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1. Introduction. The classic Waring problem for Z has a vast literature
(for a glimpse see [7], [24], [25]). The solution of the corresponding problems
associated with expressing the elements of a field K as the sum of kth powers
is much less complete. For k = 2 we have Artin’s criterion that α ∈ K is
a sum of squares if and only if α � 0 for all orderings of K. For k an
enumber, Becker [2] extended Artin’s ideas to characterise α ∈ K as a sum
of kth powers if and only if α � 0 for all orderings of K and k | υ(α) for all
valuations υ of K with a formally real valuation field.

Denote by P (K, k) the α ∈ K which are sums of kth powers of elements
of K, andby P+(K, k) the set of α ∈ K which are sums of kth powers of
totally positive elements of K. We are interested in deciding whether or not
there exist integers w(K, k) and g(K, k) such that:

(i) α ∈ P (K, k) implies that α is the sum of at most w(K, k) kth powers;
(ii) α ∈ P+(K, k) implies that α is the sum of at most g(K, k) totally

positive kth powers.

Neither Artin’s nor Becker’s characterisations give any information about
the existence of w(K, k) or g(K, k). This is to be expected since there are
many fields with w(K, 2) =∞, which implies that w(K, 2k) =∞.

The integer w(K, 2) is called the Pythagorean number of K. For a given
integer s, one can construct fields such that w(K, 2) = s (see [13]). However,
for a given field it is usually a difficult problem to determine its Pythagorean
number. For an algebraic number field K it is a classic result that w(K, 2)
≤ 4 and w(K(X), 2) ≤ 5 ([21], [14]). For n ≥ 2, it is known that 5 + n ≤
w(K(X1, . . . , Xn), 2) ≤ 2n+1 ([3], [6]).
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If R is a real closed field, then w(R(X), 2) = 2, w(R(X1, X2), 2) = 4
(cf. [4]) and for n ≥ 3, 1 + n ≤ w(R(X1, . . . , Xn), 2) ≤ 2n ([3], [19], [20]). If
K is a real field that is finitely generated of transcendence degree d ≥ 0 over
a subfield, then w(K, 2) ≥ d+ 1 (see [11]); when K is an algebraic function
field over a discrete valuation field, upper bounds for w(K, 2) are given
in [1]. The Pythagoras number for Laurent series fields in several variables
has been investigated by Hu [15], who gives many references to earlier work.

The equivalent problems over more general structures such as rings also
have a very extensive literature; see [22] for references.

We will show that if w(K, 2) is finite and if the kth powers are dense
(in a sense described explicitly in Theorem 2.5) in K, then w(K, k) is also
finite for k > 2. The proofs are constructive, but the implied upper bounds
for w(K, k) are large. This is to be expected since the proofs do not use any
deep arithmetical or algebraic properties of the field K.

2. The basic theorems. Our first theorem treats the case when k is
odd. It is well known and is included here only for completeness. When k is
even it simplifies the exposition if we separate the two cases: Theorem 2.4
(K a non-real field, i.e. −1 is a sum of squares in K) and Theorem 2.5
(K a formally real field), though the proofs are very similar. As an appli-
cation of Theorem 2.5 we give (Theorem 4.2) a characterisation of those
rational functions over certain real fields K which can be written as sums of
kth powers of rational functions. Choi et al. [5] and Hsia and Johnson [14]
show that g(R(X), 2) = 2. We extend this result to prove (Theorem 5.1)
that w(K(X), 2) = g(K(X), 2). Some of the results given here (Theorems
2.4, 2.5) were reported in informal seminars ([8], [9]) at the University of
Bordeaux in 1971.

The key result we need to prove Theorems 2.4 and 2.5 is the existence
of ‘Hilbert’ identities:

Lemma 2.1. For all positive integers k and s there is an integer M :=
M(k, s) = (2k + 3) · · · (2k + 2 + s)/s!, positive rational numbers λi with
0 ≤ i ≤ M and integers αi,j with 0 ≤ i ≤ s and 0 ≤ j ≤ M such that we
have an identity of the form:

(i) (X2
0 + · · ·+X2

s )k+1 =
∑M

j=1 λj(α0jX0 + · · ·+ αsjXs)
2k+2,

(ii) (X2
0 + · · ·+X2

s )k + 2kX2
0 (X2

0 + · · ·+X2
s )k−1

= (2k + 1)
∑M

j=1 λjα
2
0j(α0jX0 + · · ·+ αsjXs)

2k.

Proof. For a short existence proof of (i), based upon the properties of
convex sets, see [7]. For explicit constructive proofs see [23], [18], [17]. The
identity (ii) is obtained from (i) by differentiating twice with respect to X0.



Waring’s problem for fields 317

Corollary 2.2. For any field K and positive integer k, P+(K, k) =
P (K, 2k).

Proof. If a ∈ P+(K, k), then a = bk1 + · · ·+ bkn, where the bi are totally
positive. By Artin’s theorem we have bi = c21 + · · · + c2r and we use the
appropriate Hilbert identity to write bki as a sum of 2kth powers, so a ∈
P (K, 2k). Conversely, if a ∈ P (K, 2k), then

a = b2k1 + · · ·+ b2ks = (b21)
k + · · ·+ (b2n)k ∈ P+(K, k).

