
ACTA ARITHMETICA

159.4 (2013)

On a ternary Diophantine problem with
mixed powers of primes

by

Alessandro Languasco (Padova) and
Alessandro Zaccagnini (Parma)

1. Introduction. The goal of this paper is to solve a ternary Diophan-
tine approximation problem which involves real powers of prime numbers.
We restrict our attention to the values of the form λ1p1+λ2p

2
2+λ3p

k
3, where

k ∈ R and k > 1, but similar cases can be attacked using this approach as
well (see, e.g., [9]). Our main result is

Theorem 1.1. Let 1 < k < 33/29 be a real number and assume that
λ1, λ2 and λ3 are non-zero real numbers, not all of the same sign and with
λ1/λ2 irrational. Let $ be any real number. For any ε > 0 the inequality

(1.1) |λ1p1 + λ2p
2
2 + λ3p

k
3 +$| ≤

(
max
j
pj

)−(33−29k)/(72k)+ε
has infinitely many solutions in prime variables p1, p2, p3.

The proof of Theorem 1.1 uses the variant of the circle method intro-
duced by Davenport and Heilbronn to deal with Diophantine problems. Clas-
sical papers on this topic with integral k are Vaughan [13, 14], Baker and
Harman [1], Harman [5]. For non-integral k we recall that Tolev [12] studied
the values of the form pk1 +pk2 +pk3 and proved that, for every k ∈ (1, 15/14),
all sufficiently large real numbers $ can be well approximated.

In order to deal with a problem with mixed non-integral powers, like the
present one, a key tool is a suitable estimate for the L2-norms of exponential
sums over prime powers (see Theorems 3.1 and 3.2), which is of independent
interest. These results allow us to have a comparatively wide “major arc”
while keeping the resulting error term under control. This idea appeared in
Brüdern, Cook and Perelli [2] and we exploit it also in [8] and [9].
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2. Proof of Theorem 1.1. We use the variant of the circle method in-
troduced by Davenport and Heilbronn to deal with Diophantine problems.
In order to prove that (1.1) has infinitely many solutions, it is sufficient
to construct an increasing sequence Xn with limit +∞ such that (1.1) has
a solution with maxj pj ∈ [δXn, Xn], where δ is a small, fixed positive con-
stant. This sequence actually depends on rational approximations for λ1/λ2:
more precisely, there are infinitely many pairs of integers a and q such that
(a, q) = 1, q > 0 and ∣∣∣∣λ1λ2 − a

q

∣∣∣∣ ≤ 1

q2
.

We take the sequence X = q9k/(2k+3) (dropping the useless subscript n) and
then, as is customary, define all of the circle-method parameters in terms
of X. We may obviously assume that q is sufficiently large. The choice of
the exponent of q and of all the other parameters is justified in §2.7.

Let

(2.1) Sk(α) =
∑

δX≤pk≤X

log p e(pkα).

As usual, we approximate Sk using the function

Tk(α) =

X1/k�

(δX)1/k

e(tkα) dt

and notice the simple inequality

(2.2) Tk(α)�δ,k X
1/k−1 min(X, |α|−1).

We detect solutions of (1.1) by means of the function K̂η(α) = max(0, η−|α|)
for η > 0, which, as the notation suggests, is the Fourier transform of

Kη(α) =

(
sin(πηα)

πα

)2

for α 6= 0, and, by continuity, Kη(0) = η2. This relation transforms the
problem of counting solutions of (1.1) into estimating suitable integrals. We
recall the trivial property

(2.3) Kη(α)� min(η2, |α|−2).

For any measurable subset X of R let

I(η,$,X) =
�

X

S1(λ1α)S2(λ2α)Sk(λ3α)Kη(α)e($α) dα.

In practice, we take for X either an interval or a half-line, or the union of
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two such sets. The starting point of the method is the observation that

I(η,$,R) =
∑

p1,p22,p
k
3∈[δX,X]

log p1 log p2 log p3

×
�

R

Kη(α)e((λ1p1 + λ2p
2
2 + λ3p

k
3 +$)α) dα

=
∑

p1,p22,p
k
3∈[δX,X]

log p1 log p2 log p3

×max(0, η − |λ1p1 + λ2p
2
2 + λ3p

k
3 +$|)

≤ η(logX)3N (X),

where N (X) denotes the number of solutions of the inequality (1.1) with
p1, p

2
2, p

k
3 ∈ [δX,X].

We now give the definitions that we need to set up the method. More
definitions will be given at appropriate places later. We let

P = P (X) = X4/(5k)−ε,

η = η(X) = X−(33−29k)/(72k)+ε, R = R(X) = η−2X(k−1)/(4k)(logX)3.

