L-functions at the origin and annihilation of class groups in multiquadratic extensions

by

JONATHAN W. SANDS (Burlington, VT)

I. Introduction. Fix an abelian Galois extension of number fields K/F and let G denote the Galois group. Also fix a finite set S of primes of F which contains all of the infinite primes of F and all of the primes which ramify in K. Since it is fixed throughout, we will often suppress S in the notation. Associated with this data is an equivariant L-function, $\theta_{K/F}(s) = \theta_{K/F}^S(s)$, a meromorphic function of $s \in \mathbb{C}$ with values in the group ring $\mathbb{C}[G]$. When the real part of s is greater than 1 it is defined as a product over the (finite) primes \mathfrak{p} of F that are not in S. Let N \mathfrak{p} denote the absolute norm of the ideal \mathfrak{p} and $\sigma_{\mathfrak{p}} \in G$ denote the Frobenius automorphism of \mathfrak{p} . Then

$$\theta_{K/F}^{S}(s) = \prod_{\text{prime } \mathfrak{p} \notin S} \left(1 - \frac{1}{\mathrm{N} \mathfrak{p}^{s}} \sigma_{\mathfrak{p}}^{-1} \right)^{-1}.$$

Each component of this function extends meromorphically to all of \mathbb{C} , and its behavior at s = 0 is connected with the arithmetic of K.

The ring of S-integers \mathcal{O}_F^S of F is defined to be the set of elements of F whose valuation is non-negative at every prime not in S. When K = F, the function $\theta_{F/F}^S(s)$ is simply the identity automorphism of F times $\zeta_F^S(s)$, the Dedekind zeta-function of F with Euler factors for the primes in S removed. The function $\zeta_F^S(s)$ may be viewed as the zeta-function of the Dedekind domain \mathcal{O}_F^S .

Letting S_K denote the set of primes of K lying above those in S, we define \mathcal{O}_K^S to be the ring of S_K -integers of K. Then Cl_K^S denotes the S_K -class group of K, which may be identified with the group of non-zero fractional ideals of \mathcal{O}_K^S modulo principal fractional ideals. Denote the order of Cl_K^S by h_K^S . Let μ_K denote the group of all roots of unity in K, and w_K de-

²⁰¹⁰ Mathematics Subject Classification: Primary 11R29, 11R42.

Key words and phrases: Artin L-function, class group, multiquadratic extension, Stickelberger ideal.

note its order. When the Brumer–Stark conjecture holds, it implies that $w_K \theta^S_{K/F}(0)$ annihilates Cl^S_K as a module over the group-ring $\mathbb{Z}[G]$. However, this conjecture is vacuous when $\theta_{K/F}^S(0) = 0$. On the other hand, one knows that for K = F, the leading term in the Taylor series at s = 0 for ζ_F^S is $\zeta_F^{S,*} = -h_F^S R_F^S / w_F$, where R_F^S is the regulator of the S-units of F. One sees that this quantity still provides an annihilator $-h_F^S$ for Cl_F^S , upon removing the factors R_F^S and w_F which relate to the group of S-units and its torsion subgroup. In this paper, we obtain results on the annihilation of Cl_K^S by what may be considered the leading term of $\theta_{K/F}^S(s)$ at s = 0. Indeed, we obtain a non-trivial annihilator associated with each irreducible character of G, regardless of the order of vanishing of the corresponding L-function. Such results are clearly related to the refined Stark conjectures of Rubin and Popescu, but those do not directly concern annihilators for Cl_K^S . The connection between leading terms of equivariant L-functions and annihilators of class groups appears in more recent conjectures of Burns [2] growing out of his work with Flach on the Equivariant Tamagawa Number Conjecture [3], and results of Buckingham [1] which had their origins in ideas of Snaith [6].

To state our results, let \hat{G} denote the group of characters of G and recall that the *S*-imprimitive Artin *L*-function for a character $\psi \in \hat{G}$ is defined as

$$L^{S}_{K/F}(s,\psi) = \prod_{\text{prime } \mathfrak{p} \notin S} \left(1 - \frac{1}{\mathrm{N}\mathfrak{p}^{s}} \psi(\sigma_{\mathfrak{p}}) \right)^{-1},$$

so that using the idempotents $e_{\psi} = |G|^{-1} \sum_{\sigma \in G} \psi(\sigma) \sigma^{-1}$, we have

$$\theta_{K/F}^S(s) = \sum_{\psi \in \hat{G}} L_{K/F}^S(s, \psi^{-1}) e_{\psi}.$$

Defining $L_{K/F}^*(\psi) = L_{K/F}^{S,*}(\psi)$ to be the first non-zero coefficient in the Taylor series for $L_{K/F}^S(s,\psi)$ at s=0, one then puts

$$\theta^*_{K/F} = \theta^{S,*}_{K/F} = \sum_{\psi \in \hat{G}} L^{S,*}_{K/F}(\psi^{-1}) e_{\psi}.$$

Next define a regulator as in Burns [2]. For each prime $w \in S_K$, let $| |_w$ denote the corresponding normalized absolute value on K. Let $U_K = U_K^S = (\mathcal{O}_K^S)^*$, the multiplicative group of S_K -units in K. Let Y_K^S be the free abelian group on primes in S_K . This has a natural G-action which makes it a $\mathbb{Z}[G]$ -module. The submodule $X_K = X_K^S$ is the kernel of the augmentation homomorphism $Y_K = Y_K^S \to \mathbb{Z}$ which sends each element to the sum of its coefficients. Then $\mathbb{R}U_K^S = \mathbb{R} \otimes_{\mathbb{Z}} U_K^S$ is known to be isomorphic to $\mathbb{R}X_K^S = \mathbb{R} \otimes_{\mathbb{Z}} X_K^S$ by the \mathbb{R} -linear extension $\lambda_{K,\mathbb{R}} = \lambda_{K,\mathbb{R}}^S$ of the map

 $\lambda_K = \lambda_K^S : U_K^S \to \mathbb{R}X_K^S$ defined by

$$\lambda_K(u) = -\sum_{w \in S_K} \log |u|_w \cdot w.$$

Any $\mathbb{Z}[G]$ -module homomorphism $f : M \to N$, determines an $\mathbb{R}[G]$ -module homomorphism

$$f_{\mathbb{R}}:\mathbb{R}M\to\mathbb{R}N$$

by extension of scalars. In particular, suppose that we fix a $\mathbb{Z}[G]$ -module homomorphism $f: U_K^S \to X_K^S$. Since $\mathbb{R}[G]$ is a semisimple commutative ring and $\mathbb{R}U_K^S$ is finitely generated as a module over this ring, there exists a complementary $\mathbb{R}[G]$ -module P such that $\mathbb{R}U_K^S \oplus P$ is a finitely generated free module. Using the identity map 1_P on P, one then obtains a well-defined regulator of f in $\mathbb{R}[G]$:

$$R(f) = \det_{\mathbb{R}[G]}(\lambda_{K,\mathbb{R}}^{-1} \circ f_{\mathbb{R}}) = \det_{\mathbb{R}[G]}((\lambda_{K,\mathbb{R}}^{-1} \circ f_{\mathbb{R}}) \oplus 1_P).$$

Let $r^{S}(\psi) = r(\psi)$ denote the dimension of the \mathbb{R} -vector space $e_{\psi} \mathbb{R} U_{K}^{S}$.