Theorem 2.3. If K is a field of characteristic 0, then for every odd
integer k, K = P (K, k) and w(K, k) <∞.

Proof. If ∆1(xk) = (x+ 1)k − xk, ∆r(xk) = ∆1(∆r−1(xk)) etc., then by
calculating successively the differences we have:

∆k(xk) = k!x+
(k − 1)k!

2
,

∆k(xk) =
k−1∑
r=0

(−1)k−1−r (k − 1)(k − 2) · · · (k − r)
r(r − 1) · 3 · 2 · · · 1

(x+ r)k.

We thus have the identity over Q[x]:

x = −k − 1

2
+

k−1∑
r−1

(−1)k−1−r (k − 1)(k − 2) · · · (k − r)
r(r − 1) · · · 3 · 2 · 1

(x+ r)k.

Since k is odd we can write the first term and each of the rational numbers
in the summation as sums of kth powers. This proves the result.

Theorem 2.4. If K is a non-real field of characteristic 0, then for any
positive integer k, K = P (K, k) and w(K, k) = g(K, k) <∞.

Proof. If −1 = a21 + · · ·+ a2s then any α ∈ K can be written as

α =

(
α+ 1

2

)2

−
(
α− 1

2

)2

=

(
α+ 1

2

)2

+

s∑
j=1

a2i

(
α− 1

2

)2

.

Thus, every element of K is a sum of at most s+ 1 squares. If ai ∈ K then
we have 1 − a2i = b21,i + · · · + b2s+1,i, where bj,i ∈ K for 1 ≤ j ≤ (s + 1).
Substitute X0 = ai and Xj = bj,i for 1 ≤ j ≤ s + 1 in the identity (ii) of
Lemma 2.1 to obtain

1 + 2ka2i = (2k + 1)
M∑
j=1

λjα
2
0,j(α0,jai + α1,jb1,i + · · ·+ αs,jbs,i)

2k.

If a ∈ K we have a = a21 + · · · + a2s+1 with ai ∈ K. Substitute successively
each of the ai into the above identity and sum the resulting set of s + 1
equations to obtain
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s+ 1 + 2ka =
s+1∑
i=1

M∑
j=1

(2k + 1)λjα
2
0,j(α0,jai + α1,jb1i + · · ·+ αs,jbs,i)

2k.

Let Ak be the least common multiple of the denominators of the λj for
0 ≤ j ≤M , so that Akλj = Λj , a positive integer. We now have

(s+ 1)Ak + 2kAka =

s+1∑
i=1

M∑
j=1

(2k + 1)Λjα
2
0j(α0jai + α1jb1i + · · ·+ αsjbsi)

2k

=
N∑
i=1

ζ2ki

where N = (2k + 1)(s+ 1)
∑M

j=1 Λjα
2
0,j and ζi ∈ K, for 1 ≤ i ≤ N .

For any α ∈ K we take a = (α − (s + 1)Ak)/2kAk and substitute in

the above equation to obtain α =
∑N

i=1 ζ
2k
i , and the assertion follows with

w(K, k) = g(K, k) ≤ N .

Theorem 2.5. Let K be a formally real field. Suppose that α ∈ K has
the following two properties:

(a) α can be written as a sum of at most s squares in K.
(b) There exists β ∈ K, depending upon α, that satisfies

0 ≺ s

s+ 2k
α ≺ βk ≺ α for all orderings ≺ of K.

Then there exists a positive integer γ(s, k), depending only on s and k, such
that:

(i) α can be written as a sum of γ(s, k) kth powers of elements of K.
(ii) If β can be chosen to be totally positive, then α can be written as a

sum of γ(s, k) kth powers of totally positive elements of K.

Proof. If ai ∈ K and 1 − a2i � 0 for all orderings ‘�’ of K, then 1 − a2i
is totally positive and by hypothesis (a) we have 1 − a2i = b21,i + · · · + b2s,i,
where bj,i ∈ K for 1 ≤ j ≤ s. Substitute X0 = ai and Xj = bj,i for 1 ≤ j ≤ s
in the identity (ii) of Lemma 2.1 to obtain

s+ 2ka =

s∑
i=1

M∑
j=1

(2k + 1)λjα
2
0,j(α0,jai + α1,jb1,i + · · ·+ αs,jbs,i)

2k.

If a ∈ K and 1 � a � 0 for all orderings ‘�’ of K, then by hypothesis (a) we
have a = a21 + · · ·+a2s with ai ∈ K. Substitute the ai into the above identity
and sum the resulting set of s equations to obtain

s+ 2ka =
s∑

i=1

M∑
j=1

(2k + 1)λjα
2
0,j(α0,jai + α1,jb1,i + · · ·+ αs,jbs,i)

2k.
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Let Ak be the least common multiple of the denominators of the λj for
0 ≤ j ≤M , so that Akλj = Λj , a positive integer. We now have

sAk + 2kAka =

s∑
i=1

M∑
j=1

(2k + 1)Λjα
2
0,j(α0,jai + α1,jb1,i + · · ·+ αs,jbs,i)

2k

=
N∑
i=1

ζ2ki

where N = s(2k + 1)
∑M

j=1 Λjα
2
0,j and ζi ∈ K for 1 ≤ i ≤ N .