The choice for P is justified at the end of §2.4, the one for η at the end
of §2.5 and the one for R at the end of §2.6. See also §2.7 for a more detailed
argument. We now decompose R as M ∪m ∪ t where

M =

[
−P
X
,
P

X

]
, m =

(
−R,−P

X

)
∪
(
P

X
,R

)
, t = R \ (M ∪m),

so that

I(η,$,R) = I(η,$,M) + I(η,$,m) + I(η,$, t).

These sets are called the major arc, the intermediate (or minor) arc and
the trivial arc respectively. In §2.1 we prove that the major arc yields the
main term for I(η,$,R). In order to show that the contribution of the in-
termediate arc does not cancel the main term, we exploit the hypothesis
that λ1/λ2 is irrational to prove that |S1(λ1α)|1/2 and |S2(λ2α)| cannot
both be large for α ∈ m: see §2.5, and in particular Lemma 2.3, for the
details. The trivial arc, treated in §2.6, only gives a rather small contribu-
tion.

From now on, implicit constants may depend on the coefficients λj and
on k, δ and $.
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2.1. The major arc. We write

I(η,$,M) =
�

M

S1(λ1α)S2(λ2α)Sk(λ3α)Kη(α)e($α) dα

=
�

M

T1(λ1α)T2(λ2α)Tk(λ3α)Kη(α)e($α) dα

+
�

M

(S1(λ1α)− T1(λ1α))T2(λ2α)Tk(λ3α)Kη(α)e($α) dα

+
�

M

S1(λ1α)(S2(λ2α)− T2(λ2α))Tk(λ3α)Kη(α)e($α) dα

+
�

M

S1(λ1α)S2(λ2α)(Sk(λ3α)− Tk(λ3α))Kη(α)e($α) dα

= J1 + J2 + J3 + J4,

say. We will give a lower bound for J1 and upper bounds for J2, . . . , J4. For
brevity, since the computations for J3 are similar to, but simpler than, the
corresponding ones for J2 and J4, we will skip them.

2.2. Lower bound for J1. The lower bound J1 � η2X1/2+1/k is proved
in a classical way. We have

J1 =
�

M

T1(λ1α)T2(λ2α)Tk(λ3α)Kη(α)e($α) dα

=
�

R

T1(λ1α)T2(λ2α)Tk(λ3α)Kη(α)e($α) dα

+O
( ∞�

P/X

|T1(λ1α)T2(λ2α)Tk(λ3α)|Kη(α) dα
)
.

Using inequalities (2.2) and (2.3), we see that the error term is

� η2X1/k−3/2
∞�

P/X

dα

α3
� η2X1/2+1/kP−2 = o(η2X1/2+1/k).

For brevity, we set D = [δX,X]× [(δX)1/2, X1/2]× [(δX)1/k, X1/k]. We can
rewrite the main term in the form�

· · ·
�

D

�

R

e((λ1t1 + λ2t
2
2 + λ3t

k
3 +$)α)Kη(α) dα dt1 dt2 dt3

=
�
· · ·

�

D

max(0, η − |λ1t1 + λ2t
2
2 + λ3t

k
3 +$|) dt1 dt2 dt3.

We now proceed to show that the last integral is� η2X1/2+1/k. Apart from
trivial changes of sign, there are essentially three cases:

1. λ1 > 0, λ2 < 0, λ3 < 0;
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2. λ1 > 0, λ2 > 0, λ3 < 0;
3. λ1 > 0, λ2 < 0, λ3 > 0.

We briefly deal with the second case, the other ones being similar. A suitable
change of variables shows that

J1 �
�
· · ·

�

D′

max(0, η − |λ1u1 + λ2u2 + λ3u3|)
du1 du2 du3

u
1/2
2 u

1−1/k
3

� X1/k−3/2
�
· · ·

�

D′

max(0, η − |λ1u1 + λ2u2 + λ3u3|) du1 du2 du3,

where D′ = [δX, (1 − δ)X]3, for large X. For j = 1, 2, let aj = |λ3|δ/|λj |,
bj = 2aj and Ij = [ajX, bjX]. Notice that if uj ∈ Ij for j = 1, 2, then

λ1u1 + λ2u2 ∈ [2|λ3|δX, 4|λ3|δX]

so that, for every such choice of (u1, u2), the interval [a, b] with endpoints
±η/|λ3|+ (λ1u1 + λ2u2)/|λ3| is contained in [δX, (1− δ)X]. In other words,
for u3 ∈ [a, b] the values of λ1u1 + λ2u2 + λ3u3 cover the whole interval
[−η, η]. Hence, for any (u1, u2) ∈ I1 × I2, we have

(1−δ)X�

δX

max(0, η− |λ1u1 + λ2u2 + λ3u3|) du3 =
1

|λ3|

η�

−η
max(0, η− |u|) du� η2.