Our main result is the following theorem, proved in a slightly stronger form as Theorem 4.5 at the end of this paper. Remark 4.6 indicates how it may be strengthened further.

MAIN THEOREM. Let K be a composite of a finite number of quadratic extensions of a number field F. Let S contain the infinite primes of F and those which ramify in K/F. Suppose that $f: U_K^S \to X_K^S$ is a $\mathbb{Z}[G]$ -module homomorphism with ker(f) finite. Let $\alpha \in \mathbb{Z}[G]$ annihilate μ_K , and let ψ be an irreducible character of G. Then $|G|^{r^S(\psi)+1}\alpha R(f)\theta_{K/F}^{S,*}e_{\psi}$ lies in $\mathbb{Z}[G]$ and annihilates Cl_K^S .

REMARK 1.1. Burns [2] obtains more general results of this form, considering components of the units and of X_K^S for each character separately. His Conjecture 2.6.1 and evidence for it (which includes the multiquadratic extensions considered here) then involves an additional factor of $|G|^2$ in the resulting annihilator. Macias Castillo [5] obtains stronger results specifically for multiquadratic extensions such as those considered here, but not for all characters. We have chosen to show what can be done working with U_K^S ; Burns and Macias Castillo (and others) formulate their results in terms of certain torsion-free subgroups of U_K^S . In a subsequent paper, we will detail the connections between their work and ours more fully.

REMARK 1.2. The principal Stark conjecture [7] states that

$$|G|^{r^{S}(\psi)+1}\alpha R(f)\theta_{K/F}^{S,*}e_{\psi}$$

lies in $\mathbb{Q}[G]$, and is already known in the case of multiquadratic extensions.

II. Computing $\theta_{K/F}^* = \theta_{K/F}^{S,*}$. From now on, we will omit the set of primes S from our notation. So $Y_K = Y_K^S$, $X_K = X_K^S$, $U_K = U_K^S$, $h_F = h_F^S$, $r(\psi) = r^S(\psi)$, $R_F = R_F^S$, $L_{K/F} = L_{K/F}^S$, $\zeta_F = \zeta_F^S$, and $\theta_{K/F} = \theta_{K/F}^S$, etc.

PROPOSITION 2.1. For the principal character ψ_0 of $\operatorname{Gal}(K/F)$, we have

$$heta_{K/F}^*e_{\psi_0}=rac{-h_FR_F}{w_F}e_{\psi_0}.$$

Proof. Since ψ_0 is the inflation of the trivial character on $\operatorname{Gal}(F/F)$, the functorial properties of Artin L-functions give

$$\theta_{K/F}^* e_{\psi_0} = L_{K/F}^*(\psi_0) e_{\psi_0} = \zeta_F^* e_{\psi_0}.$$

The result then follows from the analytic class number formula.

Now assume that $G = \operatorname{Gal}(K/F)$ has exponent 2, and let ψ be a nontrivial character of G. The image of ψ is a non-trivial cyclic group of exponent 2, hence of order 2. So $\ker(\psi)$ has index 2 in G. Let E_{ψ} denote the fixed field of $\ker(\psi)$, a relative quadratic extension of F. Let $C_{E_{\psi}/F}$ denote the cokernel of the natural map from Cl_F to $\operatorname{Cl}_{E_{\psi}}$ that is induced by extension of ideals. Let τ_{ψ} denote the generator of $\operatorname{Gal}(E_{\psi}/F)$. We will have occasion to fix a lift of τ_{ψ} to an element of G, which we also denote by τ_{ψ} . If Mis a $\mathbb{Z}[G]$ -module and $\alpha \in \mathbb{Z}[G]$, we let M^{α} denote the image of M under multiplication by α , and M_{α} denote the kernel of multiplication by α .

PROPOSITION 2.2.

$$\theta_{K/F}^* e_{\psi} = \frac{|C_{E_{\psi}/F}|}{((U_{E_{\psi}})_{1+\tau_{\psi}} : (U_{E_{\psi}})^{1-\tau_{\psi}})} \frac{R_{E_{\psi}}}{R_F} \frac{w_F}{w_{E_{\psi}}} e_{\psi}.$$

Proof. First, ψ is induced from the non-trivial character of $\operatorname{Gal}(E_{\psi}/F)$, and this character is the difference between the regular representation of $\operatorname{Gal}(E_{\psi}/F)$ and the trivial character. The functorial properties of Artin *L*-functions and the analytic class number formula then give

$$\theta_{K/F}^* e_{\psi} = L_{K/F}^*(\psi) e_{\psi} = \frac{\zeta_{E_{\psi}}^*(0)}{\zeta_F^*(0)} e_{\psi} = \frac{h_{E_{\psi}}}{h_F} \frac{R_{E_{\psi}}}{R_F} \frac{w_F}{w_{E_{\psi}}} e_{\psi}$$

A computation of Tate ([7, Thm. IV.5.4]) then shows that

$$\frac{h_{E_{\psi}}}{h_F} = \frac{|C_{E_{\psi}/F}|}{((U_{E_{\psi}})_{1+\tau_{\psi}} : (U_{E_{\psi}})^{1-\tau_{\psi}})},$$

and this completes the proof.

III. Computing R(f)

LEMMA 3.1. Suppose that ϕ is an endomorphism of a finitely generated projective *R*-module *M*.