If α ∈ K and α is totally positive, then so is Ak(s + 2k)/α. Hence, by
hypothesis (b) there is a β ∈ K, which depends upon α, such that(

Ak(s+ 2k)

α

)
� βk � s

s+ 2k

(
Ak(s+ 2k)

α

)
� 0

for all orderings ‘�’ of K. If we put a = (αβk − sAk)/2kAk, then 1 � a � 0
for all orderings ‘�’ of K. Substitute this a in the above equation to obtain
αβk =

∑N
i=1, and the assertions of the theorem follow with γ(s, k) = N .

Corollary 2.6. If K = Q, then w(Q, k) ≤ g(Q, k) < ∞ for every
positive integer k.

Proof. Any positive rational number is the sum of at most 4 squares
of positive rational numbers. There is only one ordering on Q and for any
positive integer k and positive rational number α there is a positive rational
number β such that 2α/(2 + k) < βk < α.

Corollary 2.7. If K is an algebraic number field, then for every posi-
tive integer k, w(Q, k) ≤ g(Q, k) <∞.

Proof. If K is a totally imaginary number field, then it is a classic theo-
rem that every α ∈ K is the sum of at most 4 squares and the result follows
from Theorem 2.4. If K is an algebraic number field that is not totally imag-
inary, then it is a classic result that every totally positive element of K can
be written as a sum of at most 4 squares. Thus, hypothesis (a) is satisfied.

We now show that hypothesis (b) can be satisfied with β totally posi-
tive. If K = Q(θ), denote by K(1) = Q(θ(1)), . . . ,K(r) = Q(θ(r)) the real
conjugate fields. We need the following trivial remark: If ε > 0, η1, . . . , ηr
are given real numbers, then there is a β ∈ K such that |β(i) − ηi| < ε for
1 ≤ i ≤ r. The proof is simple: Let f(x) be a polynomial of degree r−1 with
real coefficients which takes the values ηi + ε/2 at x = θ(i) for 1 ≤ i ≤ r.
Let g(x) be a polynomial of degree r− 1 with rational coefficients such that
|f(x) − g(x)| < ε/2 for x = θ(1), . . . , θ(r). Put β = g(θ); then β(i) = g(θ(i))
for 1 ≤ i ≤ r and we have |β(i) − ηi| < ε for 1 ≤ i ≤ r.
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We now return to the verification of hypothesis (b). If α ∈ K and α is
totally positive, then α(i) > 0 for 1 ≤ i ≤ r. To satisfy hypothesis (b) we
must find a β ∈ K, depending upon α, such that

0 <

(
2

2 + k
α(i)

)1/k

< β(i) < (α(i))1/k for 1 ≤ i ≤ r.

The existence of such a β follows from the above remark by taking

ηi =
1

2

[(
2

2 + k
α(i)

)1/k

+ (α(i))1/k
]

for 1 ≤ i ≤ r and ε small enough.

3. The upper bounds for g(K, k). The upper bounds for γ(s, k) im-
plied by the proofs of Theorems 2.4 and 2.5 are only of interest as an exis-
tence proof. We can produce a better upper bound by a trivial remark.
From Corollary 2.6 we see that g(Q, k) is finite, so we can replace the
integers (2k + 1)Λjα

2
j by sums of at most g(Q, k) kth powers of rational

numbers in the final sum. This slight change gives us an upper bound for
γ(s, k) ≤ g(Q, k)sM(s, k).

The precise value of g(Q, k) is only known for 3 values of k: g(Q, 2) = 4,
g(Q, 3) = 3 and g(Q, 4) = 15 (see [12]). For odd k, only w(Q, 3) = 3 is
known. It is obvious that, with the usual notation of the classic Waring
problem for Z, g(Q, k) ≤ G(k). The best known estimate for G(k) (see [25])
is: G(k) < k(log k+log log k+2+O(log log k/log k)). No general lower bound
for w(K, k) is known.

4. Sums of kth powers in K(X). If K is a formally real field, we need
to know that w(K(X), 2) is finite and that hypothesis (ii) of Theorem 2.5
is satisfied for K(X). This involves showing that certain field quantities
are totally positive. In order to simplify the enunciations and proofs of our
theorems we need a result of the type: f(X) ∈ K(X) is totally positive
if and only if f(x) ≥ 0 for all x ∈ K. Unfortunately such a statement is
false in general without some restrictions upon K. One such restriction, due
to Artin, is that K is a formally real field with precisely one ordering and
this ordering is Archimedean. For example, we can take K = Q or R or a
finite algebraic extension of Q with precisely one real conjugate field. From
now on K will be such a field and we will consider it as a subfield of R.
With this restriction upon K, hypothesis (b) of Theorem 2.5 becomes: If
f(X) ∈ K(X) is such that f(x) ≥ µ > 0 for all x ∈ K, there is a rational
function b(X) ∈ K(X) such that

1 <
f(x)

b(x)k
< 1 +

2k

s
for all x ∈ K.



