∑
n>N

rn+1

=
∑
n≤N

A(n)

n+ 1
rn+1 − (D + ε)

∑
n≤N+1

rn

+ (D + ε)
∑

n≤N+1

rn + (D + ε)
∑
n>N

rn+1

= PN (r) + (D + ε)
1

1− r
where PN is a polynomial of degree N + 1 at most. Therefore,

(1− r)
r�

0

1

1− t
g(t) dt ≤ (D + ε) + (1− r)PN (r)

and taking lim sup’s on both sides we get

lim sup
r→1−

(1− r)
r�

0

1

1− t
g(t) dt ≤ D + ε

since PN is bounded as r → 1. Finally, the left hand side is not dependent
on ε or N , therefore since ε was arbitrary, we get

lim sup
r→1−

(1− r)
r�

0

1

1− t
g(t) dt ≤ D.

The consequence we will use is the following

Corollary 3. Let E ⊂ N with upper density D. Then for every ε > 0
there exists a sequence rn(ε) = rn ↗ 1 along which the following inequality
holds:

gE(r) <
D + ε

1− r
.

As always, by gE(x) we denote the generating function of (the represen-
tation function of) the set E.

Proof. Suppose that the statement is not true. This means that we can
choose an ε > 0 for which there exists an entire interval (1 − δ, 1) in which
we have, setting Dε = D + ε,

gE(t) ≥ Dε

1− t
.
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This implies that in the interval (1− δ, 1),

gE(t)

1− t
≥ Dε

(1− t)2
.

Integrating from 0 to r with 1− δ < r < 1, we get
r�

0

gE(t)

1− t
dt ≥

r�

1−δ

gE(t)

1− t
dt ≥ Dε

r�

1−δ

1

(1− t)2
dt.

Therefore,
r�

0

gE(t)

1− t
dt ≥ Dε

δ − (1− r)
δ(1− r)

.

Multiply by 1− r to get the expression from the lemma,

(1− r)
r�

0

gE(t)

1− t
dt ≥ Dε

δ − (1− r)
δ

.

Taking limsup’s on both sides we get

lim sup
r→1−

(1− r)
r�

0

gE(t)

1− t
dt ≥ Dε.

This implies that the upper density of E is at least D+ ε, which contradicts
the hypothesis.

Now we use the corollary above on the set of exceptions E. Thus, we
pick once and for all an ε0 > 0 such that (3) D + ε0 < 1/10 and a sequence
R = (rn)n∈N strictly increasing to 1 such that the conclusion of Corollary 3
above holds for the squares of members of R (which again form a sequence
increasing to 1). Therefore, if rn ∈ R, then

(2) gE(r2n) <
D + ε0
1− r2n

.

From now on we write Dε0 = D + ε0.

2. Proof of the theorem. Suppose from now on that r(n) ≤ 5 for all
large n. For j = 0, 1, . . . define Nj to be the set

Nj = {n ∈ N : r(n) = j}.
The Nj corresponding to j = 0, 1, 2, 3, 4, 5 partition the large nonnegative
integers into six distinct classes. Note that N0 = E. Denote the generating
functions of the sets (4) Nj by Sj(z), so that gE(z) = S0(z). The asymptotic

(3) Since D = d(N \ (A+A)) < 1/10 by our hypothesis, this can be done.

(4) The notation gNj would be cumbersome.
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notation o(1) refers to quantities that tend in absolute value to zero as
|z| → 1−. By the above it is immediate that

S0(z) + S1(z) + S2(z) + S3(z) + S4(z) + S5(z) =
1

1− z
− P1(z)(3)

where
P1(z) :=

∑
r(n)>5

zn

is the polynomial of the finitely many numbers whose number of represen-
tations may exceed five. Also, equation (1) gives

g2(z) =
∑
n∈N

r(n)zn = P2(z) +
5∑
j=1

∑
n∈Nj

r(n)zn(4)

= P2(z) + S1(z) + 2S2(z) + 3S3(z) + 4S4(z) + 5S5(z)

where
P2(z) :=

∑
r(n)>5

r(n)zn.

