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1. Introduction. Let χ be an odd Dirichlet character of conductor f ,
and let

B1,χ =
1

f

f−1∑
a=1

aχ(a)

be the generalized Bernoulli number. It is well known that B1,χ 6= 0, which
is obtained in an analytic way. Actually, one knows that L(1, χ̄) equals
B1,χ times a nonzero explicit constant and that L(1, χ̄) 6= 0, where L(s, χ̄)
denotes the Dirichlet L-function associated to the complex conjugate χ̄ of χ.
For these, see Corollary 4.4 and Theorem 4.9 in Washington [13]. It is of
interest to search for an algebraic or an elementary proof of the nonvanishing.

In what follows, let p be an odd prime number. We write p = 1 + 2e+1q
with an odd integer q. Let δ (resp. ϕ) be an odd (resp. even) Dirichlet
character of conductor p and order 2e+1 (resp. order dϕ dividing q), and for
an integer n ≥ 0, let ψn be an even Dirichlet character of conductor pn+1

and order pn. We put χ = δϕψn. At present, algebraic proofs for B1,χ 6= 0
are known for the following three cases:

(i) n ≥ 0 and dϕ = q.
(ii) n = 0 and dϕ = 1.

(iii) Under some assumption on a cyclotomic unit of Q(ζp).

The case (i) is due to Ullom [10] and Miki [9], and the case (ii) is due to [10]
and Metsänkylä [8]. The case (iii) was dealt with in Iwasawa [7] and in [9].
(For the case p = 2, see Remark 3 at the end of Section 2.)

Let F = Q(ζ2e+1 , ζdϕ) and Kn = F (ζpn) for n ≥ 1. Here, for an integer
m ≥ 2, ζm denotes a primitive mth root of unity. We have B1,χ ∈ Kn for
χ = δϕψn. For an element X ∈ Kn, we can uniquely write X =

∑
u auζ

u
pn
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where au ∈ K1 and u runs over the integers with 0 ≤ u ≤ pn−1−1. Clearly we
have X 6= 0 if and only if au 6= 0 for some u. Denote by Trn/1 the trace map
fromKn toK1. The last condition is equivalent to saying that Trn/1(ξX) 6= 0
for some pnth roots ξ of unity. We thus obtain Trn/1(ξB1,χ) 6= 0 for some ξ.
The main purpose of this paper is to prove, with an algebraic and elementary
manner, the following stronger nonvanishing result for B1,χ in the extreme
cases dϕ = 1 and q.

Theorem. Under the above setting, assume that dϕ = 1 or q, and let
χ = δϕψn. Then, for any n ≥ 1 and any pnth root ξ of unity, we have
Trn/1(ξB1,χ) 6= 0.

When dϕ 6= 1 nor q, no corresponding result seems to be obtained
whether in an algebraic or analytic way. Calculation of the traces of Bernoulli
numbers played an important role in the study of Washington [11, 12] on
the non-p-part of the class numbers in the cyclotomic Zp-extension over an
imaginary abelian field. We prove the Theorem by modifying Washington’s
calculation and using some combinatorial arguments. Our method is com-
pletely different from the previous ones in the above cited papers [7, 8, 9, 10].

Washington’s study was taken over by Horie [2, 3]. Let k be the imaginary
subfield of Q(ζp) of degree 2e+1 over Q. Let kn be the nth layer of the
cyclotomic Zp-extension k∞/k with k0 = k and h−n the relative class number
of kn. Let ` be a prime number with ` 6= p. When p ≡ 3 mod 4 (and hence
k = Q(

√
−p)), we see from [3, Theorem 2] that ` - h−n for all n if ` is a

primitive root modulo p2 and ` is larger than an explicit but very large
constant mp (with mp = O(pp)). In [4, 5], we obtained the following simple
result by carefully looking at the traces of related Bernoulli numbers. When
q > 1, we denote by dp the largest divisor of q with dp < q.

Proposition 1. Let p be a prime number with p ≡ 3 mod 4 and p ≥ 7.
If ` is a primitive root modulo p2 and ` ≥ q − 2dp, then ` - h−n for all n.

In the process of showing this proposition, we obtained an assertion [5,
Lemma 2] which implies the Theorem for the case where e = 0 and dϕ = 1.
We prove the Theorem by generalizing some arguments in [4, 5]. Further,
as a by-product, we obtain the following proposition.