Waring’s problem for fields 321

The existence of such a rational function will be inferred from the follow-
ing lemma. The proof is, in principle, constructive, since one can use the
Bernstein polynomials to construct the function, but it is of no real use for
finding a suitable b(X) in practice.

Lemma 4.1. Let F (x) be a strictly positive definite, everywhere defined
continuous real-valued function on R. Suppose that there exist real numbers
a, b, δ, C and a positive definite rational function h(X) ∈ Q(X), defined for
all x ∈ R, such that

(1) 0 < a < F (x)/h(x)k < b <∞,
(2) 0 < δ ≤ F (x)

for all x with x2 ≥ C > 1. Then, given ε > 0, there exists γ(X) ∈ Q(X)
such that, for all x ∈ R,

0 < a− ε < F (x)

γ(x)k
< b+ ε.

Proof. The idea of the proof is simple: we use the Weierstrass approxi-
mation theorem to construct a rational function γ(X) ∈ Q(X) which is very
close to h(x) for all x ∈ R with x2 > C and is sandwiched between(

F (x)

b+ ε

)1/k

and

(
F (x)

a− ε

)1/k

for all x ∈ R with x2 ≤ C.

However, the details can get a little confusing. We note that hypothesis (2)
on F (x), together with the fact that F (x) is strictly positive definite, implies
that there is a ∆ > 0 such that F (x) ≥ ∆ > 0 for all x ∈ R.

We will use the following function, where C > 1 and m > 0 is an integer:

αm(X) =

[
1 +

(
X2

C + 1

)m]−1

.

The principal properties of αm(X) are:

(a) For each positive integer m and all x ∈ R we have 0 < αm(x) ≤ 1.
(b) If x2 > C + 1, then αm(x)→ 0 as m→∞.
(c) If x2 = C + 1, then αm(x) = 1/2 for all m.
(d) If x2 < C + 1, then αm(x)→ 1 as m→∞.

The proof is divided into five steps; each step constructs a successive ap-
proximation to the function h(X).

Step (i). Given any ε > 0, if m > m0(ε) then the function

Hm(x) = {1− αm(x)}h(x) ∈ Q
satisfies the inequalities

F (x)

b+ ε
< Hk

m(x) <
F (x)

a
for all x ∈ R with x2 ≥ C +

3

2
.
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Proof of Step (i). We have

Hk
m(x) = {1− αm(x)}khk(x) ≤ hk(x) <

F (x)

a

and if we take ε1 > 0 such that b(1 − ε1)
−k < b + ε, then, by taking m

sufficiently large, depending only upon ε1, we have 0 < αm(x) < ε1 for all
x ∈ R which satisfy x2 > C + 3/2. It then follows that

Hk
m(x) = {1− αm(x)}khk(x) ≥ (1− ε1)khk(x) ≥ (1− ε1)k

b
F (x) >

F (x)

b+ ε
.

We now define a continuous function G(x) on the compact set x2 ≤
C + 3/2 as follows:

(1) G(x) = 1
2(1/a1/k + (1/a1/k)F (x)1/k for x ∈ R and x2 ≤ C.

(2) G(x) = h(x) for x ∈ R and C + 1/2 ≤ x2 ≤ C + 3/2.
(3) For x ∈ R that satisfy C ≤ x2 ≤ C+1/2, G(x) can be any continuous

function satisfying:

(a) G(x) = 1
2(1/a1/k + (1/a1/k)F (x)1/k whenever x2 = C.

(b) G(x) = h(x) whenever x2 = C + 1/2.

(c) [F (x)/b]1/k < G(x) < [F (x)/a]1/k for C < x2 < C + 1/2.

By the Weierstrass polynomial approximation theorem, given any ε2 > 0
there is a polynomial P (X) ∈ Q(X) such that |G(x) − P (x)| < ε2 for all
x ∈ R with x2 ≤ C + 3/2.

Consider the following rational function, with rational coefficients, de-
fined for all x ∈ R: γm(X) = αm(X) · P (X) + Hm(X). We will now show,
in the next four steps, that if m is sufficiently large, then γm(x) satisfies the
inequalities of the lemma.

Step (ii). Given ε3 > 0 there exists m3(ε3) such that for all m > m3 we
have 0 < |αm(x) · P (x)| < ε3 for all x ∈ R with x2 ≥ C + 3/2.

Proof of Step (ii). We have αm(X)·P (X) = P (X)[1+X2m/(C + 1)m]−1.
If the degree of P (X) is r and if m > r, then it is a bounded function of x
for x2 ≥ C + 3/2 and, as m→∞, this maximum value tends to zero.