- (a) If R' is an overring of R, let $M' = R' \otimes_R M$ and $\phi' = 1_{R'} \otimes_R \phi$, an endomorphism of M'. Then $\det_{R'}(\phi') = \det_R(\phi)$.
- (b) If R = R₁ ⊕ R₂, then consequently M = M₁ ⊕ M₂ where M₁ is a finitely generated projective R₁-module and M₂ is a finitely generated projective R₂-module, and φ = φ₁ ⊕ φ₂ for φ₁ an endomorphism of M₁ and φ₂ an endomorphism of M₂. Then det_R(φ) = (det_{R1}(φ₁), det_{R2}(φ₂)) ∈ R₁ ⊕ R₂ = R. Using 1 = e₁ + e₂ where e₁ and e₂ are idempotents of R lying in R₁ and R₂ respectively, this may be written as det_R(φ) = det_{R1}(φ₁)e₁ + det_{R2}(φ₂)e₂.

Proof. (a) Choose P so that $M \oplus P$ is a finitely generated free R-module with basis $\{b_1, \ldots, b_k\}$, and let $P' = R' \otimes_R P$. Then $M' \oplus P' \cong R' \otimes_R (M \oplus P)$ is a finitely generated free R'-module with basis $\{b'_1 = 1 \otimes b_1, \ldots, b'_k = 1 \otimes b_k\}$. Using these bases, it is clear that the matrix of $\phi \oplus 1_P$ is the same as the matrix of $\phi' \oplus 1_{P'}$, as the latter may be identified with $1_{R'} \otimes (\phi \oplus 1_P)$. Thus $\det_{R'}(\phi') = \det_{R'}(\phi' \oplus 1_{P'}) = \det_R(\phi \oplus 1_P) = \det_R(\phi)$.

(b) Note that $M_1 = e_1 M$ and $M_2 = e_2 M$. After choosing P so that $M \oplus P$ is a finitely generated free R-module, we see that $e_1(M \oplus P) = e_1 M \oplus e_1 P = M_1 \oplus e_1 P$ is a finitely generated free R_1 -module, making M_1 a finitely generated projective R_1 -module, and similarly M_2 is a finitely generated projective R_2 -module. Choosing a basis $\{b_1, \ldots, b_k\}$ for $M \oplus P$ over R clearly gives a basis $\{e_1b_1, \ldots, e_1b_k\}$ for $e_1M \oplus e_1P$ over R_1 , and the case of $e_2M \oplus e_2P$ is similar. Now if $(r_{i,j}) = (e_1r_{i,j}) + (e_2r_{i,j})$ is the matrix of $\phi \oplus 1_P$, then $(e_1r_{i,j})$ is the matrix of $\phi_1 \oplus 1_{P_1}$ over R_1 , and similarly for $\phi_2 \oplus 1_{P_2}$. Thus

$$det_R(\phi) = det(r_{i,j}) = (e_1 + e_2) det(r_{i,j})$$

= det(e_1r_{i,j}) + det(e_2r_{i,j}) = det_{R_1}(\phi_1)e_1 + det_{R_2}(\phi_2).

PROPOSITION 3.2.

- (a) The following are equivalent:
 - (1) $\ker(f)$ is finite,
 - (2) $\ker(f) = \mu_K$,
 - (3) $\operatorname{coker}(f)$ is finite,
 - (4) $f_{\mathbb{R}}$ is an isomorphism,
 - (5) $R(f) \in \mathbb{R}[G]^*$.
- (b) We have the following equalities, the last one requiring that one of the equivalent conditions in (a) hold (note that C[G]e_ψ = Ce_ψ ≃ C):

$$R(f) = \det_{\mathbb{R}[G]}(f_{\mathbb{R}} \circ \lambda_{\mathbb{R}}^{-1}) = \det_{\mathbb{C}[G]}(f_{\mathbb{C}} \circ \lambda_{\mathbb{C}}^{-1})$$
$$= \sum_{\psi \in \hat{G}} \det_{\mathbb{C}[G]e_{\psi}}(f_{\mathbb{C}} \circ \lambda_{\mathbb{C}}^{-1}|_{e_{\psi} \mathbb{C}X_{K}^{S}}) = \sum_{\psi \in \hat{G}} \det_{\mathbb{C}[G]e_{\psi}}(\lambda_{\mathbb{C}} \circ f_{\mathbb{C}}^{-1}|_{e_{\psi} \mathbb{C}X_{K}^{S}})^{-1}.$$

(c) When G has exponent 2, we have

$$R(f) = \sum_{\psi \in \hat{G}} \det_{\mathbb{R}[G]} e_{\psi} (f_{\mathbb{R}} \circ \lambda_{\mathbb{R}}^{-1}|_{e_{\psi} \mathbb{R}X_{K}^{S}}) = \sum_{\psi \in \hat{G}} \det_{\mathbb{R}[G]} e_{\psi} (\lambda_{\mathbb{R}} \circ f_{\mathbb{R}}^{-1}|_{e_{\psi} \mathbb{R}X_{K}^{S}})^{-1}.$$

Proof. (a) These are clear because μ_K is the torsion subgroup of U_K^S , while U_K^S/μ_K and X_K^S are free abelian groups of the same rank.

- (b) This follows from Lemma 3.1.
- (c) This follows from part (b) and Lemma 3.1(a).

When G has exponent 2, it remains for us to compute

$$\det_{\mathbb{R}[G]e_{\psi}}(\lambda_{\mathbb{R}}\circ f_{\mathbb{R}}^{-1}|_{e_{\psi}\mathbb{R}X_{K}})$$

for each $\psi \in \hat{G}$. To do this, suppose that E is an intermediate field between F and K, and $H = \operatorname{Gal}(K/E)$. Let $N_H = \sum_{\sigma \in H} \sigma$. For $w \in S_E$, let $\tilde{w} \in S_K$ be a choice of a prime above w in K. There is a natural injective $\mathbb{Z}[G]$ -module map $Y_E \to Y_K$ which sends each $w \in S_E$ to $N_H \tilde{w}$. We let $\gamma_{K/E} : X_E \to X_K$ denote the restriction of this map to X_E . Similarly, let $\pi_{K/E}$ be the restriction to X_K of the $\mathbb{Z}[G]$ -module map which sends each prime $\tilde{w} \in S_K$ to the corresponding prime w of E, and note that the image of $\pi_{K/E}$ lies in X_E . It is easy to see that $\gamma_{K/E}$ gives an isomorphism between X_E^S and $N_H(X_K^S)$, and that for $u \in U_E$, we have $\lambda_K(u) = \gamma_{K/E,\mathbb{R}}(\lambda_E(u))$.