In addition to the information (3) gives us, we get additional information
by observing the following: if n ∈ Nj for odd j, there is a representation
of the form n = x + x, x ∈ A, or else there would be an even number of
paired representations. Conversely, if n = x + x, x ∈ A, there cannot be a
second such representation n = y+y, y ∈ A, or else y = x. So n has an even
number of paired representations as the sum of distinct elements of A, and
a single one as the double of an element of A. Therefore, there is an odd j
such that n ∈ Nj . It follows that the union of the odd Nj satisfies⋃

j odd

Nj = {2a : a ∈ A}.

In the language of their representation functions,

(5) S1(z) + S3(z) + S5(z) = g(z2)− P3(z).

The polynomial

P3(z) :=
∑

r(n)>5, r(n) odd

zn

accounts for the finitely many natural numbers for which r(n) is odd and
greater than five.

We denote the maximum on the closed unit disk of P1, P2 and P3 by

M := sup
z∈D, j=1,2,3

|Pj(z)|.

Equations (3)–(5) and the estimates they will provide will be the main
tools in the proof. In particular, (5) will imply, combined with Parseval’s
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identity and Cauchy’s inequality, that the integrals

π�

−π
|Sj(reiθ)| dθ

for j odd are bounded by the square root of |g|. The Sj for even j do not
admit such a strong bound; in Section 2.2 we will construct a sequence of
radii rn ↗ 1 based on Corollary 3 along which the corresponding means for
even j can be controlled. Integrating (4) we will produce an inequality that
will give a contradiction as rn approaches 1 from below.

To begin, observe that for r2 > 0, the Sj(r
2) are all nonnegative and

therefore by dropping the coefficients we can make the right hand side of
equation (4) smaller, giving the inequality

g2(r2) ≥ −M + S1(r
2) + S2(r

2) + S3(r
2) + S4(r

2) + S5(r
2)

≥ −2M +
1

1− r2
− S0(r2).

Therefore the estimate (2) from Corollary 3 gives (recalling that the gE
there is S0), for every r ∈ R,

g2(r2) ≥ 1−Dε0

1− r2
− 2M,

which implies, for r ∈ R and sufficiently close to 1,

g(r2) ≥
√

1−Dε0

1− r2
− 2M =

√
1−Dε0

1− r2
(1− o(1)).(6)

This lower bound tells us that for r near 1 and in R, |g(r)| grows at least
as fast as the square root of 1/(1− r). This will contradict a corresponding
lower bound we will establish by examining the Si more closely.

2.1. Fourier properties of Sj(z) and g(z) and an estimate. To
prepare the estimates, we will need three fundamental properties of the
functions Sj(z), g(z). The first is that

(7)

π�

−π
|g(reiθ)|2 dθ = 2π

∑
a∈A

r2a = 2πg(r2).

which follows from the orthogonality relations for the exponential characters.
Similarly

(8)

π�

−π
|Sj(reiθ)|2dθ = 2πSj(r

2).
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The second property is the pairwise orthogonality of Sj , for the simple reason
their Fourier coefficients are supported on pairwise disjoint sets. So

π�

−π
Sj(re

iθ)Sk(reiθ) dθ = 0 if k 6= j.

The third property is an immediate consequence of the Cauchy–Schwarz
inequality and (8):

(9)

π�

−π
|Sj(reiθ)| dθ ≤ 2π

√
Sj(r2).

The corresponding inequality for g is
π�

−π
|g(reiθ)| dθ ≤ 2π

√
g(r2).

The following elliptic integral estimate will be used in the process of
bounding sums of Sj for even j. For a proof, see for instance Newman’s
book [5, p. 33, inequality (4)]. We state the estimate in a much weaker form
here but this is all we need for the estimates below.

Lemma 4. There exists a c > 0 such that for all r in an interval (1−δ, 1),

(10)

π�

−π

1

|1− reiθ|
dθ ≤ c log

1 + r

1− r
.