Proposition 2. Let p be a prime number with p ≡ 5 mod 8 and p ≥ 13,
and ` a prime number which is a primitive root modulo p2. Then ` - h−n /h−n−1

for all n ≥ 1 if ` > 2p(q − 2dp)
2.

It is known that when p = 3 (resp. 5), ` - h−n for all n if ` is a primitive
root modulo p2 by [2, Proposition 3] (resp. [11, Proposition 3]). When p = 7,
the same assertion holds by Proposition 1, as q − 2dp = 1. When p = 11
or 19, the same is true for ` ≥ 3, as q − 2dp = 3. Let p = 13. We see that
among the primes ` with ` ≤ 2p(q−2dp)

2 = 26, ` is a primitive root modulo
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p2 when ` = 2, 7, 11. (Note that ` = 19, 23 is a primitive root modulo p but
not modulo p2.) Hence, it follows from Proposition 2 and h−0 = 1 that ` - h−n
for all n if ` is a primitive root modulo p2 except for ` = 2, 7, 11. For the
case ` = 2, see the following remark.

Remark 1. Let h∗n be the relative class number of Q(ζpn+1). We can

easily show that h−n /h
−
n−1 divides h∗n/h

∗
n−1. When p ≤ 509, it is shown in [6,

Theorem 2] that 2 - h∗n/h∗n−1 for all n ≥ 1.

Remark 2. In [3, Theorem 2], Horie worked in a more general setting.
Let k be an arbitrary imaginary quadratic field, and h−n the same as above.
He gave, for each natural number a, an explicit (but large) constant mp,a

for which ` - h−n for all n if ` > mp,a and ` satisfies a certain congruence
modulo pa.

2. Proof of Theorem. First, we prepare some lemmas. For an element
x of the ring Zp of p-adic integers, let

x = a0(x) + a1(x)p+ · · ·+ an(x)pn + · · ·
be the p-adic expansion of x with 0 ≤ au(x) ≤ p−1. Further, denote by sn(x)
the unique integer satisfying sn(x) ≡ x mod pn+1 and 0 ≤ sn(x) < pn+1.
Clearly, we have an(x) = (sn(x)−sn−1(x))/pn. Let n ≥ 1. Let δ, ϕ and ψn be
as in Section 1, and put χ = δϕψn. For α ∈ Zp with α ≡ 1 mod p, we write

X = Trn/1
(

1
2ψn(α)−1B1,χ

)
for brevity. For an integer r dividing p−1, let µr be the group of rth roots of
unity in Zp. We choose and fix a generator η of µ2e+1 . We put ζp = ψn(1+pn),
which is a primitive pth root of unity.

Lemma 1. Under the above setting, we have

X =
1

p2

p−1∑
b=0

( 2e−1∑
j=0

∑
ε∈µq

sn(εηjα(1 + bpn))ϕ(ε)δ(η)j
)
ζbp.

Proof. Replacing α−1a with a and noting that α ≡ 1 mod p, we see that

1

2
ψn(α)−1B1,χ =

1

2pn+1

pn+1−1∑
a=0

aδ(a)ϕ(a)ψn(α−1a)

=
1

2pn+1

pn+1−1∑
a=0

sn(aα)δ(a)ϕ(a)ψn(a)

=
1

2pn+1

pn−1∑
b=0

∑
ε∈µp−1

sn(εα(1 + bp))δ(ε)ϕ(ε)ψn(1 + bp).
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For a pnth root ξ of unity in Kn, we have Trn/1(ξ) = pn−1ξ or 0 according

as ξp = 1 or not. Further, ψn(1 + bp)p = 1 if and only if pn−1 divides b.
Hence, noting that 1 + bpn ≡ (1 + pn)b mod pn+1, we obtain

(1) X =
1

2p2

p−1∑
b=0

xbζ
b
p

with

xb =
∑

ε∈µp−1

sn(εα(1+bpn))δ(ε)ϕ(ε) =
∑
ε∈µq

2e+1−1∑
j=0

sn(εηjα(1+bpn))δ(η)jϕ(ε).

We have η2e = −1. Hence, as δ is an odd character and sn(−x) = pn+1 −
sn(x) if pn+1 - x, we see that

xb =
∑
ε∈µq

2e−1∑
j=0

(
sn(εηjα(1 + bpn))− sn(−εηjα(1 + bpn))

)
δ(η)jϕ(ε)(2)

= 2
∑
ε∈µq

2e−1∑
j=0

sn(εηjα(1 + bpn))δ(η)jϕ(ε)− pn+1C

with

C =
∑
ε∈µq

ϕ(ε)
2e−1∑
j=0

δ(η)j .