LEMMA 3.3. Suppose that ker(f) is finite. Let $\pi_{G/H} : \mathbb{R}[G] \to \mathbb{R}[G/H]$ be the natural projection map. If χ is a first degree character of $\overline{G} = G/H$ and $\psi \in \hat{G}$ is its inflation, recall that $r(\chi)$ denotes the dimension of $e_{\chi}\mathbb{R}X_E$ as a real vector space. Then

$$\pi_{G/H}(R(f)e_{\psi}) = |H|^{-r(\chi)}R(\pi_{K/E} \circ f|_{U_E})e_{\chi}.$$

Proof. (See [7, I.6.4(3)].) By Proposition 3.2(c),

$$\pi_{G/H}(R(f)^{-1}e_{\psi}) = \pi_{G/H}(\det_{\mathbb{R}[G]}e_{\psi}(\lambda_{K,\mathbb{R}} \circ f_{\mathbb{R}}^{-1}|_{e_{\psi}\mathbb{R}X_{K}})).$$

Since $\gamma_{K/E}(X_E) \subset N_H(X_K)$, and $f_{\mathbb{R}}^{-1}$ is an $\mathbb{R}[G]$ -homomorphism, we see that the image of $f_{\mathbb{R}}^{-1} \circ \gamma_{K/E,\mathbb{R}}^S$ is contained in $N_H(\mathbb{R}U_K) \subset \mathbb{R}U_E$. Thus we may follow this map with $\gamma_{K/E,\mathbb{R}} \circ \lambda_{E,\mathbb{R}} = \lambda_{K,\mathbb{R}}|_{\mathbb{R}U_E}$ and obtain

$$\gamma_{K/E,\mathbb{R}} \circ \lambda_{E,\mathbb{R}} \circ f_{\mathbb{R}}^{-1} \circ \gamma_{K/E,\mathbb{R}} = \lambda_{K,\mathbb{R}}^{S}|_{\mathbb{R}U_{E}} \circ f_{\mathbb{R}}^{-1} \circ \gamma_{K/E,\mathbb{R}}.$$

Restricting the isomorphism $\gamma_{K/E,\mathbb{R}} : \mathbb{R}X_E \to N_H(\mathbb{R}X_K)$ gives an isomorphism between $e_{\chi}\mathbb{R}X_E = e_{\psi}\mathbb{R}X_E$ and $e_{\psi}N_H(\mathbb{R}X_K) = |H|e_{\psi}\mathbb{R}X_K = e_{\psi}\mathbb{R}X_K$. So, restricting the functions in the last displayed equation to $e_{\chi}\mathbb{R}X_E$ and noting that $\pi_{G/H}(e_{\psi}) = e_{\chi}$, we get

$$\det_{\mathbb{R}[\overline{G}]e_{\chi}}(\lambda_{E,\mathbb{R}}\circ(f_{\mathbb{R}}^{-1}\circ\gamma_{K/E,\mathbb{R}})|_{e_{\chi}\mathbb{R}X_{E}})=\pi_{G/H}(\det_{\mathbb{R}[G]e_{\psi}}(\lambda_{K,\mathbb{R}}\circ f_{\mathbb{R}}^{-1}|_{e_{\psi}\mathbb{R}X_{K}})).$$

Since $\gamma_{K/E,\mathbb{R}}|_{e_{\chi}\mathbb{R}X_{E}}: e_{\chi}\mathbb{R}X_{E} \to e_{\psi}\mathbb{R}X_{K}$ has the inverse $|H|^{-1}\pi_{K/E,\mathbb{R}}|_{e_{\psi}\mathbb{R}X_{K}}$, we deduce from Proposition 3.2(c) again that

$$\det_{\mathbb{R}[\overline{G}]e_{\chi}}(\lambda_{E,\mathbb{R}} \circ (f_{\mathbb{R}}^{-1} \circ \gamma_{K/E,\mathbb{R}})|_{e_{\chi}\mathbb{R}X_{E}})$$

$$= \det_{\mathbb{R}[\overline{G}]e_{\chi}}\left(\lambda_{E,\mathbb{R}} \circ \left(\frac{1}{|H|}\pi_{K/E} \circ f|_{U_{E}}\right)_{\mathbb{R}}^{-1}\Big|_{e_{\chi}\mathbb{R}X_{E}}\right)$$

$$= |H|^{r(\chi)}R(\pi_{K/E} \circ f|_{U_{E}})^{-1}e_{\chi}.$$

Combining the displayed equations gives the result.

LEMMA 3.4. Suppose that E/F is relative quadratic and τ is the nontrivial automorphism of E over F. Let χ be the non-trivial character of $\overline{G} = \operatorname{Gal}(E/F) = \langle \tau \rangle$. If $\overline{f} : U_E \to X_E$ is a $\mathbb{Z}[\overline{G}]$ -module homomorphism with finite kernel, then

$$R(\overline{f})e_{\chi} = ((X_E)_{1+\tau} : \overline{f}((U_E)^{1-\tau}))\frac{R_F}{R_E} \frac{w_E}{w_F} \frac{2^{|S|-1-r(\chi)}}{|\mu_E \cap (U_E)^{1-\tau}|}$$

Proof. Let $M = (X_E : \overline{f}(U_E))$, and let $\overline{f}_0 : U_E/\mu_E \to \overline{f}(U_E)$ be the induced isomorphism. Then the composite

$$g: X_E \xrightarrow{M} \overline{f}(U_E) \xrightarrow{\overline{f_0}^{-1}} U_E/\mu_E \xrightarrow{w_E} U_E$$

is an injective $\mathbb{Z}[G]$ -module map. For such a map, Tate ([7, I.6.3]) defines $R(\chi, g)$, and it is easy to see that the definition is equivalent to

$$R(\chi,g)e_{\chi} = \det_{e_{\chi}\mathbb{R}[\overline{G}]}(\lambda_{E,\mathbb{R}} \circ g_{\mathbb{R}}|_{e_{\chi}\mathbb{R}X_{E}}).$$

By Proposition 3.2(a), $\overline{f}_{\mathbb{R}}$ is an isomorphism, and it is then clear from our definition of g that $g_{\mathbb{R}} = M w_E \overline{f}_{\mathbb{R}}^{-1}$. Since $r(\chi)$ equals the dimension of $e_{\chi} \mathbb{R} X_E$ as a real vector space, we see from Proposition 3.2(b) that

$$R(\chi,g)e_{\chi} = (Mw_E)^{r(\chi)} \det_{\mathbb{R}[\overline{G}]e_{\chi}}(\lambda_{E,\mathbb{R}} \circ \overline{f}_{\mathbb{R}}^{-1} \circ |_{e_{\chi}\mathbb{R}X_E}) = (Mw_E)^{r(\chi)}R(\overline{f})^{-1}e_{\chi}.$$

