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I. Introduction. Fix an abelian Galois extension of number fields K/F
and let G denote the Galois group. Also fix a finite set S of primes of F which
contains all of the infinite primes of F and all of the primes which ramify
in K. Since it is fixed throughout, we will often suppress S in the notation.
Associated with this data is an equivariant L-function, θK/F (s) = θSK/F (s),

a meromorphic function of s ∈ C with values in the group ring C[G]. When
the real part of s is greater than 1 it is defined as a product over the (finite)
primes p of F that are not in S. Let Np denote the absolute norm of the
ideal p and σp ∈ G denote the Frobenius automorphism of p. Then

θSK/F (s) =
∏

prime p/∈S

(
1− 1

Nps
σ−1p

)−1
.

Each component of this function extends meromorphically to all of C, and
its behavior at s = 0 is connected with the arithmetic of K.

The ring of S-integers OSF of F is defined to be the set of elements of F
whose valuation is non-negative at every prime not in S. When K = F , the
function θSF/F (s) is simply the identity automorphism of F times ζSF (s), the

Dedekind zeta-function of F with Euler factors for the primes in S removed.
The function ζSF (s) may be viewed as the zeta-function of the Dedekind
domain OSF .

Letting SK denote the set of primes of K lying above those in S, we de-
fine OSK to be the ring of SK-integers of K. Then ClSK denotes the SK-class
group of K, which may be identified with the group of non-zero fractional
ideals of OSK modulo principal fractional ideals. Denote the order of ClSK
by hSK . Let µK denote the group of all roots of unity in K, and wK de-
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note its order. When the Brumer–Stark conjecture holds, it implies that
wKθ

S
K/F (0) annihilates ClSK as a module over the group-ring Z[G]. However,

this conjecture is vacuous when θSK/F (0) = 0. On the other hand, one knows

that for K = F , the leading term in the Taylor series at s = 0 for ζSF is

ζS,∗F = −hSFRSF /wF , where RSF is the regulator of the S-units of F . One sees

that this quantity still provides an annihilator −hSF for ClSF , upon removing
the factors RSF and wF which relate to the group of S-units and its torsion
subgroup. In this paper, we obtain results on the annihilation of ClSK by
what may be considered the leading term of θSK/F (s) at s = 0. Indeed, we

obtain a non-trivial annihilator associated with each irreducible character
of G, regardless of the order of vanishing of the corresponding L-function.
Such results are clearly related to the refined Stark conjectures of Rubin and
Popescu, but those do not directly concern annihilators for ClSK . The con-
nection between leading terms of equivariant L-functions and annihilators of
class groups appears in more recent conjectures of Burns [2] growing out of
his work with Flach on the Equivariant Tamagawa Number Conjecture [3],
and results of Buckingham [1] which had their origins in ideas of Snaith [6].

To state our results, let Ĝ denote the group of characters of G and recall
that the S-imprimitive Artin L-function for a character ψ ∈ Ĝ is defined as

LSK/F (s, ψ) =
∏

prime p/∈S

(
1− 1

Nps
ψ(σp)

)−1
,

so that using the idempotents eψ = |G|−1
∑

σ∈G ψ(σ)σ−1, we have

θSK/F (s) =
∑
ψ∈Ĝ

LSK/F (s, ψ−1)eψ.

Defining L∗K/F (ψ) = LS,∗K/F (ψ) to be the first non-zero coefficient in the

Taylor series for LSK/F (s, ψ) at s = 0, one then puts

θ∗K/F = θS,∗K/F =
∑
ψ∈Ĝ

LS,∗K/F (ψ−1)eψ.

Next define a regulator as in Burns [2]. For each prime w ∈ SK , let
| |w denote the corresponding normalized absolute value on K. Let UK =
USK = (OSK)∗, the multiplicative group of SK-units in K. Let Y S

K be the
free abelian group on primes in SK . This has a natural G-action which
makes it a Z[G]-module. The submodule XK = XS

K is the kernel of the
augmentation homomorphism YK = Y S

K → Z which sends each element to
the sum of its coefficients. Then RUSK = R⊗ZU

S
K is known to be isomorphic

to RXS
K = R ⊗Z X

S
K by the R-linear extension λK,R = λSK,R of the map
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λK = λSK : USK → RXS
K defined by

λK(u) = −
∑
w∈SK

log |u|w · w.