Since C is independent of b and
∑p−1

b=0 ζ
b
p = 0, we now obtain the assertion

from (1) and (2).

Lemma 2. For γ ∈ Zp and an integer b with 0 ≤ b ≤ p− 1, we have

sn(γ(1 + bpn)) = sn−1(γ) + s0(an(γ) + a0(γ)b)pn.

Proof. Write an = an(γ) for brevity. Then we obtain the assertion from

γ(1 + bpn) = a0 + a1p+ · · ·+ an−1p
n−1 + (an + a0b)p

n + · · ·
= sn−1(γ) + s0(an + a0b)p

n + · · · .
For a while, we assume that q > 1. For integers n, b, j and a p-adic

integer α with

n ≥ 1, 0 ≤ b ≤ p− 1, 0 ≤ j ≤ 2e − 1, α ≡ 1 mod p,

we put

xn,b,α,j =
1

pn+1

∑
ε∈µq

sn(εηjα(1 + bpn)) and zn,b,α =
2e−1∑
j=0

xn,b,α,jδ(η)j .

As q > 1, we see that xn,b,α,j is an integer.

Lemma 3. Under the above setting, we have dp ≤ xn,b,α,j ≤ q − dp.
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Proof. Write d = dp for brevity, and put r = q/d. We have r ≥ 3 since
d is the largest divisor of the odd integer q with d < q. Further, fixing n, b,
α and j, we put x = xn,b,α,j for brevity. Let ξ1 = 1, ξ2, . . . , ξd be a complete
set of representatives of the quotient µq/µr. Putting

yu =
1

pn+1

∑
ε∈µr

sn(ξuεη
jα(1 + bpn)),

we have

x =

d∑
u=1

yu.

As r > 1, we have yu ∈ Z. Then, since

1 ≤ sn(ξuεη
jα(1 + bpn)) ≤ pn+1 − 1,

we obtain 1 ≤ yu ≤ r − 1. Therefore,

d ≤ x ≤ d(r − 1) = q − d.
Lemma 4. Under the above setting, we have

p−1∑
b=0

zn,b,α = zn−1,0,α + 2eq2
2e−1∑
j=0

δ(η)j .

Proof. Fixing α and j, we abbreviate xn,b = xn,b,α,j . From Lemma 2, we
see that

p−1∑
b=0

xn,b =
1

pn+1

∑
ε∈µq

p−1∑
b=0

sn(εηjα(1 + bpn))

=
1

pn+1

∑
ε∈µq

p−1∑
b=0

(
sn−1(εηjα) + s0(aεn + aε0b)p

n
)
,

where aεu = au(εηjα) with u = 0 or n. As εηjα ∈ Z×p , aε0 6≡ 0 mod p.
Therefore, when b runs over {0, 1, . . . , p− 1}, the integer s0(aεn + aε0b) runs
over the same set. It follows that

p−1∑
b=0

xn,b =
1

pn+1

∑
ε∈µq

(
psn−1(εηjα) +

(p− 1)pn+1

2

)
= xn−1,0 + 2eq2.

The assertion follows from this.

Lemma 5. Under the above setting, for each n and α, we have zn,b,α 6=
zn,0,α for some b with 1 ≤ b ≤ p− 1.

Proof. Fixing α, we abbreviate zn,b = zn,b,α and xn,0 = xn,0,α,0. Assume
that zn,b = zn,0 for all b. Then Lemma 4 implies that

p−1∑
b=0

zn,b = zn−1,0 + 2eq2
2e−1∑
j=0

δ(η)j ≡ 0 mod pZ[ζ2e+1 ].
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It follows that

(3) xn−1,0 + 2eq2 ≡ 0 mod p

because the elements δ(η)j with 0 ≤ j ≤ 2e − 1 constitute a free basis of
Z[ζ2e+1 ] over Z. We see that

2eq2 ≡ p− q
2

mod p and 0 <
p− q

2
< p.

Lemma 3 gives

0 < xn−1,0 +
p− q

2
< q +

p− q
2

=
p+ q

2
< p = 2e+1q + 1.

Thus, the congruence (3) is impossible.