On the other hand, the proof of [7, Prop. II.2.1] gives

$$R(\chi,g) = \frac{w_F}{w_E} \frac{R_E}{R_F} \frac{((U_E)^{1-\tau} : g((X_E)_{1+\tau})^2)}{2^{|S|-1}}.$$

As an abelian group, $(U_E)^{1-\tau}$ is the direct product of its torsion subgroup $(U_E)^{1-\tau} \cap \mu_E$ and a free abelian group of rank $r(\chi)$. Using this and the definition of g, we have

$$((U_E)^{1-\tau} : g((X_E)_{1+\tau})^2) = \frac{((U_E)^{1-\tau} : ((U_E)^{1-\tau})^{2Mw_E})}{(g((X_E)_{1+\tau})^2 : ((U_E)^{1-\tau})^{2Mw_E})}$$
$$= \frac{|(U_E)^{1-\tau} \cap \mu_E|(2Mw_E)^{r_s(\chi)}}{(\overline{f}^{-1}(M(X_E)_{1+\tau})^{2w_E} : ((U_E)^{1-\tau})^{2Mw_E})}.$$

Now $\overline{f}^{-1}(M(X_E)_{1+\tau})^{2w_E}$ is torsion-free and hence \overline{f} is injective on this submodule, so we have

$$\overline{f}^{-1}(M(X_E)_{1+\tau})^{2w_E}/((U_E)^{1-\tau})^{2Mw_E} \cong 2Mw_E(X_E)_{1+\tau}/2Mw_E\overline{f}((U_E)^{1-\tau}).$$

Then since X_E is \mathbb{Z} -torsion-free,

$$(\overline{f}^{-1}(M(X_E)_{1+\tau})^{2w_E}:((U_E)^{1-\tau})^{2Mw_E})$$

$$= (2Mw_E(X_E)_{1+\tau} : 2Mw_E f((U_E)^{1-\tau})) = ((X_E)_{1+\tau} : \overline{f}((U_E)^{1-\tau}))$$

Combining the displayed equations gives the result.

PROPOSITION 3.5. Suppose that G = Gal(K/F) has exponent 2, ψ is a non-trivial character of G, and $f: U_K \to X_K$ is a $\mathbb{Z}[G]$ -module homomorphism with finite kernel. Then

$$R(f)e_{\psi} = \frac{2^{|S|-1}}{|G|^{r(\psi)}} \frac{w_{E_{\psi}}}{w_{F}} \frac{R_{F}}{R_{E_{\psi}}} \frac{((X_{E_{\psi}})_{1+\tau_{\psi}} : (\pi_{K/E_{\psi}} \circ f)((U_{E_{\psi}})^{1-\tau_{\psi}}))}{|(U_{E_{\psi}})^{1-\tau_{\psi}} \cap \mu_{E_{\psi}}|} e_{\psi}.$$

Proof. Let $E = E_{\psi}$ and $H = \ker(\psi) = \operatorname{Gal}(K/E)$. Then ψ is the inflation of the non-trivial character χ on $G/H \cong \operatorname{Gal}(E/F) = \overline{G}$. Since $\pi_{G/H}$ restricts to an \mathbb{R} -module isomorphism from $\mathbb{R}[G]e_{\psi} = \mathbb{R}e_{\psi}$ to $\mathbb{R}[\overline{G}]e_{\chi} = \mathbb{R}e_{\chi}$ with $\pi_{G/H}(e_{\psi}) = e_{\chi}$, the result follows directly from Lemmas 3.3 and 3.4.

LEMMA 3.6. For the trivial extension F/F, with identity automorphism σ_0 , and $\overline{f}: U_F \to X_F$ with finite kernel, we have

$$R(\overline{f}) = \pm \frac{(X_F : f(U_F))}{R_F} \sigma_0.$$

Proof. Let $M = (X_F : \overline{f}(U_F))$, and let $\overline{f}_0 : U_F/\mu_F \to \overline{f}(U_F)$ be the induced isomorphism. Then the composite

$$g: X_F \xrightarrow{M} \overline{f}(U_F) \xrightarrow{\overline{f}_0^{-1}} U_F/\mu_F \xrightarrow{w_F} U_F$$

is an injective Z-module map. Therefore, as in the proof of Lemma 3.4,

$$R(1,g) = \det_{\mathbb{R}}(\lambda_{F,\mathbb{R}} \circ g_{\mathbb{R}}) = (Mw_F)^{|S|-1} \det_{\mathbb{R}}(\lambda_{F,\mathbb{R}} \circ \overline{f}_{\mathbb{R}}^{-1})$$
$$= (Mw_F)^{|S|-1}R(\overline{f})^{-1}.$$

On the other hand, the proof of [7, Prop. II.1.1] gives

$$R(1,g) = \pm \frac{R_F}{w_F} (U_F : g(X_F)).$$

As an abelian group, U_F is the direct product of its torsion subgroup μ_F and a free abelian group of rank |S| - 1. Using this and the definition of g, we have

$$(U_F:g(X_F)) = \frac{(U_F:(U_F)^{Mw_F})}{(g(X_F):(U_F)^{Mw_F})} = \frac{w_F(Mw_F)^{|S|-1}}{(\overline{f}^{-1}(MX_F)^{w_F}:(U_F)^{Mw_F})}.$$

Now $\overline{f}^{-1}(MX_F)^{w_F}$ is \mathbb{Z} -torsion-free and hence \overline{f} is injective on this submodule, so we have $\overline{f}^{-1}(MX_F)^{w_F}/(U_F)^{Mw_F} \cong Mw_F(X_F)/Mw_F\overline{f}(U_F)$. Then since X_F is \mathbb{Z} -torsion-free,

$$(\overline{f}^{-1}(MX_F)^{w_F}:(U_F)^{Mw_F}) = (Mw_FX_F:Mw_F\overline{f}(U_F)) = (X_F:\overline{f}(U_F))$$

Combining the displayed equations gives the result.