Any Z[G]-module homomorphism f : M → N , determines an R[G]-
module homomorphism

fR : RM → RN

by extension of scalars. In particular, suppose that we fix a Z[G]-module
homomorphism f : USK → XS

K . Since R[G] is a semisimple commutative
ring and RUSK is finitely generated as a module over this ring, there exists
a complementary R[G]-module P such that RUSK ⊕P is a finitely generated
free module. Using the identity map 1P on P , one then obtains a well-defined
regulator of f in R[G]:

R(f) = detR[G](λ
−1
K,R ◦ fR) = detR[G]((λ

−1
K,R ◦ fR)⊕ 1P ).

Let rS(ψ) = r(ψ) denote the dimension of the R-vector space eψRUSK .

Our main result is the following theorem, proved in a slightly stronger
form as Theorem 4.5 at the end of this paper. Remark 4.6 indicates how it
may be strengthened further.

Main Theorem. Let K be a composite of a finite number of quadratic
extensions of a number field F . Let S contain the infinite primes of F and
those which ramify in K/F . Suppose that f : USK → XS

K is a Z[G]-module
homomorphism with ker(f) finite. Let α ∈ Z[G] annihilate µK , and let ψ

be an irreducible character of G. Then |G|rS(ψ)+1αR(f)θS,∗K/F eψ lies in Z[G]

and annihilates ClSK .

Remark 1.1. Burns [2] obtains more general results of this form, con-
sidering components of the units and of XS

K for each character separately.
His Conjecture 2.6.1 and evidence for it (which includes the multiquadratic
extensions considered here) then involves an additional factor of |G|2 in the
resulting annihilator. Macias Castillo [5] obtains stronger results specifically
for multiquadratic extensions such as those considered here, but not for all
characters. We have chosen to show what can be done working with USK ;
Burns and Macias Castillo (and others) formulate their results in terms of
certain torsion-free subgroups of USK . In a subsequent paper, we will detail
the connections between their work and ours more fully.

Remark 1.2. The principal Stark conjecture [7] states that

|G|rS(ψ)+1αR(f)θS,∗K/F eψ

lies in Q[G], and is already known in the case of multiquadratic extensions.
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II. Computing θ∗K/F = θS,∗K/F . From now on, we will omit the set of

primes S from our notation. So YK = Y S
K , XK = XS

K , UK = USK , hF = hSF ,
r(ψ) = rS(ψ), RF = RSF , LK/F = LSK/F , ζF = ζSF , and θK/F = θSK/F , etc.

Proposition 2.1. For the principal character ψ0 of Gal(K/F ), we have

θ∗K/F eψ0 =
−hFRF
wF

eψ0 .

Proof. Since ψ0 is the inflation of the trivial character on Gal(F/F ), the
functorial properties of Artin L-functions give

θ∗K/F eψ0 = L∗K/F (ψ0)eψ0 = ζ∗F eψ0 .

The result then follows from the analytic class number formula.

Now assume that G = Gal(K/F ) has exponent 2, and let ψ be a non-
trivial character of G. The image of ψ is a non-trivial cyclic group of expo-
nent 2, hence of order 2. So ker(ψ) has index 2 in G. Let Eψ denote the fixed
field of ker(ψ), a relative quadratic extension of F . Let CEψ/F denote the
cokernel of the natural map from ClF to ClEψ that is induced by extension
of ideals. Let τψ denote the generator of Gal(Eψ/F ). We will have occasion
to fix a lift of τψ to an element of G, which we also denote by τψ. If M
is a Z[G]-module and α ∈ Z[G], we let Mα denote the image of M under
multiplication by α, and Mα denote the kernel of multiplication by α.

Proposition 2.2.

θ∗K/F eψ =
|CEψ/F |

((UEψ)1+τψ : (UEψ)1−τψ)

REψ
RF

wF
wEψ

eψ.

Proof. First, ψ is induced from the non-trivial character of Gal(Eψ/F ),
and this character is the difference between the regular representation of
Gal(Eψ/F ) and the trivial character. The functorial properties of Artin
L-functions and the analytic class number formula then give

θ∗K/F eψ = L∗K/F (ψ)eψ =
ζ∗Eψ(0)

ζ∗F (0)
eψ =

hEψ
hF

REψ
RF

wF
wEψ

eψ.

A computation of Tate ([7, Thm. IV.5.4]) then shows that

hEψ
hF

=
|CEψ/F |

((UEψ)1+τψ : (UEψ)1−τψ)
,

and this completes the proof.