Step (iii). If ε2 satisfies the inequalities

0 < ε2 < ∆1/k·min

([(
1

a− ε

)1/k

−
(

1

a

)1/k]
,

[(
1

b+ ε

)1/k

−
(

1

b+ 2ε

)1/k])
,

then if m > m2(ε2), for all x ∈ R with x2 ≥ C + 3/2 we have[
F (x)

b+ 2ε

]1/k
< γm(x) <

[
F (x)

a− ε

]1/k
.
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Proof of Step (iii). If m > m3(ε2), we deduce by Step (i) that

γm(x) = (1− αm(x)) · h(x) + αm(x) · P (x) ≤ (1− αm(x)) · h(x) + ε2

≤
[
F (x)

a

]1/k
+ ε2 ≤

[
F (x)

a− ε

]1/k
.

And if m > m3(ε2) we have[
F (x)

b+ 2ε

]1/k
+ ε2 ≤

[
F (x)

b+ ε

]1/k
< (1− αm(x)) · h(x).

Hence [
F (x)

b+ ε

]1/k
< (1− αm(x)) · h(x) + αm(x) · P (x) = γm(x).

Step (iv). If m > m1(ε) then for all x ∈ R with x2 ≤ C + 1/2 we have[
F (x)

b+ 2ε

]1/k
< γm(x) <

[
F (x)

a− ε

]1/k
.

Proof of Step (iv). Let ε3 satisfy the inequality

0 < 2ε3 < min

(
inf

[
G(x)− F (x)

b+ ε

)1/k]
, inf

[(
F (x)

a− ε

]1/k
−G(x)

])
where the inf’s are over the x ∈ R with x2 ≤ C + 1/2.

If m > m1(ε3) then |1−αm(x)·h(x)| < ε3/4 and |1−αm(x)·P (x)| < ε3/4
for all x ∈ R with x2 ≤ C + 1/2, since αm(w) → 1 uniformly as m → ∞
and h(x) and P (x) are bounded. Thus we have |γm(x) − P (x)| < ε3/2 and
|γm(x)− F (x)| < ε3 for all x ∈ R with x2 ≤ C + 1/2.

Since we have the inequalities[
F (x)

b+ ε

]1/k
+ 2ε3 < G(x) <

[
F (x)

a− ε

]1/k
,

we can conclude that, for all x ∈ R with x2 ≤ C + 1/2,[
F (x)

b+ ε

]1/k
< γm(x) <

[
F (x)

a− ε

]1/k
− 2ε3.

Step (v). If m > m3(ε2) then for all x ∈ R which satisfy C ≤ x2 ≤
C + 1/2 we have [

F (x)

b+ ε

]1/k
< γm(x) <

[
F (x)

a− ε

]1/k
.

Proof of Step (v). For values of x in the above range we have G(x) =
h(x), and so |P (x)− h(x)| < ε2/2.
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Thus, |γm(x)−h(x)| = |γm(x) · (P (x)−h(x))| < ε2/2 and by hypothesis[
F (x)

b

]1/k
< h(x) <

[
F (x)

a

]1/k
,

[
F (x)

b+ ε

]1/k
< γm(x) <

[
F (x)

a− ε

]1/k
.

To complete the proof of Lemma 4.1, take m > max[m0,m1,m2,m3] and
γ(x) = γm(x).

Theorem 4.2. Let k > 2 be a positive integer. If f(X) ∈ K(X) is
positive definite, then a necessary and sufficient condition that f(X) can be
written as a sum of g(K(X), k) kth powers of totally positive elements of
K(X) is that 2k | ∂(f).

Proof. The condition on the degree of f(X) is obviously necessary. There
is no loss in generality if we suppose that f(X) ∈ K[X] and that f(X) is
strictly positive definite, i.e. there is a µ > 0 such that f(x) ≥ µ for all
x ∈ K. Indeed, f = p/q is a sum of n kth powers in K(X) if and only if
p · qk−1 is a sum of n kth powers and if k is even or, whenever k is odd and
all the summands are positive definite, then if f(θ) = 0, with θ ∈ R, the
irreducible polynomial satisfied by θ is a kth power factor of f(X).

For the fields K under consideration we note that w(K(X), 2) ≤ ∞. To
prove the theorem it suffices to show that the modified hypothesis (ii) of
Theorem 2.5 is satisfied. That is, we can find a rational function b(X) ∈
K(X) such that 1 < f(x)/b(x)k < 1 + 2k/s for all x ∈ K. We use Lemma
4.1 with ε in the range 0 < ε < k/(2s+ 2k).

If f(X) = αX2m + · · · with α > 0, we take β ∈ Q such that

1− ε

2
<

αs

(s+ k)βk
< 1 +

ε

2
and h(X) = βX2m + 1.

Then, for all x ∈ K with x2 ≥ C(ε) we have

1− ε < sf(x)

(s+ k)h(x)k
< 1 + ε.

From Lemma 4.1 there is a γ(X) ∈ Q(X) such that

1− 2ε <
sf(x)

(s+ k)γ(x)k
< 1 + 2ε

and since ε<k/(2s+ 2k) we have 1<(1−2ε)(s+ k)/s and (1 + 2ε)(s+ k)/s
< 1 + k/s.