PROPOSITION 3.7. Suppose that G = Gal(K/F) has exponent 2, ψ_0 is the trivial character of G, and $f : U_K \to X_K$ is a $\mathbb{Z}[G]$ -module homomorphism with finite kernel. Then

$$R(f)e_{\psi_0} = \frac{(X_F : \pi_{K/F} \circ f(U_F))}{|G|^{|S|-1}R_F}e_{\psi_0}.$$

Proof. Since ψ_0 is the inflation of the trivial character χ_0 on $\operatorname{Gal}(F/F)$, and $\pi_{G/G}$ restricts to an \mathbb{R} -module isomorphism from $\mathbb{R}[G]e_{\psi_0} = \mathbb{R}e_{\psi_0}$ to $\mathbb{R}\sigma_0$ with $\pi_{G/G}(e_{\psi_0}) = \sigma_0$, the result follows from Lemmas 3.3 and 3.6.

IV. Class group annihilators

PROPOSITION 4.1. Suppose that G = Gal(K/F) has exponent 2 and that $f: U_K \to X_K$ is a $\mathbb{Z}[G]$ -module homomorphism with finite kernel. Then

$$\begin{split} R(f)\theta_{K/F}^* &= \frac{h_F(X_F : \pi_{K/F}(f(U_F)))}{w_F |G|^{|S|-1}} e_{\psi_0} \\ &+ \sum_{\psi \neq \psi_0} \frac{2^{|S|-1} |C_{E_{\psi}/F}|}{|G|^{r^S(\psi)}} \frac{((X_{E_{\psi}})_{1+\tau_{\psi}} : \pi_{K/E_{\psi}}(f((U_{E_{\psi}})_{1+\tau_{\psi}})))}{|(\mu_{E_{\psi}})_{1+\tau_{\psi}}|} e_{\psi}. \end{split}$$

Proof. Combining Propositions 2.1 and 3.7 gives the coefficient of e_{ψ_0} . Using Propositions 2.2 and 3.5 for $\psi \neq \psi_0$ yields

$$R(f)\theta_{K/F}^* e_{\psi} = \frac{2^{|S|-1}}{|G|^{r^S(\psi)}} \frac{|C_{E_{\psi}/F}|}{|(U_{E_{\psi}})^{1-\tau_{\psi}} \cap \mu_{E_{\psi}}|} \frac{((X_{E_{\psi}})_{1+\tau_{\psi}} : \pi_{K/E_{\psi}}(f((U_{E_{\psi}})^{1-\tau_{\psi}})))}{((U_{E_{\psi}})_{1+\tau_{\psi}} : (U_{E_{\psi}})^{1-\tau_{\psi}})} e_{\psi}.$$

Then

$$((X_{E_{\psi}})_{1+\tau_{\psi}} : \pi_{K/E_{\psi}}(f((U_{E_{\psi}})^{1-\tau_{\psi}}))) = ((X_{E_{\psi}})_{1+\tau_{\psi}} : \pi_{K/E_{\psi}}(f((U_{E_{\psi}})_{1+\tau_{\psi}}))) \times (\pi_{K/E_{\psi}}(f((U_{E_{\psi}})_{1+\tau_{\psi}})) : \pi_{K/E_{\psi}}(f((U_{E_{\psi}})^{1-\tau_{\psi}}))).$$

Now consider the kernel of $\pi_{K/E_{\psi}} \circ f$ restricted to $U_{E_{\psi}}$. So let $u \in U_{E_{\psi}}$ and $f(u) = \sum_{w \in S_K} n_w w$. Since $\sigma(u) = u$ for $\sigma \in H = \text{Gal}(K/E_{\psi})$, we have $n_w = n_{\sigma(w)}$ for each w. Fix a set of representatives $\{w_i\}$, one for each distinct orbit of S_K under the action of H, and write $w_i \sim w$ if w_i and w lie in the same orbit with cardinality d_i . Then

$$f(u) = \sum_{i} \sum_{w \sim w_i} n_w w = \sum_{i} \sum_{w \sim w_i} n_{w_i} w = \sum_{i} n_{w_i} \sum_{w \sim w_i} w$$

and

$$\pi_{K/E_{\psi}}(f(u)) = \sum_{i} n_{w_{i}} \sum_{w \sim w_{i}} \pi_{K/E_{\psi}}(w) = \sum_{i} n_{w_{i}} \sum_{w \sim w_{i}} \pi_{K/E_{\psi}}(w_{i})$$
$$= \sum_{i} n_{w_{i}} d_{i} \pi_{K/E_{\psi}}(w_{i}).$$

Since the elements $\pi_{K/E_{\psi}}(w_i)$ are distinct, the above is zero if and only if each n_{w_i} is zero and hence f(u) = 0. Our assumption on f implies that this holds if and only if $u \in \mu_K$. So the kernel of $\pi_{K/E_{\psi}} \circ f$ restricted to $U_{E_{\psi}}$ is clearly $\mu_{E_{\psi}}$. Thus $\pi_{K/E_{\psi}} \circ f$ induces a homomorphism from $(U_{E_{\psi}})_{1+\tau_{\psi}}/(U_{E_{\psi}})^{1-\tau_{\psi}}$ onto $\pi_{K/E_{\psi}}(f((U_{E_{\psi}})_{1+\tau_{\psi}}))/\pi_{K/E_{\psi}}(f((U_{E_{\psi}})^{1-\tau_{\psi}}))$ with kernel $(\mu_{E_{\psi}})_{1+\tau_{\psi}}/(U_{E_{\psi}})^{1-\tau_{\psi}} \cap (\mu_{E_{\psi}})_{1+\tau_{\psi}}$. Consequently,

$$\frac{((U_{E_{\psi}})_{1+\tau_{\psi}}:(U_{E_{\psi}})^{1-\tau_{\psi}})}{((\mu_{E_{\psi}})_{1+\tau_{\psi}}:(U_{E_{\psi}})^{1-\tau_{\psi}}\cap(\mu_{E_{\psi}})_{1+\tau_{\psi}})} = (\pi_{K/E_{\psi}}(f((U_{E_{\psi}})_{1+\tau_{\psi}})):\pi_{K/E_{\psi}}(f((U_{E_{\psi}})^{1-\tau_{\psi}}))).$$

Combining the displayed equations then gives the result.

LEMMA 4.2. Suppose that $\alpha \in \operatorname{Ann}_{Z[G]}(\mu_K)$ and that G is the direct product of its subgroups H and J. Let M be the fixed field of H, and identify J with $\operatorname{Gal}(M/F)$ by restriction. Then $\alpha N_H = \beta N_H$ for some $\beta \in \operatorname{Ann}_{\mathbb{Z}[J]}(\mu_M)$.