III. Computing R(f)

Lemma 3.1. Suppose that φ is an endomorphism of a finitely generated
projective R-module M .
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(a) If R′ is an overring of R, let M ′ = R′ ⊗RM and φ′ = 1R′ ⊗R φ, an
endomorphism of M ′. Then detR′(φ

′) = detR(φ).
(b) If R = R1 ⊕ R2, then consequently M = M1 ⊕M2 where M1 is a

finitely generated projective R1-module and M2 is a finitely gener-
ated projective R2-module, and φ = φ1 ⊕ φ2 for φ1 an endomor-
phism of M1 and φ2 an endomorphism of M2. Then detR(φ) =
(detR1(φ1), detR2(φ2)) ∈ R1 ⊕ R2 = R. Using 1 = e1 + e2 where
e1 and e2 are idempotents of R lying in R1 and R2 respectively, this
may be written as detR(φ) = detR1(φ1)e1 + detR2(φ2)e2.

Proof. (a) Choose P so that M⊕P is a finitely generated free R-module
with basis {b1, . . . , bk}, and let P ′ = R′⊗RP . Then M ′⊕P ′ ∼= R′⊗R(M⊕P )
is a finitely generated free R′-module with basis {b′1 = 1⊗b1, . . . , b′k = 1⊗bk}.
Using these bases, it is clear that the matrix of φ ⊕ 1P is the same as the
matrix of φ′⊕ 1P ′ , as the latter may be identified with 1R′ ⊗ (φ⊕ 1P ). Thus
detR′(φ

′) = detR′(φ
′ ⊕ 1P ′) = detR(φ⊕ 1P ) = detR(φ).

(b) Note that M1 = e1M and M2 = e2M . After choosing P so that
M ⊕ P is a finitely generated free R-module, we see that e1(M ⊕ P ) =
e1M ⊕ e1P = M1 ⊕ e1P is a finitely generated free R1-module, making
M1 a finitely generated projective R1-module, and similarly M2 is a finitely
generated projective R2-module. Choosing a basis {b1, . . . , bk} for M ⊕ P
over R clearly gives a basis {e1b1, . . . , e1bk} for e1M ⊕ e1P over R1, and the
case of e2M ⊕ e2P is similar. Now if (ri,j) = (e1ri,j) + (e2ri,j) is the matrix
of φ⊕ 1P , then (e1ri,j) is the matrix of φ1 ⊕ 1P1 over R1, and similarly for
φ2 ⊕ 1P2 . Thus

detR(φ) = det(ri,j) = (e1 + e2) det(ri,j)

= det(e1ri,j) + det(e2ri,j) = detR1(φ1)e1 + detR2(φ2).

Proposition 3.2.

(a) The following are equivalent:

(1) ker(f) is finite,
(2) ker(f) = µK ,
(3) coker(f) is finite,
(4) fR is an isomorphism,
(5) R(f) ∈ R[G]∗.

(b) We have the following equalities, the last one requiring that one of
the equivalent conditions in (a) hold (note that C[G]eψ = Ceψ ∼= C):

R(f) = detR[G](fR ◦ λ−1R ) = detC[G](fC ◦ λ−1C )

=
∑
ψ∈Ĝ

detC[G]eψ(fC◦λ−1C |eψCXS
K

) =
∑
ψ∈Ĝ

detC[G]eψ(λC ◦ f−1C |eψCXS
K

)
−1
.
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(c) When G has exponent 2, we have

R(f) =
∑
ψ∈Ĝ

detR[G]eψ(fR ◦ λ−1R |eψRXS
K

) =
∑
ψ∈Ĝ

detR[G]eψ(λR ◦ f−1R |eψRXS
K

)
−1
.

Proof. (a) These are clear because µK is the torsion subgroup of USK ,
while USK/µK and XS

K are free abelian groups of the same rank.

(b) This follows from Lemma 3.1.

(c) This follows from part (b) and Lemma 3.1(a).

When G has exponent 2, it remains for us to compute

detR[G]eψ(λR ◦ f−1R |eψRXK )

for each ψ ∈ Ĝ. To do this, suppose that E is an intermediate field between
F and K, and H = Gal(K/E). Let NH =

∑
σ∈H σ. For w ∈ SE , let w̃ ∈ SK

be a choice of a prime above w in K. There is a natural injective Z[G]-module
map YE → YK which sends each w ∈ SE to NHw̃. We let γK/E : XE →
XK denote the restriction of this map to XE . Similarly, let πK/E be the
restriction to XK of the Z[G]-module map which sends each prime w̃ ∈ SK
to the corresponding prime w of E, and note that the image of πK/E lies

in XE . It is easy to see that γK/E gives an isomorphism between XS
E and

NH(XS
K), and that for u ∈ UE , we have λK(u) = γK/E,R(λE(u)).