Finally,

J1 � η2X1/k−3/2
� �

I1×I2

du1 du2 � η2X1/2+1/k,

which is the required lower bound.

2.3. Bound for J2. We define another approximation of Sk(α), namely

(2.4) Uk(α) =
∑

δX≤nk≤X

e(nkα).

The Euler summation formula implies that

(2.5) Tk(α)− Uk(α)� 1 + |α|X.
Using (2.3) we see that

J2 � η2
�

M

|S1(λ1α)− T1(λ1α)| |T2(λ2α)| |Tk(λ3α)| dα

≤ η2
�

M

|S1(λ1α)− U1(λ1α)| |T2(λ2α)| |Tk(λ3α)| dα

+ η2
�

M

|U1(λ1α)− T1(λ1α)| |T2(λ2α)| |Tk(λ3α)| dα

= η2(A2 +B2),
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say. In order to estimate A2 we use Theorems 3.1 and 3.2. By the Cauchy
inequality and (2.2) above, for any fixed A > 0 we have

A2 �
( P/X�

−P/X

|S1(λ1α)− U1(λ1α)|2 dα
)1/2

×
( P/X�

−P/X

|T2(λ2α)|2 |Tk(λ3α)|2 dα
)1/2

�
(

X

(logX)A

)1/2(1/X�

0

X1+2/k dα+

P/X�

1/X

X2/k−3

α4
dα

)1/2

�A
X1/2+1/k

(logX)A/2

by Theorem 3.2 (with C = 12/5), which we can use provided that X/P ≥
X1/6+ε, that is, P ≤ X5/6−ε. This proves that η2A2 = o(η2X1/2+1/k). Fur-
thermore, using the inequalities (2.2) and (2.5) we see that

B2 �
1/X�

0

|T2(λ2α)| |Tk(λ3α)| dα+X

P/X�

1/X

α|T2(λ2α)| |Tk(λ3α)| dα

� X1/k−1/2 +X1/k−1/2
P/X�

1/X

dα

α
� X1/k−1/2 logP,

so that η2B2 = o(η2X1/2+1/k).

2.4. Bound for J4. Inequality (2.3) implies that

J4 � η2
�

M

|S1(λ1α)| |S2(λ2α)| |Sk(λ3α)− Tk(λ3α)| dα

� η2
�

M

|S1(λ1α)| |S2(λ2α)| |Sk(λ3α)− Uk(λ3α)| dα

+ η2
�

M

|S1(λ1α)| |S2(λ2α)| |Uk(λ3α)− Tk(λ3α)| dα

= η2(A4 +B4),

say. The Parseval inequality and trivial bounds yield, for any fixed A > 0,

A4 � X1/2
( �
M

|S1(λ1α)|2 dα
)1/2( �

M

|Sk(λ3α)− Uk(λ3α)|2 dα
)1/2

� X(logX)1/2
P

X
Jk

(
X,

X

P

)1/2

�A X
1/2+1/k(logX)1/2−A/2
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by Theorems 3.1 and 3.2 (with C = 12/5), which we can use provided
that X/P ≥ X1−5/(6k)+ε, that is, P ≤ X5/(6k)−ε. This proves that η2A4 =
o(η2X1/2+1/k). Furthermore, using (2.5), the Hölder inequality and trivial
bounds we see that

B4 �
1/X�

0

|S1(λ1α)| |S2(λ2α)| dα+X

P/X�

1/X

α|S1(λ1α)| |S2(λ2α)| dα

� X1/2 +X
(P/X�
1/X

|S1(λ1α)|2 dα
)1/2

×
(P/X�
1/X

|S2(λ2α)|4 dα
P/X�

1/X

α4 dα
)1/4

� X(X logX)1/2(X(logX)2)1/4
(
P

X

)5/4

� P 5/4X1/2 logX.

Here we used Satz 3 of Rieger [10] to bound the fourth moment of S2.
Hence, taking P = o(X4/(5k)(logX)−1) we get η2B4 = o(η2X1/2+1/k). We
may therefore choose

(2.6) P = X4/(5k)−ε.

2.5. The intermediate arc. We need to show that |S1(λ1α)|1/2 and
|S2(λ2α)| cannot both be large for α ∈ m, exploiting the fact that λ1/λ2
is irrational. We do this using two famous results by Vaughan and Ghosh,
respectively, about S1(α) and S2(α).

Lemma 2.1 (Vaughan [15, Theorem 3.1]). Let α be a real number and
a, q be positive integers satisfying (a, q) = 1 and |α− a/q| < q−2. Then

S1(α)�
(
X
√
q

+
√
Xq +X4/5

)
log4X.