2.2. A restriction on the radii of the circles of integration. Ob-
serve now that for each j, the quantity (1− r2)Sj(r2) is bounded above by
one and below by zero for all positive r < 1. Therefore there exists a subse-
quence of R which we denote (5) by R′ = (rn)n∈N such that the one-sided
limits limrn→1−(1−r2n)Sj(r

2
n) exist for j = 1, . . . , 5 (first take a subsequence

to get the first limit, then a subsequence of that to get the second all the way
up to j = 5). On that subsequence, then, the limit limrn→1−(1− r2n)S0(r

2
n)

will also exist by (3). Denote these limits by lj and observe the following:

5∑
j=0

lj = 1,(11)

l0 < Dε0 <
1

10
.(12)

Equation (11) follows from (3):

S0(z) + S1(z) + S2(z) + S3(z) + S4(z) + S5(z) =
1

1− z
− P1(z)

(5) The elements of the original R were also denoted by rn, but since we will not use
R itself again, we continue denoting the elements of R′ by rn.
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implies

(1− r2n)(S0(r
2
n) + S1(r

2
n) + S2(r

2
n) + S3(r

2
n) + S4(r

2
n) + S5(r

2
n))

= 1− P1(r
2
n)(1− r2n)

and expanding the left hand side and letting n→∞ we get the above result.

Inequality (12) follows in exactly the same way by (2) since R′ is a
subsequence of R and therefore (2) holds for rn ∈ R′.

Now let ε > 0 be small enough (6) to satisfy the inequality

(13) l0 <
1− 2ε

10
,

which can be done by (12). By the above and (4), the following inequality
holds for all r ∈ R′ and sufficiently close to 1:

−M +
l1 + 2l2 + · · ·+ 5l5 − ε

1− r2
< g2(r2) < M +

l1 + 2l2 + · · ·+ 5l5 + ε

1− r2
.

Indeed, for the leftmost inequality, by definition of lj , as R′ 3 r ↗ 1,

Sj(r
2)(1− r2)→ lj

and therefore for r ∈ R′ and sufficiently close to 1, say in R′ ∩ (sj , 1) (for
j = 1, . . . , 5),

Sj(r
2)(1− r2) ≥ lj −

1

5j
ε.

Dividing by 1− r2, multiplying by j and summing over j = 1, . . . , 5 we get

S1(r
2) + · · ·+ 5S5(r

2) ≥ l1 + 2l2 + · · ·+ 5l5 − ε
1− r2

for all r ∈ R′ ∩ (maxj(sj), 1), which then gives, by (4),

g2(r2) > −M +
l1 + 2l2 + · · ·+ 5l5 − ε

1− r2
.

The other inequality is obtained in exactly the same way.

From the above we extract the following:

(14)
1

1− r2
<

1

l1 + 2l2 + · · ·+ 5l5 − ε
g2(r2)(1 + o(1)).

We will also need the following consequence of the definition of lj for each j:

(15) Sj(r
2) <

lj + 1
11ε

1− r2

for r ∈ R′ ∩ (s′j , 1). If s is the maximum of all sj and s′j , then in R′ ∩ (s, 1),
all of the inequalities in this section hold.

(6) This ε is unrelated to the ε0 we had fixed.
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2.3. End of the proof. The first estimates in this section hold for all
r ∈ (0, 1). We will eventually restrict our attention to r ∈ R′ ∩ (s, 1) when
the need arises.

Rewrite equation (4) as follows:

g2(z) = P2(z) + S1(z) + 3S3(z) + 5S5(z) + 3(S2(z) + S4(z)) + S4(z)− S2(z)
= P2(z) + S1(z) + 3S3(z) + 5S5(z)

+ 3

(
1

1− z
− S1(z)− S3(z)− S5(z)− P1(z)

)
+ S4(z)− S2(z)− 3S0(z)

= −3P1(z) + P2(z) +
3

1− z
− 2S1(z) + 2S5(z)

+ S4(z)− S2(z)− 3S0(z).

Taking absolute values and using the triangle inequality we get

|g2(z)| ≤ 4M +

∣∣∣∣ 3

1− z

∣∣∣∣+ 2|S1(z)|+ 2|S5(z)|+ |S4(z)− S2(z)− 3S0(z)|.

We have replaced the polynomials with their maximum M on the disk. Then
integrate the inequality along a circle to get

π�

−π
|g2(reiθ)|dθ ≤ 8πM + 3

π�

−π

∣∣∣∣ 1

1− z

∣∣∣∣ dθ(16)

+ 2
( π�

−π
|S1(reiθ)| dθ +

π�

−π
|S5(reiθ)| dθ

)
+

π�

−π
|S4(reiθ)− S2(reiθ)− 3S0(re

iθ)| dθ,

so all we need to do is estimate the integrals one by one and contradict the
unboundedness of g(r2) near 1. For odd j, equation (5) gives

Sj(r
2) ≤ g(r4) +M.