Lemma 3.3. Suppose that ker(f) is finite. Let πG/H : R[G] → R[G/H]

be the natural projection map. If χ is a first degree character of G = G/H
and ψ ∈ Ĝ is its inflation, recall that r(χ) denotes the dimension of eχRXE

as a real vector space. Then

πG/H(R(f)eψ) = |H|−r(χ)R(πK/E ◦ f |UE )eχ.

Proof. (See [7, I.6.4(3)].) By Proposition 3.2(c),

πG/H(R(f)−1eψ) = πG/H(detR[G]eψ(λK,R ◦ f−1R |eψRXK )).

Since γK/E(XE) ⊂ NH(XK), and f−1R is an R[G]-homomorphism, we see

that the image of f−1R ◦ γSK/E,R is contained in NH(RUK) ⊂ RUE . Thus we

may follow this map with γK/E,R ◦ λE,R = λK,R|RUE and obtain

γK/E,R ◦ λE,R ◦ f−1R ◦ γK/E,R = λSK,R|RUE ◦ f
−1
R ◦ γK/E,R.

Restricting the isomorphism γK/E,R : RXE → NH(RXK) gives an iso-
morphism between eχRXE = eψRXE and eψNH(RXK) = |H|eψRXK =
eψRXK . So, restricting the functions in the last displayed equation to
eχRXE and noting that πG/H(eψ) = eχ, we get

detR[G]eχ
(λE,R◦(f−1R ◦γK/E,R)|eχRXE ) = πG/H(detR[G]eψ(λK,R◦f−1R |eψRXK )).
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Since γK/E,R|eχRXE : eχRXE → eψRXK has the inverse |H|−1πK/E,R|eψRXK ,
we deduce from Proposition 3.2(c) again that

detR[G]eχ
(λE,R ◦ (f−1R ◦ γK/E,R)|eχRXE )

= detR[G]eχ

(
λE,R ◦

(
1

|H|
πK/E ◦ f |UE

)−1
R

∣∣∣∣
eχRXE

)
= |H|r(χ)R(πK/E ◦ f |UE )−1eχ.

Combining the displayed equations gives the result.

Lemma 3.4. Suppose that E/F is relative quadratic and τ is the non-
trivial automorphism of E over F . Let χ be the non-trivial character of
G = Gal(E/F ) = 〈τ〉. If f : UE → XE is a Z[G]-module homomorphism
with finite kernel, then

R(f)eχ = ((XE)1+τ : f((UE)1−τ ))
RF
RE

wE
wF

2|S|−1−r(χ)

|µE ∩ (UE)1−τ |
.

Proof. Let M = (XE : f(UE)), and let f0 : UE/µE → f(UE) be the
induced isomorphism. Then the composite

g : XE
M−→ f(UE)

f
−1
0−−→ UE/µE

wE−−→ UE

is an injective Z[G]-module map. For such a map, Tate ([7, I.6.3]) defines
R(χ, g), and it is easy to see that the definition is equivalent to

R(χ, g)eχ = deteχR[G](λE,R ◦ gR|eχRXE ).

By Proposition 3.2(a), fR is an isomorphism, and it is then clear from our

definition of g that gR = MwEf
−1
R . Since r(χ) equals the dimension of

eχRXE as a real vector space, we see from Proposition 3.2(b) that

R(χ, g)eχ=(MwE)r(χ) detR[G]eχ
(λE,R ◦ f

−1
R ◦ |eχRXE )=(MwE)r(χ)R(f)−1eχ.

On the other hand, the proof of [7, Prop. II.2.1] gives

R(χ, g) =
wF
wE

RE
RF

((UE)1−τ : g((XE)1+τ )2)

2|S|−1
.

As an abelian group, (UE)1−τ is the direct product of its torsion subgroup
(UE)1−τ ∩ µE and a free abelian group of rank r(χ). Using this and the
definition of g, we have

((UE)1−τ : g((XE)1+τ )2) =
((UE)1−τ : ((UE)1−τ )2MwE )

(g((XE)1+τ )2 : ((UE)1−τ )2MwE )

=
|(UE)1−τ ∩ µE |(2MwE)rs(χ)

(f
−1

(M(XE)1+τ )2wE : ((UE)1−τ )2MwE )
.
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Now f
−1

(M(XE)1+τ )2wE is torsion-free and hence f is injective on this
submodule, so we have

f
−1

(M(XE)1+τ )2wE/((UE)1−τ )2MwE ∼= 2MwE(XE)1+τ/2MwEf((UE)1−τ ).