Proof of Theorem; the case dϕ = 1. Under the notation in Lemma 1, it
suffices to show that X 6= 0 for any n and α. When q > 1, we see from
Lemma 1 that

Y =
1

pn−1
X =

1

pn−1
Trn/1

(
1
2ψn(α)−1B1,χ

)
=

p−1∑
b=0

zn,b,αζ
b
p

=

p−1∑
b=1

(zn,b,α − zn,0,α)ζbp ∈ K1 = Q(ζ2e+1 , ζp).

Since the elements ζbp with 1 ≤ b ≤ p − 1 constitute a basis of K1 over
F = Q(ζ2e+1), we see immediately from Lemma 5 that Y 6= 0.

Next, we deal with the case q = 1 (that is, the case where p is a Fermat
prime). We see from Lemma 1 that

(4) X = Trn/1
(

1
2ψn(α)−1B1,χ

)
=

1

p2

p−1∑
b=1

( 2e−1∑
j=0

Sn,b,jδ(η)j
)
ζbp

with

Sn,b,j = sn(ηjα(1 + bpn))− sn(ηjα).

It follows from Lemma 2 that

1

pn
Sn,b,j = s0

(
an(ηjα) + a0(ηjα)b

)
− an(ηjα) ≡ ηjαb 6≡ 0 mod p

for 1 ≤ b ≤ p− 1. Therefore, Sn,b,j 6= 0 and hence

2e−1∑
j=0

Sn,b,jδ(η)j 6= 0

since the elements δ(η)j with 0 ≤ j ≤ 2e − 1 constitute a basis of F over Q.
It follows from (4) that X 6= 0.
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Before going on to the case dϕ = q (> 1), we prove one more lemma. Let
q1, . . . , qs be some distinct odd prime numbers dividing p− 1. We put

(5) µ = µq1 · · ·µqs = {ε1 · · · εs | εu ∈ µqu (1 ≤ u ≤ s)} (⊆ Z×p ).

Let f : µ→ Z be an arbitrary map, and τ : µ→ C× an injective homomor-
phism. Put S = {1, . . . , s}. We define a map g : µ→ Z by

g(ε1 · · · εs) =
s∑

u=0

(−1)s−u
∑
T⊂S

(u)
f(εt1 · · · εtu).

Here, in the sum
∑(u)

T⊂S , T = {t1, . . . , tu} runs over the subsets of S with
|T | = u. Further, when u = 0 (and T is empty), we set εt1 · · · εtu = 1.

Lemma 6. Under the above setting, we have∑
ε∈µ

f(ε)τ(ε) =
∑
ε1 6=1

· · ·
∑
εs 6=1

g(ε1 · · · εs)τ(ε1) · · · τ(εs),

where in the sum
∑

εu 6=1, εu runs over the nontrivial elements of µqu.

Proof. Let µ̄ = µq1 · · ·µqs−1 (⊂ µ), and S̄ = S \ {s}. As τ is an injective
homomorphism, we have ∑

εs∈µqs

τ(εs) = 0,

and hence ∑
ε∈µ

f(ε)τ(ε) =
∑
εs 6=1

(∑
ε∈µ̄

(f(εεs)− f(ε))τ(ε)
)
τ(εs).

Then, by induction on s,∑
ε∈µ

f(ε)τ(ε) =
∑
εs 6=1

(∑
ε1 6=1

· · ·
∑

εs−1 6=1

ḡεs(ε1 · · · εs−1)τ(ε1) · · · τ(εs−1)
)
τ(εs)

with

ḡεs(ε1 · · · εs−1) =

s−1∑
u=0

(−1)s−1−u
∑
T⊂S̄

(u)
(f(εt1 · · · εtuεs)− f(εt1 · · · εtu)).

The right hand side equals

(6)
s−1∑
u=0

(−1)s−(1+u)
∑
T⊂S̄

(u)
f(εt1 · · · εtuεs) +

s−1∑
u=0

(−1)s−u
∑
T⊂S̄

(u)
f(εt1 · · · εtu).

Putting s = tu+1 and changing 1 + u to u, we see that the first term equals

s−1∑
u=0

(−1)s−(1+u)

(u+1)∑
T⊂S
s∈T

f(εt1 · · · εtuεtu+1) =
s∑

u=1

(−1)s−u
(u)∑
T⊂S
s∈T

f(εt1 · · · εtu),
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where in the second sum of the left (resp. right) hand side, T runs over the
subsets of S such that |T | = u + 1 (resp. u) and s ∈ T . The second term
of (6) equals

s−1∑
u=0

(−1)s−u
(u)∑
T⊂S
s 6∈T

f(εt1 · · · εtu).