Proof. Write

$$\alpha = \sum_{\rho \in J} \sum_{\sigma \in H} n_{\rho\sigma} \rho\sigma \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K).$$

Restricting to M, we define

$$\beta = \sum_{\rho \in J} \left(\sum_{\sigma \in H} n_{\rho\sigma} \right) \rho \in \operatorname{Ann}_{\mathbb{Z}[J]}(\mu_M).$$

Note that

$$(\alpha - \beta) = \sum_{\rho \in J} \sum_{\sigma \in H} n_{\rho\sigma} \rho(\sigma - 1).$$

Since $(\sigma - 1)N_H = 0$ for each $\sigma \in H$, we have $(\alpha - \beta)N_H = 0$ and thus $\alpha N_H = \beta N_H$, as desired.

COROLLARY 4.3. Suppose that $\alpha \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$. Then:

(1) $\alpha N_G = c w_F N_G$ for some $c \in \mathbb{Z}$.

182

(2) Suppose that E is a quadratic extension of F in K, with H = Gal(K/E), and $H \not\supseteq J = \langle \tau \rangle$ of order 2, so that G is the direct product of H and J. Then $\alpha N_H(1-\tau) = d|(\mu_E)_{1+\tau}|N_H(1-\tau)$ for some integer d.

Proof. (1) Applying Lemma 4.2 with H = G and J trivial gives $\alpha N_G = \beta N_G$ with $\beta \in \operatorname{Ann}_{\mathbb{Z}}(\mu_F) = w_F \mathbb{Z}$. So $\beta = cw_F$, giving the desired result.

(2) First, applying Lemma 4.2 with M = E gives

$$\alpha N_H = \beta N_H$$

with $\beta \in \operatorname{Ann}_{\mathbb{Z}[J]}(\mu_E)$. Now $\mathbb{Z}[J] = \mathbb{Z} + \mathbb{Z}\tau$, so $\beta = m + n\tau$ with $m, n \in \mathbb{Z}$. Since β annihilates $(\mu_E)_{1+\tau}$ on which τ acts as -1, we have

$$1 = ((\mu_E)_{1+\tau})^{\beta} = ((\mu_E)_{1+\tau})^{m+n\tau} = ((\mu_E)_{1+\tau})^{m-n}.$$

Therefore $m - n \in \operatorname{Ann}_{\mathbb{Z}}((\mu_E)_{1+\tau}) = |(\mu_E)_{1+\tau}|\mathbb{Z}$, and $m - n = d|(\mu_E)_{1+\tau}|$. Finally,

$$\beta(1-\tau) = (m+n\tau)(1-\tau) = (m-n)(1-\tau) = d|(\mu_E)_{1+\tau}|(1-\tau)|$$

Combining this with the first displayed equation gives the result.

PROPOSITION 4.4. If $\psi \neq \psi_0$ and the integer b is an exponent for $C_{E_{\psi}/F}$, then $b|G|e_{\psi}$ annihilates Cl_K^S . Indeed, if \mathfrak{a} is an ideal of \mathcal{O}_K^S , then $\mathfrak{a}^{b|G|e_{\psi}} = \delta \mathcal{O}_K^S$ for some $\delta \in (E_{\psi})_{1+\tau_{\psi}}$.

Proof. Let $H = \text{Gal}(K/E_{\psi})$ and let τ_{ψ} be a fixed lift of a generator of $\text{Gal}(E_{\psi}/F)$ to G. Then

$$b|G|e_{\psi} = bN_H(1 - \tau_{\psi}).$$

Any element of Cl_K^S is represented by an ideal \mathfrak{a}_K of \mathcal{O}_K^S . Then

$$\mathfrak{a}_K^{N_H} = \mathfrak{a}_E \mathcal{O}_K^S$$

for some ideal \mathfrak{a}_E of $\mathcal{O}_{E_{ub}}^S$, while

$$\mathfrak{a}_E^b = \gamma \mathfrak{a}_F \mathcal{O}_{E_u}^S$$

for some ideal \mathfrak{a}_F of \mathcal{O}_F^S and $0 \neq \gamma \in E_{\psi}$, since b annihilates $\operatorname{Cl}_{E_{\psi}}^S$ modulo the image of Cl_F^S . Finally,

$$(\gamma \mathfrak{a}_F)^{1-\tau_{\psi}} = \gamma^{1-\tau_{\psi}} \mathfrak{a}_F^{1-\tau_{\psi}} = \gamma^{1-\tau_{\psi}} \mathcal{O}_E^S.$$

Since $\delta = \gamma^{1-\tau_{\psi}} \in (E_{\psi})_{1+\tau_{\psi}}$, combining the displayed equations gives the result.

THEOREM 4.5. Let K be a composite of a finite number of quadratic extensions of a number field F. Let S contain the infinite primes of F and those which ramify in K/F. Suppose ker(f) is finite and $\alpha \in \mathbb{Z}[G]$ annihilates μ_K . J. W. Sands

Let ψ be an irreducible character of G. Then $|G|^{r^{S}(\psi)+1}\alpha R(f)\theta_{K/F}^{S,*}e_{\psi}$ lies in $\mathbb{Z}[G]$ and annihilates Cl_{K}^{S} . Indeed, if \mathfrak{a} is an ideal of \mathcal{O}_{K}^{S} , then

$$\mathfrak{q}^{|G|^{r^{S}(\psi)+1}\alpha R(f)\theta^{S,*}_{K/F}e_{\psi}} = \delta \mathcal{O}_{K}^{S}$$

for some $\delta \in F$ when $\psi = \psi_0$, and for some δ satisfying $\delta \in (E_{\psi})_{1+\tau_{\psi}}$ when $\psi \neq \psi_0$.