Then since XE is Z-torsion-free,

(f
−1

(M(XE)1+τ )2wE : ((UE)1−τ )2MwE )

= (2MwE(XE)1+τ : 2MwEf((UE)1−τ )) = ((XE)1+τ : f((UE)1−τ )).

Combining the displayed equations gives the result.

Proposition 3.5. Suppose that G = Gal(K/F ) has exponent 2, ψ is a
non-trivial character of G, and f : UK → XK is a Z[G]-module homomor-
phism with finite kernel. Then

R(f)eψ =
2|S|−1

|G|r(ψ)
wEψ
wF

RF
REψ

((XEψ)1+τψ : (πK/Eψ ◦ f)((UEψ)1−τψ))

|(UEψ)1−τψ ∩ µEψ |
eψ.

Proof. Let E = Eψ and H = ker(ψ) = Gal(K/E). Then ψ is the infla-
tion of the non-trivial character χ on G/H ∼= Gal(E/F ) = G. Since πG/H
restricts to an R-module isomorphism from R[G]eψ = Reψ to R[G]eχ = Reχ
with πG/H(eψ) = eχ, the result follows directly from Lemmas 3.3 and 3.4.

Lemma 3.6. For the trivial extension F/F , with identity automor-
phism σ0, and f : UF → XF with finite kernel, we have

R(f) = ±(XF : f(UF ))

RF
σ0.

Proof. Let M = (XF : f(UF )), and let f0 : UF /µF → f(UF ) be the
induced isomorphism. Then the composite

g : XF
M−→ f(UF )

f
−1
0−−→ UF /µF

wF−−→ UF

is an injective Z-module map. Therefore, as in the proof of Lemma 3.4,

R(1, g) = detR(λF,R ◦ gR) = (MwF )|S|−1 detR(λF,R ◦ f
−1
R )

= (MwF )|S|−1R(f)−1.

On the other hand, the proof of [7, Prop. II.1.1] gives

R(1, g) = ±RF
wF

(UF : g(XF )).

As an abelian group, UF is the direct product of its torsion subgroup µF
and a free abelian group of rank |S| − 1. Using this and the definition of g,
we have

(UF : g(XF )) =
(UF : (UF )MwF )

(g(XF ) : (UF )MwF )
=

wF (MwF )|S|−1

(f
−1

(MXF )wF : (UF )MwF )
.
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Now f
−1

(MXF )wF is Z-torsion-free and hence f is injective on this

submodule, so we have f
−1

(MXF )wF /(UF )MwF ∼= MwF (XF )/MwF f(UF ).
Then since XF is Z-torsion-free,

(f
−1

(MXF )wF : (UF )MwF ) = (MwFXF : MwF f(UF )) = (XF : f(UF )).

Combining the displayed equations gives the result.

Proposition 3.7. Suppose that G = Gal(K/F ) has exponent 2, ψ0 is the
trivial character of G, and f : UK → XK is a Z[G]-module homomorphism
with finite kernel. Then

R(f)eψ0 =
(XF : πK/F ◦ f(UF ))

|G||S|−1RF
eψ0 .

Proof. Since ψ0 is the inflation of the trivial character χ0 on Gal(F/F ),
and πG/G restricts to an R-module isomorphism from R[G]eψ0 = Reψ0 to
Rσ0 with πG/G(eψ0) = σ0, the result follows from Lemmas 3.3 and 3.6.

IV. Class group annihilators

Proposition 4.1. Suppose that G = Gal(K/F ) has exponent 2 and that
f : UK → XK is a Z[G]-module homomorphism with finite kernel. Then

R(f)θ∗K/F =
hF (XF : πK/F (f(UF )))

wF |G||S|−1
eψ0

+
∑
ψ 6=ψ0

2|S|−1|CEψ/F |
|G|rS(ψ)

((XEψ)1+τψ : πK/Eψ(f((UEψ)1+τψ)))

|(µEψ)1+τψ |
eψ.