From these, we see that ḡεs(ε1 · · · εs−1) = g(ε1 · · · εs), and hence we obtain
the assertion.

Proof of Theorem; the case dϕ = q (> 1). Let q = qr11 · · · qrss be the prime
decomposition of q. As in Lemma 1, let X be the trace of ψn(α)−1B1,χ/2 to

K1 = Q(ζ2e+1 , ζdϕ , ζp) = Q(ζ2e+1 , ζqr11
, . . . , ζqrss , ζp).

We put

K = Q(ζ2e+1 , ζq1 , . . . , ζqs , ζp).

Denote by Tr the trace map from K1 to K. Let µ = µq1 · · ·µqs be as in (5).
For a qth root ε of unity in Zp, we see from dϕ = q that Tr(ϕ(ε)) = cϕ(ε)
or 0 according as ε ∈ µ or not, with c = [K1 : K]. Then Lemma 1 yields

Tr(X) =
c

p2

p−1∑
b=0

2e−1∑
j=0

∑
ε∈µ

sn(εηjα(1 + bpn))ϕ(ε)δ(η)jζbp

=
c

p2

p−1∑
b=1

2e−1∑
j=0

(∑
ε∈µ

(sn(εηjα(1 + bpn))− sn(εηjα))ϕ(ε)
)
δ(η)jζbp.

Assume that Tr(X) = 0. Then, since the elements δ(η)jζbp with 0 ≤ j ≤
2e − 1 and 1 ≤ b ≤ p − 1 constitute a basis of K over E = Q(ζq1 , . . . , ζqs),
we observe that∑

ε∈µ

(
sn(εηjα(1 + bpn))− sn(εηjα)

)
ϕ(ε) = 0

for all j and b with 1 ≤ b ≤ p− 1. Lemma 2 yields

(7)
∑
ε∈µ

(
s0(an(εηjα) + a0(εηjα)b)− an(εηjα)

)
ϕ(ε) = 0.

Define a map f : µ→ Z by

f(ε) = s0

(
an(εηjα) + a0(εηjα)b

)
− an(εηjα).

Then, from (7) and Lemma 6, we obtain∑
ε1 6=1

· · ·
∑
εs 6=1

( s∑
u=0

(−1)s−u
∑
T⊂S

(u)
f(εt1 · · · εtu)

)
ϕ(ε1) · · ·ϕ(εs) = 0
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because dϕ = q. We also see that the elements ϕ(ε1) · · ·ϕ(εs) in the above
formula constitute a basis of E over Q. Hence,

s∑
u=0

(−1)s−u
∑
T⊂S

(u)
f(εt1 · · · εtu) = 0

for any εu ∈ µqu with εu 6= 1 (1 ≤ u ≤ s). Noting that f(ε) ≡ bηjαε mod p,
we see that

bηjα

s∑
u=0

(−1)s−u
∑
T⊂S

(u)
εt1 · · · εtu ≡ 0 mod p

for any b, j, α, and εu. It follows that
s∏

u=1

(εu − 1) ≡ 0 mod p.

This is impossible since each εu is a primitive quth root of unity in Zp. Thus
Tr(X) 6= 0, and hence X 6= 0.

Remark 3. Let p = 2. Let δ be the quadratic character of conductor 4,
ψn an even Dirichlet character of conductor 2n+2 and order 2n, and χ = δψn.
Algebraic proofs for B1,χ 6= 0 for this case are given in [8, 9, 10]. We put
Kn = Q(ζ2n) (n ≥ 2), and denote by Trn/2 the trace map from Kn to K2.
Then we can easily show the following stronger nonvanishing result:

X = Trn/2
(

1
2ψn(α)−1B1,χ

)
= ±2n−3(1±

√
−1) 6= 0

for any integer n ≥ 2 and α ∈ Z2 with α ≡ 1 mod 4. We give an outline
of the proof. We choose a generator η of the multiplicative group 1 + 4Z2

so that η2n−2 ≡ 1 + 2n mod 2n+2. For x ∈ Z2, we define sn(x) and an(x)
exactly as in the case p ≥ 3. Since χ is of conductor 2n+2, we have

1

2
ψn(α)−1B1,χ =

1

2n+3

∑
ε=±1

2n−1∑
b=0

sn+1(εηbα)δ(ε)ψn(η)b.