Proof. First consider $\psi = \psi_0$. Note that $|G|e_{\psi_0} = N_G$ and $r^S(\psi_0) = |S| - 1$. Using Proposition 4.1 and Corollary 4.3(1) yields

$$\begin{aligned} |G|^{r^{S}(\psi_{0})+1} \alpha R(f) \theta_{K/F}^{S,*} e_{\psi_{0}} \\ &= |G|^{|S|-1} R(f) \theta_{K/F}^{S,*} e_{\psi_{0}} \alpha |G| e_{\psi_{0}} = \frac{h_{F}(X_{F} : \pi_{K/F}(f(U_{F})))}{w_{F}} \alpha N_{G} \\ &= \frac{h_{F}(X_{F} : \pi_{K/F}(f(U_{F})))}{w_{F}} cw_{F} N_{G} = h_{F}(X_{F} : \pi_{K/F}(f(U_{F}))) cN_{G}, \end{aligned}$$

which clearly lies in $\mathbb{Z}[G]$. Now any element of Cl_K^S is represented by an ideal \mathfrak{a}_K of \mathcal{O}_K^S , and

$$\mathfrak{a}_K^{N_G} = \mathfrak{a}_F \mathcal{O}_K^S$$

for some ideal \mathfrak{a}_F of \mathcal{O}_F^S . Then

$$\mathfrak{a}_F^{h_F} = \gamma \mathcal{O}_F^S,$$

for some $\gamma \in F$. Thus the result follows from the displayed equations, with $\delta = \gamma^{(X_F:\pi_{K/F}(f(U_F)))c}$.

Next consider $\psi \neq \psi_0$. Put $H = \text{Gal}(K/E_{\psi})$ and let τ_{ψ} be a fixed lift of a generator of $\text{Gal}(E_{\psi}/F)$ to G. Then $|G|e_{\psi} = N_H(1-\tau_{\psi})$. Using Proposition 4.1 and Corollary 4.3(2) yields

$$\begin{split} |G|^{r^{S}(\psi)+1} \alpha R(f) \theta_{K/F}^{S,*} e_{\psi} &= |G|^{r^{S}(\psi)} R(f) \theta_{K/F}^{S,*} e_{\psi} \alpha |G| e_{\psi} \\ &= 2^{|S|-1} |C_{E_{\psi}/F}| \frac{((X_{E_{\psi}})_{1+\tau_{\psi}} : \pi_{K/E_{\psi}}(f((U_{E_{\psi}})_{1+\tau_{\psi}})))}{|(\mu_{E_{\psi}})_{1+\tau_{\psi}}|} e_{\psi} \alpha |G| e_{\psi} \\ &= 2^{|S|-1} |C_{E_{\psi}/F}| \frac{((X_{E_{\psi}})_{1+\tau_{\psi}} : \pi_{K/E_{\psi}}(f((U_{E_{\psi}})_{1+\tau_{\psi}})))}{|(\mu_{E_{\psi}})_{1+\tau_{\psi}}|} e_{\psi} d|(\mu_{E_{\psi}})_{1+\tau_{\psi}}| |G| e_{\psi} \\ &= 2^{|S|-1} |C_{E_{\psi}/F}| ((X_{E_{\psi}})_{1+\tau_{\psi}} : \pi_{K/E_{\psi}}(f((U_{E_{\psi}})_{1+\tau_{\psi}}))) d|G| e_{\psi}. \end{split}$$

Since this is an integer multiple of $|C_{E_{\psi}/F}| |G| e_{\psi} = |C_{E_{\psi}/F}| N_H (1 - \tau_{\psi})$, the result follows from Proposition 4.4.

REMARK 4.6. It is clear from the proof of Theorem 4.5 that in fact $(|G|^{r^{S}(\psi)+1}/2^{|S|-1})\alpha R(f)\theta_{K/F}^{S,*}e_{\psi}$ annihilates $\operatorname{Cl}_{K}^{S}$ when $\psi \neq \psi_{0}$. Furthermore, in this situation, if r_{F}^{S} denotes the 2-rank of $\operatorname{Cl}_{F}^{S}$, one can show by an

argument similar to that in [4, Proposition 2] that the 2-rank of $C_{E_{\psi}/F}$ is always at least $r_F^S - 1$. Thus $|C_{E_{\psi}/F}|/2^{r_F^S - 2}$ suffices as an exponent for $C_{E_{\psi}/F}$, and this allows one to modify the proof of Theorem 4.5 to conclude that $(|G|^{r^S(\psi)+1}/2^{|S|+r_F^S - 3})\alpha R(f)\theta_{K/F}^{S,*}e_{\psi}$ annihilates Cl_K^S when $\psi \neq \psi_0$, and that $(|G|^{r^S(\psi)+1}/2^{r_F^S - 1})\alpha R(f)\theta_{K/F}^{S,*}e_{\psi}$ does so when $\psi = \psi_0$. Finally, [4, Corollary 2] shows that $2^{|S|+r_F^S}$ is an integer multiple of |G|, so that for $\psi \neq \psi_0$, we see that $2^3|G|^{r^S(\psi)}\alpha R(f)\theta_{K/F}^{S,*}e_{\psi}$ annihilates Cl_F^S .

REMARK 4.7. By analogy with the Brumer–Stark conjecture, one may also be interested in further properties of the generator δ in Theorem 4.5. The conditions given there guarantee that $K(\sqrt{\delta})/F$ is an abelian Galois extension in all cases. If F has a real embedding, and $\psi \neq \psi_0$, the condition $\delta \in (E_{\psi})_{1+\tau_{\psi}}$ suffices to imply that $K(\delta^{1/w_{E_{\psi}}})/F$ is an abelian Galois extension, by application of [7, Proposition IV.1.2]. Indeed, $E_{\psi}(\delta^{1/w_{E_{\psi}}})/F$ is abelian by the criterion there since $1 + \tau_{\psi}$ annihilates $\mu_{E_{\psi}}$ in this case and $\delta^{1+\tau_{\psi}} = 1$, which is a $w_{E_{\psi}}$ -power.

References

- [1] P. Buckingham, The canonical fractional Galois ideal at s = 0, J. Number Theory 128 (2008), 1749–1768.
- [2] D. Burns, On derivatives of Artin L-series, Invent. Math. 186 (2011), 291–371.
- [3] D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501–570.
- [4] D. S. Dummit, J. W. Sands, and B. Tangedal, Stark's conjecture in multi-quadratic extensions, revisited, J. Théor. Nombres Bordeaux 15 (2003), 83–97.
- [5] D. Macias Castillo, On higher-order Stickelberger-type theorems for multi-quadratic extensions, Int. J. Number Theory 8 (2012), 95–110.
- [6] V. P. Snaith, Stark's conjecture and new Stickelberger phenomena, Canad. J. Math. 58 (2006), 419-448.
- [7] J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s = 0, Birkhäuser, Boston, 1984.

Jonathan W. Sands Department of Mathematics and Statistics University of Vermont Burlington, VT 05401, U.S.A. E-mail: Jonathan.Sands@uvm.edu