Corollary 4.3. If f(X) ∈ K[X] is positive definite, k odd and k | ∂(f),
then f(X) is the sum of at most g(K, k) kth powers of positive definite
rational functions.

Proof. Since f(X) is strictly positive definite, 2 | ∂(f) and k odd, we see
that k | ∂(f) implies that 2k | ∂(f).
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Corollary 4.4. For any integer k > 0, a positive definite polynomial
f(X) ∈ K[X], with degree divisible by k, can be written as a sum of at most
w(K, k) kth powers of K(X).

Proof. We need only treat the case of k even. Suppose k = 2rk1, where
r > 0 and k1 is odd. By hypothesis 2 · 2r−1k1 | ∂(f), so from the theorem we
can write f(X) as a sum of at most g(K, k/2) (k/2)th powers of positive

definite rational functions, say f(X) =
∑n

i=1 q
k/2
i (X) with n ≤ g(K, k/2).

Each ai(X) is positive definite and so can be written as a sum of s squares

of rational functions: a
k/2
i = (b21,i + · · ·+ b2s,i)

k/2.

We now use the corresponding Hilbert identity of Lemma 2.1 with k+ 1
replaced by k/2 to get a representation of f(X) as a sum of kth powers of
rational functions.

Corollary 4.5. The positive definite rational functions f(X) =
a(X)/b(X), a(X), b(X) ∈ K[X], that can be expressed as sums of at most
g(K, k) kth powers, for every positive integer k, are precisely the set of pos-
itive definite rational functions with ∂(a) = ∂(b).

Proof. If ∂(a) = m and ∂(b) = n then f(X) = a(X)/b(X) is a sum
of kth powers if and only if a(X)bk−1(X)/bk(X) is a sum of kth powers,
a(X)bk−1(X) is a sum of kth powers if and only if k | (m + (k − 1)n). This
latter condition holds for all k if and only if m = n.

5. Upper bounds for w(K(X), k) and g(K(X), k). There is little
precise information available. For k = 2, w(K(X), 2) = s(K) + 1 (see [14]
when K is an algebraic number field, and it is classic when K = R). Choi
et al. [5] and Hsia and Johnson [14] showed that g(R(X), 2) = 2. We extend
this result in Theorem 5.1 by showing that w(K(X), 2) = g(K(X), 2).

Theorem 5.1. Let K be a real field satisfying Artin’s criterion, and let
f(X) ∈ K[X].

(1) If 4 | ∂f and f(X) = a21(X) + · · · + a2n(X) where ai(X) ∈ K(X),
then f(X) can be represented as f(X) = g21(X) + · · ·+ g2n(X) where
gi(X) ∈ K(X) and gi(x) ≥ 0 for all x ∈ K.

(2) If 4 | ∂f , f(x) ≥ µ0 > 0 for all x ∈ K and f(X) = a21(X)+· · ·+a2n(X)
where ai(X) ∈ K(X), then f(X) can be represented as f(X) =
g21(X) + · · ·+ g2n(X) where gi(X) ∈ K(X) and gi(x) ≥ µi > 0 for all
x ∈ K.

(3) If w(K, 2) is finite, then w(K(X), 2) = g(K(X), 2).

Proof. The third conclusion is an obvious consequence of the first two
assertions. We first show that the truth of (2) implies the truth of (1).
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Recall Corollary 2.2 of Lemma 2.1: P+(K, k) = P (K, 4k). Suppose
that f(x) ≥ 0 for all x ∈ K and that f(X) ∈ P (K(X), 4). We have
f(X) = a41(X) + · · · + a4r(X), and if γ ∈ R is such that f(γ) = 0, then
ai(γ) = 0 for i = 1, . . . , n and this is true for all the conjugates of γ.
Hence the irreducible polynomial p(X) ∈ Q[X] defining γ must divide each
ai(X), which implies that p4(X) divides f(X). Repeating the process we
have f(X) = P 4(X)F1(X), where F1(x) ≥ µ > 0 for all x ∈ K.

If f(X) = b21(X) + · · · + b2n(X), then P 2(X) divides each bi(X) and we
have a representation of F1(X) as a sum of n squares. Since 4 | ∂F1(X), by
(2), we have F1(X) = g21(X)+· · ·+b2n(X) where gi(x) ≥ µi > 0 for all x ∈ K.
We then have the representation f(X) = P 4(X)F1(X) = (P 2(X)g1(X))2 +
· · ·+ (P 2(X)gn(X))2, where, for 1 ≤ i ≤ n, P 2(x)gi(x) ≥ 0 for all x ∈ K.

We shall prove (2) by induction on n. If n = 1, then f(X) = a21(X) and
the result is immediate.

The above remarks imply the following induction hypothesis: (2) holds
for all f(X) ∈ P (K(X), 4) that can be written as a sum of at most n − 1
squares in K(X). This will be used in the proof of Lemma 5.4.

In order to prove the case n of the induction step, we need the following
four lemmas, which show that starting from any representation of f(X) as
a sum of squares we can construct representations with increasing positivity
conditions on one or more of the summands.