Lemma 2.2 (Ghosh [4, Theorem 2]). Let α be a real number and a, q
be positive integers satisfying (a, q) = 1 and |α − a/q| < q−2. Let moreover
ε > 0. Then

S2(α)�ε X
1/2+ε/2

(
1

q
+

1

X1/4
+

q

X

)1/4

.

Lemma 2.3. Let 1 ≤ k < 33/29. Assume that λ1/λ2 is irrational and let
X = q9k/(2k+3), where q is the denominator of a convergent of the continued
fraction for λ1/λ2. Let V (α) = min(|S1(λ1α)|1/2, |S2(λ2α)|). Then

sup
α∈m

V (α)� X(29k+3)/(72k)+ε/2.
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Proof. Let α ∈ m and Q = X(7k−3)/(18k) ≤ P . By Dirichlet’s Theorem,
there exist integers ai, qi with 1 ≤ qi ≤ X/Q and (ai, qi) = 1 such that
|λiαqi− ai| ≤ Q/X, for i = 1, 2. We remark that a1a2 6= 0, for otherwise we
would have α ∈M.

Now suppose that qi ≤ Q for i = 1, 2. In this case

a2q1
λ1
λ2
− a1q2 = (λ1αq1 − a1)

a2
λ2α
− (λ2αq2 − a2)

a1
λ2α

and hence

(2.7)

∣∣∣∣a2q1λ1λ2 − a1q2
∣∣∣∣ ≤ 2

(
1 +

∣∣∣∣λ1λ2
∣∣∣∣)Q2

X
<

1

2q

for sufficiently large X. Then, from the law of best approximation and the
definition of m, we obtain

(2.8) X(2k+3)/(9k) = q ≤ |a2q1| � q1q2R ≤ Q2R ≤ X(2k+3)/(9k)−ε,

which is absurd.
Hence either q1 > Q or q2 > Q. Assume that q1 > Q. Using Lemma 2.1

on S1(λ1α), we have

V (α) ≤ |S1(λ1α)|1/2 � sup
Q<q1≤X/Q

(
X
√
q1

+
√
Xq1 +X4/5

)1/2

log2X

� X(29k+3)/(72k)(logX)2.

The other case is similar, using Lemma 2.2 instead, and hence Lemma 2.3
follows.

Lemma 2.4. For j = 1, 2 we have�

m

|Sj(λjα)|2jKη(α) dα� ηX(logX)j ,

�

m

|Sk(λ3α)|2Kη(α) dα� ηX1/k(logX)3.

Proof. Argue as in §2.6 where we bound the quantities A, B and C,
the main difference being that we have to split the range [P/X,R] into two
intervals in order to use (2.3) efficiently. See also the proof of Lemma 7 of
Tolev [12]. We skip the details.

Now let

X1 = {α ∈ [P/X,R] : |S1(λ1α)|1/2 ≤ |S2(λ2α)|},
X2 = {α ∈ [P/X,R] : |S1(λ1α)|1/2 ≥ |S2(λ2α)|},

so that [P/X,R] = X1 ∪ X2 and

|I(η,$,m)| �
( �

X1

+
�

X2

)
|S1(λ1α)S2(λ2α)Sk(λ3α)|Kη(α) dα.
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Hölder’s inequality gives
�

X1

≤ max
α∈X1

|S1(λ1α)|1/2
( �

X1

|S1(λ1α)|2Kη(α) dα
)1/4

×
( �

X1

|S2(λ2α)|4Kη(α) dα
)1/4( �

X1

|Sk(λ3α)|2Kη(α) dα
)1/2

� ηX(65k+39)/(72k)+ε/2

by Lemmas 2.3 and 2.4. The computation on X2 is similar and gives the
same final result. Summing up yields

|I(η,$,m)| � ηX(65k+39)/(72k)+ε/2,

and this is o(η2X1/2+1/k) provided that

(2.9) X(29k−33)/(72k)+ε/2 = o(η).

2.6. The trivial arc. Using the Hölder inequality and a trivial bound
for Sk(λ3α) we see that

|I(η,$, t)| ≤ 2

∞�

R

|S1(λ1α)| |S2(λ2α)||Sk(λ3α)|Kη(α) dα

�
(∞�
R

|S1(λ1α)|2Kη(α) dα
)1/2(∞�

R

|S2(λ2α)|4Kη(α) dα
)1/4

×
(∞�
R

|Sk(λ3α)|4Kη(α) dα
)1/4

≤ X1/2k
(∞�
R

|S1(λ1α)|2Kη(α) dα
)1/2

×
(∞�
R

|S2(λ2α)|4Kη(α) dα
)1/4(∞�

R

|Sk(λ3α)|2Kη(α) dα
)1/4

� X1/2kA1/2B1/4C1/4,

say, where in the last but one line we used the inequality (2.3), and we set

A =

∞�

|λ1|R

|S1(α)|2

α2
dα, B =

∞�

|λ2|R

|S2(α)|4

α2
dα, C =

∞�

|λ3|R

|Sk(α)|2

α2
dα.