From this and inequality (9) we get

π�

−π
|Sj(reiθ)|dθ ≤ 2π

√
g(r4) +M ≤ 2π

√
g(r2) +M

= 2π
√
g(r2)(1 + o(1)), 0 < r < 1.

Using the estimates above for j = 1 and j = 5, and using (7) for the integral
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of g2, inequality (17) becomes

2πg(r2) ≤ 8πM + 3

π�

−π

∣∣∣∣ 1

1− reiθ

∣∣∣∣ dθ + 8π
√
g(r2)(1 + o(1))

+

π�

−π
|S4(reiθ)− S2(reiθ)− 3S0(re

iθ)| dθ.

As we can see, the main contribution is expected to be given by the
integral of the even Sj . We can immediately bound the integral of

∣∣ 1
1−reiθ

∣∣
non-trivially using (10), and so we have

2πg(r2) ≤ 8πM + 8π
√
g(r2)(1 + o(1)) + c log

1 + r

1− r
(17)

+

π�

−π
|S4(reiθ)− S2(reiθ)− 3S0(re

iθ)| dθ.

We cannot bound the last integral itself but we can bound its square. Com-
bining orthogonality and relation (8) we get

π�

−π
|S2(reiθ)− S4(reiθ)− 3S0(re

iθ)|2 dθ = 2π(S2(r
2) + S4(r

2) + 9S0(r
2)).

Using Cauchy’s inequality and the identity above we get

(18)

π�

−π
|S2(reiθ)− S4(reiθ)− 3S0(re

iθ)| dθ

≤
√

2π

√√√√ π�

−π
|S2(reiθ)− S4(reiθ)− 3S0(reiθ)|2 dθ

= 2π
√
S2(r2) + S4(r2) + 9S0(r2).

Until now the estimates in this section were for arbitrary r ∈ (0, 1). Now
we restrict ourselves to r ∈ R′ ∩ (s, 1) as in Section 2.2. Recall from (15)
that

Sj(r
2) ≤

lj + 1
11ε

1− r2
,

which, combined with (18), gives
π�

−π
|S2(reiθ)− S4(reiθ)− 3S0(re

iθ)| dθ ≤ 2π

√
9l0 + l2 + l4 + ε

1− r2
.

Finally (14) gives, after taking square roots,

2π

√
9l0 + l2 + l4 + ε

1− r2
≤ 2π

√
9l0 + l2 + l4 + ε

l1 + 2l2 + · · ·+ 5l5 − ε
g(r2)(1 + o(1)).
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Using the inequality above in (17) we get

2πg(r2) ≤ 8πM + 8π
√
g(r2)(1 + o(1)) + c log

1 + r

1− r
(19)

+ 2π

√
9l0 + l2 + l4 + ε

l1 + 2l2 + · · ·+ 5l5 − ε
g(r2)(1 + o(1)).

By estimate (6), the logarithmic term is o(g(r2)). Therefore, dividing (19)
by 2πg(r2) and letting r ↗ 1− through R′ ∩ (s, 1), we get

(20) 1 ≤
√

9l0 + l2 + l4 + ε

l1 + 2l2 + · · ·+ 5l5 − ε
.

By hypothesis D < 1/10 and therefore, as we noted in (12), l0 < 1/10;
by the way ε was chosen, the right hand side is smaller than 1. Precisely,
by (13),

l0 <
1− 2ε

10
,

so
10l0 + ε < 1− ε.

But 1 = l0 + · · ·+ l5, so

10l0 + ε < l0 + l1 + l2 + l3 + l4 + l5 − ε
and adding missing terms

9l0 + l2 + l4 + ε < l1 + 2l2 + l3 + 2l4 + l5 − ε.
Increasing the right hand side even more we get

9l0 + l2 + l4 + ε < l1 + 2l2 + 3l3 + 4l4 + 5l5 − ε,
that is,

9l0 + l2 + l4 + ε

l1 + 2l2 + 3l3 + 4l4 + 5l5 − ε
< 1,

which contradicts (20).
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