Lemma 5.2. If K is a field, not of characteristic 2, and

f = a21 + a22 + · · ·+ a2n, f, ai ∈ K for 1 ≤ i ≤ n,
then the general solution (u0, . . . , un) of fU2

0 = U2
1 + · · ·+ U2

n is

u0 =

n∑
j=1

T 2
j , ui = 2Ti

( n∑
j=1

ajTj

)
− ai

n∑
j=1

T 2
j

where Tj ∈ K for 1 ≤ i ≤ n.

Proof. If a = (a1, . . . , an), where f = a21+ · · ·+a2n, t = (t1, . . . , tn) ∈ Kn,
then the line joining a and t intersects the quadric fU2

0 = U2
1 + · · ·+ U2

n in
a second K-rational point. If we write Ti = ti − ai for i = 1, . . . , n, then the
coordinates of this K-rational point are given by the above formulae.

Lemma 5.3. If f(X) ∈ K[X] is strictly positive definite, 4 | ∂f and f =
a21 + · · ·+ a2n, ai ∈ K(X), then there exist g0(X), g1(X), . . . , gn(X) ∈ K[X]
such that f ·g20 = g21 + · · ·+g2n, ∂g1(X) = · · · = ∂gn(X), and g0(X) is strictly
positive definite.

Proof. By hypothesis, f = a21(X) + · · · + a2n(X), ai(X) ∈ K(X). By
Cassels’ theorem [3], there are b1, . . . , bn ∈ K[X] such that f = b21 + · · ·+ b2n.
Since ∂f = 4m, at least one of the bi, say b1, has ∂b1 = 2m and ∂bi ≤ 2m
for i = 2, . . . , n. In Lemma 5.2, choose T1 to be an irreducible polynomial of
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degree d > 1 and, for j > 1, Tj to be polynomials of degree < d. We then
see that u0(X) is a strictly positive definite polynomial of degree 2d and
∂ui(X) = 2m+ d for i = 1, . . . , n.

Lemma 5.4. If f(X) ∈ K[X] is strictly positive definite, 4 | ∂f and f ·a20
= a21 + · · · + a2n, ai(X) ∈ K[X], a0(X) strictly positive definite and ∂a1 =
· · · = ∂an, then there exist g0(X), g1(X), . . . , gn(X) ∈ K[X] such that f ·g20 =
g21 + · · ·+ g2n, ∂g1 = · · · = ∂gn, g0(X) is strictly positive definite and g1(X)
is positive definite.

Proof. From the representation f · a20 = a21 + · · · + a2n we have F (X) =
a20f(X)a2n = a21+· · ·+a2n−1, and since 4 | ∂F (X), by the induction hypothesis
we have c20F = c21 + · · · + c2n−1, where c0(x) ≥ µ > 0 and, for i = 1, . . . , n,
ci(x) ≥ 0 for all x ∈ K. Hence (a0c0)

2f = c21 + · · ·+ c2n−1 + (c0an)2 and we
can take g0 = a0c0 and g1 = c1.

Lemma 5.5. If f(X) ∈ P (K[X], 4) is strictly positive definite and f ·a20 =
a21 + · · · + a2n, ai ∈ K[X], a0(X) strictly positive definite, a1(X) positive
definite and ∂a1 = · · · = ∂an, then there exist g0(X), g1(X), . . . , gn(X) ∈
K[X] such that f · g20 = g21 + · · · + g2n, ∂g1 = · · · = ∂gn and g0(X), g1(X)
are both strictly positive definite.

Proof. By hypothesis f = a21 + · · · + a2n, where a1(x) ≥ 0 for all x ∈ K
and ∂a1 = · · · = ∂an = 2m. The ai(X) cannot have any common real zeros
since f(x) ≥ µ > 0 for all x ∈ K.

In the general solution of fU2
0 = U2

1 + · · ·+ U2
n given by Lemma 5.2 we

choose T1 = 1 and, for j = 2, . . . , n, we choose Tj = aj/(AX
2m +C), where

A,C are positive rational numbers chosen so that

a22 + · · ·+ a1n
(Ax2m + C)2

≤ 1

2

for all x ∈ K, and we write b(X) = 1− (a22 + · · ·+ a2n)/(Ax2m +C)2 ≥ 1/2.
From Lemma 5.2 we have g0(x) = 1 + T 2

2 + · · · + T 2
n ≥ 1 for all x ∈ K

and

g1(x) = a1(x)b(x) +
2

Ax2m + C

n∑
j=2

a2j (x).

Thus, g1(x) is the sum of n positive terms, hence g1(x) ≥ 0 for all x ∈ K.
If γ ∈ R is such that g1(γ) = 0, then a1(γ) = · · · = an(γ) = 0. This is
impossible, as f(X) is strictly positive, hence g1(x) is also strictly positive.