We have

A�
∑

n≥|λ1|R

1

(n− 1)2

n�

n−1
|S1(α)|2 dα� X logX

|λ1|R

by the Prime Number Theorem. Arguing similarly, using again Satz 3 of
Rieger [10] and Lemma 7 of Tolev [12] respectively, we see that we also have
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B � X(logX)2/R and C � X1/k(logX)3/R. Collecting these estimates,
we conclude that

|I(η,$, t)| � X3/4+3/(4k)(logX)2

R
.

Hence, |I(η,$, t)| = o(η2X1/2+1/k) provided that we choose, say,

(2.10) R = η−2X(1−1/k)/4(logX)3.

2.7. Remark on the choice of the parameters. The constraint on
the choice X = q9k/(2k+3) with 1 < k < 33/29 arises from the bounds (2.7)
and (2.8). Their combination prevents us from choosing the optimal value
X = q2. This is justified as follows: neglecting log-powers, let X = qa(k),
Q = Xb(k), η = X−c(k), and recall the choices P = X4/(5k)−ε in (2.6) and
R = η−2X(1−1/k)/4(logX)3 in (2.10), which are due, respectively, to the
bound for B4 and for the trivial arc. Then, essentially, we have to maximize
k subject to the constraints

a(k) ≥ 1,

0 ≤ b(k) ≤ 4/(5k),

c(k) ≥ 0,

2b(k)− 1 ≤ −1/a(k) by (2.7),

2b(k) + 2c(k) + 1
4(1− 1/k) ≤ 1/a(k) by (2.8),

−c(k) ≥ 1
2 −

1
2k −

1
4b(k) by (2.9),

which is a linear optimization problem in the variables 1/a(k), b(k), c(k)
and 1/k. The solution for this problem is 1/a(k) = (2k + 3)/(9k), b(k) =
(7k− 3)/(18k), c(k) = (33− 29k)/(72k), for 1/k ≥ 29/33, and this is equiv-
alent to the statement of Theorem 1.1.

3. L2-norms of exponential sums over prime powers. In the proof
of Theorem 1.1 we needed a mean-square average of Sk(α)−Uk(α), defined
in (2.1) and (2.4), for k > 1. In this section we consider the slightly more
general case k > 0. Moreover, from now on we will use [X, 2X] as the main
interval since in this way it will be easier to compare our results with the
known literature and also because adapting the whole argument to [δX,X]
is straightforward.

We recall that θ(x) =
∑

p≤x log p and define

(3.1) Jk(X,h) =

2X�

X

(
θ((x+ h)1/k)− θ(x1/k)− ((x+ h)1/k − x1/k)

)2
dx,

a generalization of the Selberg integral which is well suited for our problem.
To be consistent with the classical definition, we will also denote J1 as J .



A ternary Diophantine problem 355

We want first to relate a truncated L2-average of Sk(α) − Uk(α) with
Jk(X,h) and then to obtain a suitable estimate for the latter.

Theorem 3.1. Let k > 0 be a real number. For 0 < Y ≤ 1/2 we have

Y�

−Y
|Sk(α)− Uk(α)|2 dα�k

X2/k−2 log2X

Y
+ Y 2X + Y 2Jk

(
X,

1

2Y

)
,

where Jk(X,h) is defined in (3.1).

A similar result holds if we replace log p with the von Mangoldt function
Λ(n) in the definition of Sk(α) in (2.1); the only difference in the statement
above will be replacing Jk with Jk,ψ as defined in (3.6). The case k = 1 is
well known (see, e.g., Lemma 1 of Brüdern–Cook–Perelli [2]).

In order to state the following result, we introduce a hypothesis on the
density of the zeros of the Riemann zeta-function. With classical notation,
we assume that there exist constants B ≥ 0 and C ≥ 2 such that for
σ ∈ [1/2, 1] and T ≥ 2 we have

(3.2) N(σ, T )� TC(1−σ)(log T )B.

Huxley [6] proved that (3.2) holds with C = 12/5 and some B ≥ 0.

Theorem 3.2. Let k > 0 be a real number and ε be an arbitrarily small
positive constant. Assuming that (3.2) holds, there exists a positive constant
c1 = c1(ε), which does not depend on k, such that

Jk(X,h)�k h
2X2/k−1 exp

(
−c1

(
logX

log logX

)1/3)
uniformly for X1−2/(Ck)+ε ≤ h ≤ X. Assuming further that the Riemann
Hypothesis holds, we have

Jk(X,h)�k hX
1/k log2(2X/h)

uniformly for X1−1/k ≤ h ≤ X.