Letting i = ψn(1 + 2n), we see similarly to Lemma 1 that

X =
1

16

3∑
b=0

sn+1(α(1 + b2n))ib =
1

16
(x+ yi)

with

x = sn+1(α)− sn+1(α(1 + 2n+1)),

y = sn+1(α(1 + 2n))− sn+1(α(1 + 2n)(1 + 2n+1)).

For γ ∈ Z×2 , we see from Lemma 2 and a0(γ) = 1 that

sn+1(γ(1 + 2n+1)) = sn(γ) + s0(1 + an+1(γ))2n+1.

Now, we obtain the assertion noting that an+1(γ)− s0(1 + an+1(γ)) = ±1.
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3. Proof of Proposition 2. In this section, let p = 1 + 4q with an odd
integer q ≥ 3. We choose α = 1, abbreviate

xn,b = xn,b,1,0, yn,b = xn,b,1,1, zn,b = zn,b,1 = xn,b + yn,bi,

and put

zn,b = zn,b − dp(1 + i).

Here, i =
√
−1. By Lemma 3, we have

(8) zn,b ∈ ∆ = {x+ yi | 0 ≤ x, y ≤ q − 2dp}

for any n. Let δ (resp. ψn) be an odd (resp. even) Dirichlet character of con-
ductor p (resp. pn+1) and order 4 (resp. pn), and let χ = δψn. By Lemma 1

and the relation
∑p−1

b=0 ζ
b
p = 0, we have

X = Trn/1
(

1
2B1,χ

)
= pn−1

p−1∑
b=0

zn,bζ
b
p = pn−1

p−1∑
b=0

zn,bζ
b
p ∈ K1 = Q(i, ζp).

Let N be the norm map from K1 to K = Q(ζp). Then

(9) Y = N(p1−nX) =

p−1∑
a=0

waζ
a
p

with

(10) wa =
∑
(b,c)

(a)
zn,bz̄n,c ∈ Z.

Here, the sum is taken over the pairs (b, c) of integers b and c with 0 ≤
b, c ≤ p− 1 and b+ c ≡ a mod p, and z̄ is the complex conjugate of z ∈ C.
When b = c, we see from (8) that 0 ≤ zn,bz̄n,b ≤ 2(q − 2dp)

2. When b 6= c,
we observe that both pairs (b, c) and (c, b) appear in the sum (10), and

0 ≤ zn,bz̄n,c + zn,cz̄n,b ≤ 4(q − 2dp)
2

from (8). Since there are exactly (p− 1)/2 sets of such pairs {(b, c), (c, b)},
it follows that

(11) 0 ≤ wa ≤ 2p(q − 2dp)
2.

Proof of Proposition 2. It is known that the unit index of the imaginary
abelian field kn equals 1 (cf. Conner and Hurrelbrink [1, Lemma 13.5]).
Hence, from the class number formula (cf. [13, Theorem 4.17]),

h−n /h
−
n−1 =

∏
δ,ψn

(
−1

2B1,δψn

)
where δ (resp. ψn) runs over the Dirichlet characters of conductor p (resp.
pn+1) and order 4 (resp. pn). Let ` (> 2p(q−2dp)

2) be a prime number which
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is a primitive root modulo p2. Assume that ` divides the ratio h−n /h
−
n−1. We

fix δ and ψn, and put χ = δψn. Then the above formula yields

1
2B1,χ ≡ 0 mod Ln

for some prime ideal Ln of Kn = Q(i, ζpn) over `. Since ` is a primitive root
modulo p2, the prime ideal L1 = Ln ∩ K1 of K1 remains prime in Kn. It
follows that

X = Trn/1
(

1
2B1,χ

)
≡ 0 mod L1,

and hence

Y = N(p1−nX) ≡ 0 mod L1 ∩K.
Then, since ` remains prime in K, we see from (9) that wa ≡ w0 mod ` for
all a. By the Theorem, we have X 6= 0 and hence Y 6= 0. Thus, wa 6= wb
for some a and b. For these a and b, we have |wa − wb| ≡ 0 mod `, and
0 < |wa − wb| ≤ 2p(q − 2dp)

2 by (11). However, as ` > 2p(q − 2dp)
2, this is

impossible.
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