We are now in a position to prove the induction step from n − 1 to n.
Suppose that f(X) ∈ P (K, 4), f(x) ≥ µ > 0 for all x ∈ K and that
f(X) = a21(X) + · · · + a2n(X). By renumbering the functions ai(X) and
using Lemmas 5.3–5.5 if necessary, we can assume that we have a repre-
sentation f(X)b20(X) = b21(X) + · · · + b2n(X), where b0(x) ≥ µ0 > 0 and
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b1(x) ≥ µ1 > 0 for all x ∈ K and ∂b1 = · · · = ∂bn. We will now use the
induction hypothesis and Lemma 4.1 to deduce that there is a representa-
tion f(X)g20(X) = g21(X) + · · · + g2n(X), where, for 1 ≤ i ≤ n, we have
gi(X) ≥ µi > 0 for all x ∈ K.

Let λ(X) = b21(X)/f(X). Then since 2∂b1 = ∂f and b1, f are strictly
positive definite, there exists λ0 > 0 such that λ(x) ≥ λ0 > 0 for all x ∈ K.
From Lemma 4.1, for any λ0 > 0, there exists φ(X) ∈ Q[X] such that
f(x) < φ4(x) < (1 + λ0)f(x) for all x ∈ K.

We now use the formulae of Lemma 5.2 to construct a new representation
by taking T1 = 1, T2 = (b2(X) + φ2(X))/b1(X) and Tj = bj(X)/b1(X) for
j = 3, . . . , n. This gives:

h0(x) = 1 + T 2
1 + · · ·+ T 2

n ≥ 1 for all x ∈ K,

h1(x) = 2b2T2 + 2
n∑

j=3

bjTj − b1(1− T 2
2 − · · · − T 2

n) =
φ4 − f
b1

≥ µ1 > 0

and
h21
h20
≤ (φ4 − f)2

h20b
2
1

≤ λ20f
2

h20b
2
1

≤ b41f
2

4f2bh20b
2
1

=
b21

4h20
≤ b21

4
≤ f

4
.

Thus

f1 = f − h21
h20

=

(
h2
h0

)2

+ · · ·+
(
hn
h0

)2

≥ 3f

4
≥ 3µ

4
> 0.

Since 4 | ∂f1 and f1 is strictly positive definite we have f1 ∈ P (K, 4). We
also know that f1 can be represented as the sum of n−1 squares, so, by our
induction hypothesis, there exist g0, g1, . . . , gn−1 such that f(X)g0(X)2 =
g21(X) + · · · + g2n−1(X) where for i = 0, 1, . . . , n − 1, gi(x) ≥ µi > 0 for all
x ∈ K. Hence

f(g0h0)
2 = (g0h1)

2 + g21 + · · ·+ g2n−1

and we have the desired representation for f(X). This completes the induc-
tion step and the proof of Theorem 5.1.

For k = 3, if F is any field not of characteristic 3, then w(F, 3) ≤ 3 and
g(K(X), 3) ≤ 3. These follow from a classic identity due to Richmond (see
[12, Notes to Chapter 13] and [16]): If r, s ∈ F and s 6= 0 and t = 3r/s3,
then

r =

(
s(1 + t3)

3(1− t+ t2)

)3

+

(
s(3t− 1− t3)
3(1− t+ t2

)3

+

(
s(3t− t3)

3(1− t+ t2

)3

.

This gives w(F, 3) ≤ 3. To deduce that g(K(X), 3) ≤ 3, we note that 1−t+t2
= (t − 1/2)2 + 3/4 is totally positive, so we must show that if 6 | ∂r and
r(x) > 0 for all x ∈ K, then s(X) ∈ K(X) can be chosen so that s(x) > 0,
(t(x)− t2(x)) > 0 and 3t(x)− 1− t3(x) > 0 for all x ∈ K.
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A sufficient condition is that 1/2 < t(x) < 1 for all x ∈ K, namely
3r(x) < s3(x) < 6r(x) for all x ∈ K. If r(X) ∈ K[X] is strictly positive
definite, of degree 6m and with leading coefficient a, then if h(X) = bX2m +
1, where b is such that 3a < b3 < 6a, we have 1/6 < r(x)/h(x)3 < 1/3 for
all x ≥ C(f). We now use Lemma 4.1 to construct s(X) to conclude that
g(K(X), 3) ≤ 3.

For k = 4, Choi et al. [5] use the fact that g(R(X), 2) = 2 to show that
w(R(X), 4) ≤ 6. A consequence of Theorem 5.1 and a theorem of Cassels [4]
is: If w(K(X), 2) = 2, then w(K(X), 4) ≤ 6. The Cassels theorem asserts
that w(K(X), 2) ≥ s(K) + 1. So w(K(X), 2) = 2 implies that s(K) = 1, i.e.
every positive element of K is a square. In particular

√
3 ∈ K. If f(X) ∈

K[X] is strictly positive definite and 4 | ∂f , then f(X)/18 can be represented
as f(X)/18 = g21(X)+g22(X) with g1(X) and g2(X) strictly positive definite.
We then have g1(X) = a2(X) + b2(X) and g2(X) = c2(X) + d2(X). The
specific Hilbert identity 18(u2 + v2)2 = (u +

√
3b)4 + (a −

√
3v)4 + (2v)4

applied twice gives the result.
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1970–1971 (Univ. Bordeaux I, Talence), Lab. Théorie des Nombres, Centre Nat.
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