Notice that if k ≥ 1 and h ≤ X1−1/k, then the bound Jk(X,h)� X logX
follows immediately from the Prime Number Theorem. For k < 1 the previ-
ous condition on h becomes essentially meaningless. The case k = 1 of the
previous theorem was proved by Saffari–Vaughan [11, §6], while in Zacca-
gnini [16] a wider range for h in the unconditional case is given, but the
proof does not easily lend itself to the generalization we pursue here. The
unconditional case k = 2 of Theorems 3.1 and 3.2 (with C = 12/5) was
proved in Languasco–Settimi [7]. Applications of this case to some Dio-
phantine problems with primes and squares of primes were given in [7] and
in Languasco–Zaccagnini [8]. Results similar to Theorem 3.2 hold also if we
replace θ(x) with ψ(x) (see Lemma 3.3), and h with δx (see Lemma 3.4).
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3.1. Proof of Theorem 3.1. Letting I :=
	Y
−Y |Sk(α) − Uk(α)|2 dα,

we see that the result is trivial for 0 < Y < 1/X since I � Y X2/k ≤
Y −1X2/k−2 log2X in this range. Assuming that 1/X ≤ Y ≤ 1/2, we can
write

I =

Y�

−Y

∣∣∣ ∑
X≤nk≤2X

(`(n)− 1)e(nkα)
∣∣∣2 dα,

where `(n) = log p if n = p prime and `(n) = 0 otherwise. By Gallagher’s
lemma (Lemma 1 of [3]) we obtain

I � Y 2
∞�

−∞

( ∑
x≤nk≤x+H
X≤nk≤2X

(`(n)− 1)
)2
dx

where we defined H = 1/(2Y ). We can restrict the integration range to
E = [X − H, 2X] since otherwise the inner sum is empty. Moreover we
split E as E = E1 ∪ E2 ∪ E3 where E1 = [X − H,X], E2 = [X, 2X − H],
E3 = [2X −H, 2X]. Accordingly we can write

I � Y 2
( �

E1

+
�

E2

+
�

E3

)( ∑
x≤nk≤x+H
X≤nk≤2X

(`(n)− 1)
)2
dx = Y 2(I1 + I2 + I3),

(3.3)

say. We now proceed to estimate Ii, for every i = 1, 2, 3.

We immediately have

I1 �
X�

X−H

(
θ((x+H)1/k)− θ(X1/k)− ((x+H)1/k −X1/k)

)2
dx+H.

By trivial estimates we obtain

I1 � log2X

X�

X−H
((x+H)1/k −X1/k)2 dx+H(3.4)

� H3X2/k−2 log2X +H.

A similar argument gives the same bound for I3; we omit it for brevity.
Finally,

I2 �
2X�

X

(
θ((x+H)1/k)− θ(x1/k)− ((x+H)1/k − x1/k)

)2
dx+X(3.5)

= Jk(X,H) +X,

where we used the definition in (3.1). Therefore, by (3.3)–(3.5), the bound
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Y ≥ 1/X and recalling that H = 1/(2Y ), we have

I � X2/k−2 log2X

Y
+XY 2 + Y 2Jk

(
X,

1

2Y

)
,

which proves Theorem 3.1.

3.2. Proof of Theorem 3.2. We reduce our problem to estimating

(3.6) Jk,ψ(X,h) :=

2X�

X

(
ψ((x+h)1/k)−ψ(x1/k)− ((x+h)1/k−x1/k)

)2
dx

since, using |a+ b|2 ≤ 2|a|2 + 2|b|2 and Lemma 3.5, we have

(3.7) Jk(X,h)� Jk,ψ(X,h)

+

2X�

X

(
ψ((x+ h)1/k)− ψ(x1/k)− θ((x+ h)1/k) + θ(x1/k)

)2
dx

� Jk,ψ(X,h) + hX1/k.

To estimate the right-hand side of (3.7), we use the following result we will
prove later.

Lemma 3.3. Let k > 0 be a real number and ε be an arbitrarily small
positive constant. Assuming that (3.2) holds, there exists a positive constant
c1 = c1(ε), which does not depend on k, such that

Jk,ψ(X,h)� h2X2/k−1 exp

(
−c1

(
logX

log logX

)1/3)
uniformly for X1−2/(Ck)+ε ≤ h ≤ X, where Jk,ψ(X,h) is defined in (3.6).
Assuming further that the RH holds, we have

Jk,ψ(X,h)� hX1/k log2(2X/h)

uniformly for X1−1/k ≤ h ≤ X.

Theorem 3.2 is an immediate consequence of Lemma 3.3 and (3.7). In
its turn, Lemma 3.3 is a consequence of the following result.

Lemma 3.4. Let k > 0 be a real number and ε be an arbitrarily small
positive constant. Assuming that (3.2) holds, there exists a positive constant
c1 = c1(ε), which does not depend on k, such that

J̃k,ψ(X, δ) :=

2X�

X

(
ψ((x+δx)1/k)−ψ(x1/k)− ((x+δx)1/k−x1/k)

)2
dx(3.8)

� δ2X2/k+1 exp

(
−c1

(
logX

log logX

)1/3)
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uniformly for X−2/(Ck)+ε ≤ δ ≤ 1. Assuming further that the RH holds, we
have

J̃k,ψ(X, δ)� δX1/k+1 log2(2/δ)

uniformly for X−1/k ≤ δ ≤ 1.

The same estimates hold if we insert θ in place of ψ in the previous
quantities.

Proof. We set ∆ = (1 + δ)1/k − 1 in (3.8) getting

J̃k,ψ(X, δ) =

2X�

X

(
ψ(x1/k(1 +∆))− ψ(x1/k)−∆x1/k

)2
dx.

The substitution yk = x yields

J̃k,ψ(X, δ) =

(2X)1/k�

X1/k

(
ψ(y(1 +∆))− ψ(y)−∆y

)2
kyk−1 dy(3.9)

�k X1−1/kJ(X1/k, ∆).

In the unconditional case, by Lemma 5 of Saffari–Vaughan [11], for ∆ >
X−2/(Ck)+ε we have

J̃k,ψ(X, δ) �k X1−1/k∆2X3/k exp

(
−c1(ε)

(
logX1/k

log logX1/k

)1/3)
�k X2/k+1∆2 exp

(
−c2(ε, k)

(
logX

log logX

)1/3)
,

where c1(ε) > 0 and we may take, essentially, c2(ε, k) = c1(ε)k
−1/3. For

k ∈ (0, 1) we are therefore allowed to take a value of c2 which is independent
of k.

In the conditional case, by (3.9) and Lemma 5 of Saffari–Vaughan [11],
we deduce

J̃k,ψ(X, δ) �k X1−1/k∆X2/k log(2X1/k/∆) �k X1/k+1∆ log(2X/∆),

provided that ∆ > X−1/k. It is easy to see that ∆ = (1 + δ)1/k − 1 =
(1/k)δ +Ok(δ2), so that 1/∆ = k/δ +Ok(1)�k 1/δ. Hence

J̃k,ψ(X, δ) �k

X2/k+1δ2 exp

(
−c2(ε, k)

(
logX

log logX

)1/3)
unconditionally,

X1/k+1δ log(2X/δ) assuming RH.

A similar computation allows us to express the above bounds for ∆ in terms
of δ. Skipping details for brevity, we may conclude that Lemma 3.4 holds
true for k ∈ (0, 1) (with a constant c1 > 0 that depends only on ε) provided
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that δ > X−2/(Ck)+2ε unconditionally, and that δ > (1 + ε)kX−1/k if we
assume the RH.

In the remaining range k > 1 the previous proof gives a constant c1
which depends on k. In fact, one can obtain Lemma 3.4 in the full range
for k and c1 independent of k following the proof of Saffari–Vaughan [11]
(as in [7] for the case k = 2) but, since in the applications k is usually
bounded, we omit such a proof here.

We finally remark that the estimates with θ in place of ψ follow by
arguing as in (3.7) and using the second part of Lemma 3.5.

Proof of Lemma 3.3. We follow the argument of Saffari–Vaughan [11, §6].
Let now 2h ≤ v ≤ 3h and define

(3.10) Dk,ψ(a, b) = ψ(a1/k)− ψ(b1/k)− (a1/k − b1/k).

To estimate Jk,ψ(X,h) (defined in (3.6)), we first remark, by (3.10), that

hJk,ψ(X,h)�
2X�

X

3h�

2h

D2
k,ψ(x+ v, x) dv dx(3.11)

+

2X�

X

3h�

2h

D2
k,ψ(x+ v, x+ h) dv dx.

Setting z = v − h, y = x+ h and changing variables in the last integration,
the right-hand side of (3.11) becomes

�
2X�

X

3h�

2h

D2
k,ψ(x+ v, x) dv dx+

2X+h�

X+h

2h�

h

D2
k,ψ(y + z, y) dz dy.

Since both the integrands are non-negative, we can extend the integration
ranges to get

hJk,ψ(X,h)�
2X+h�

X

3h�

h

D2
k,ψ(x+ v, x) dv dx

=

2X+h�

X

x

3h/x�

h/x

D2
k,ψ(x+ δx, x) dδ dx,

where in the last step we made the change of variable δ = v/x, thus getting
δ ≥ h/x ≥ X−2/(Ck)+ε as in the hypothesis of Lemma 3.4. Interchanging
the integration order we obtain

hJk,ψ(X,h)� (X + h)

3h/X�

h/(2X+h)

2X+h�

X

D2
k,ψ(x+ δx, x) dx dδ.
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Finally, in the first case, i.e. assuming (3.2), we use Lemma 3.4 to get

Jk,ψ(X,h)� h2X2/k−1 exp

(
−c1

(
logX

log logX

)1/3)
.

Assuming RH, Lemma 3.4 implies

Jk,ψ(X,h)� X + h

h

3h/X�

h/(2X+h)

δX1/k+1 log2
(

2

δ

)
dδ � hX1/k log2

(
2X

h

)
.

This concludes the proof of Lemma 3.3.

The following elementary lemma is useful in passing from the θ to the ψ
function in Theorem 3.2.

Lemma 3.5. Let k > 0 be a real number. For X1−1/k ≤ h ≤ X, we have

2X�

X

(
ψ((x+ h)1/k)− ψ(x1/k)− θ((x+ h)1/k) + θ(x1/k)

)2
dx� hX1/k.

Moreover, for X−1/k ≤ δ ≤ 1, we have

2X�

X

(
ψ((x+ δx)1/k)− ψ(x1/k)− θ((x+ δx)1/k) + θ(x1/k)

)2
dx� δX1/k+1.

Proof. Since ψ(u) =
∑log2 u

m=1 θ(u
1/m), we have

(3.12) ψ((x+ h)1/k)− ψ(x1/k)− θ((x+ h)1/k) + θ(x1/k)

=

log2(x
1/k)∑

m=2

(
θ((x+ h)1/(mk))− θ(x1/(mk))

)
+

log2((x+h)
1/k)∑

m=log2(x
1/k)

θ((x+ h)1/(mk)).

Clearly, the last sum has at most 1 + 1/k summands, which are uniformly
bounded.

Assume now that h ∈ [X1−1/k, X1−1/2k] and denote by ∆k(X,h) the
left-hand side of the inequality in the statement. Using (3.12), we find that

∆k(X,h) =

2X�

X

(log2(x)/k∑
m=2

(
θ((x+ h)1/(mk))− θ(x1/(mk))

)
+O(1)

)2
dx

�
2X�

X

(
θ((x+ h)1/(2k))− θ(x1/(2k))

)2
dx

+

2X�

X

(log2(x)/k∑
m=3

(
θ((x+ h)1/(mk))− θ(x1/(mk))

))2
dx+X.
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We only deal with the first term, the other one being similar and, in fact,
smaller. We exploit the fact that the integrand is usually 0, and small
when positive. Let M = dX1/2ke and N = b(2X)1/2kc. Let n ∈ [M,N ];
if x ∈ [X, 2X] satisfies both x1/2k < n and (x + h)1/2k ≥ n, then the
integrand (θ((x + h)1/(2k)) − θ(x1/(2k)))2 is log2 n if n is a prime num-
ber, and vanishes otherwise. The two inequalities above imply n2k − h ≤
x < n2k. Summing up, for every prime p ∈ [M,N ] there is an inter-
val of length h of values for x such that the integrand does not vanish.
Hence

(3.13) ∆k(X,h)� h
∑

p∈[M,N ]

(log p)2 � hX1/(2k) logX.

Let us now consider h ∈ [X1−1/2k, X]. For the terms with m ≥ 3 in (3.12)
we simply notice that

θ((x+ h)1/(mk))− θ(x1/(mk)) ≤ log((x+ h)1/(mk))
∑

x1/(mk)<n≤(x+h)1/(mk)

1

≤ 1

mk
log(x+ h)((x+ h)1/(mk) − x1/(mk) + 1)

≤ 1

mk
log(x+ h)

(
1

mk
hx1/(mk)−1 + 1

)
by the mean-value theorem. The number of such terms is at most log x
and hence the total contribution is bounded by an absolute constant times
(hx1/(3k)−1+1)(log x)(log log x). We now deal with the term θ((x+h)1/(2k))−
θ(x1/(2k)). We have

θ((x+h)1/(2k))−θ(x1/(2k))≤ log((x+h)1/(2k))
(
π((x+h)1/(2k))−π(x1/(2k))

)
�k log x

hx1/(2k)−1 + 1

log(hx1/(2k)−1 + 1)

by the mean-value theorem and the Brun–Titchmarsh inequality, which we
can use for h �k X1−1/(2k). Squaring out and integrating the previous
estimates we get, for every fixed ε > 0,

(3.14)

∆k(X,h)�k,ε

{
h2X1/k−1 if X1−1/(2k)+ε ≤ h ≤ X,

h2X1/k−1 log2X if X1−1/(2k) ≤ h ≤ X1−1/(2k)+ε.

The first part of Lemma 3.5 now follows from (3.13)–(3.14) by trivial com-
putations. The second part can be obtained with a similar argument.
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