Proof. Combining Propositions 2.1 and 3.7 gives the coefficient of eψ0 .
Using Propositions 2.2 and 3.5 for ψ 6= ψ0 yields

R(f)θ∗K/F eψ

=
2|S|−1

|G|rS(ψ)
|CEψ/F |

|(UEψ)1−τψ ∩ µEψ |
((XEψ)1+τψ : πK/Eψ(f((UEψ)1−τψ)))

((UEψ)1+τψ : (UEψ)1−τψ)
eψ.

Then

((XEψ)1+τψ : πK/Eψ(f((UEψ)1−τψ)))

= ((XEψ)1+τψ : πK/Eψ(f((UEψ)1+τψ)))

× (πK/Eψ(f((UEψ)1+τψ)) : πK/Eψ(f((UEψ)1−τψ))).

Now consider the kernel of πK/Eψ ◦ f restricted to UEψ . So let u ∈ UEψ
and f(u) =

∑
w∈SK nww. Since σ(u) = u for σ ∈ H = Gal(K/Eψ), we

have nw = nσ(w) for each w. Fix a set of representatives {wi}, one for each
distinct orbit of SK under the action of H, and write wi ∼ w if wi and w
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lie in the same orbit with cardinality di. Then

f(u) =
∑
i

∑
w∼wi

nww =
∑
i

∑
w∼wi

nwiw =
∑
i

nwi
∑
w∼wi

w

and

πK/Eψ(f(u)) =
∑
i

nwi
∑
w∼wi

πK/Eψ(w) =
∑
i

nwi
∑
w∼wi

πK/Eψ(wi)

=
∑
i

nwidiπK/Eψ(wi).

Since the elements πK/Eψ(wi) are distinct, the above is zero if and only if
each nwi is zero and hence f(u) = 0. Our assumption on f implies that
this holds if and only if u ∈ µK . So the kernel of πK/Eψ ◦ f restricted
to UEψ is clearly µEψ . Thus πK/Eψ ◦ f induces a homomorphism from

(UEψ)1+τψ/(UEψ)1−τψ onto πK/Eψ(f((UEψ)1+τψ))/πK/Eψ(f((UEψ)1−τψ))

with kernel (µEψ)1+τψ/(UEψ)1−τψ ∩ (µEψ)1+τψ . Consequently,

((UEψ)1+τψ : (UEψ)1−τψ)

((µEψ)1+τψ : (UEψ)1−τψ ∩ (µEψ)1+τψ)

= (πK/Eψ(f((UEψ)1+τψ)) : πK/Eψ(f((UEψ)1−τψ))).

Combining the displayed equations then gives the result.

Lemma 4.2. Suppose that α ∈ AnnZ[G](µK) and that G is the direct
product of its subgroups H and J . Let M be the fixed field of H, and
identify J with Gal(M/F ) by restriction. Then αNH = βNH for some
β ∈ AnnZ[J ](µM ).

Proof. Write

α =
∑
ρ∈J

∑
σ∈H

nρσρσ ∈ AnnZ[G](µK).

Restricting to M , we define

β =
∑
ρ∈J

(∑
σ∈H

nρσ

)
ρ ∈ AnnZ[J ](µM ).

Note that

(α− β) =
∑
ρ∈J

∑
σ∈H

nρσρ(σ − 1).

Since (σ − 1)NH = 0 for each σ ∈ H, we have (α − β)NH = 0 and thus
αNH = βNH , as desired.

Corollary 4.3. Suppose that α ∈ AnnZ[G](µK). Then:

(1) αNG = cwFNG for some c ∈ Z.
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(2) Suppose that E is a quadratic extension of F in K, with H =
Gal(K/E), and H 6⊃ J = 〈τ〉 of order 2, so that G is the direct
product of H and J . Then αNH(1 − τ) = d|(µE)1+τ |NH(1 − τ) for
some integer d.

Proof. (1) Applying Lemma 4.2 with H = G and J trivial gives αNG =
βNG with β ∈ AnnZ(µF ) = wFZ. So β = cwF , giving the desired result.

(2) First, applying Lemma 4.2 with M = E gives

αNH = βNH

with β ∈ AnnZ[J ](µE). Now Z[J ] = Z + Zτ , so β = m + nτ with m,n ∈ Z.
Since β annihilates (µE)1+τ on which τ acts as −1, we have

1 = ((µE)1+τ )β = ((µE)1+τ )m+nτ = ((µE)1+τ )m−n.

Therefore m− n ∈ AnnZ((µE)1+τ ) = |(µE)1+τ |Z, and m− n = d|(µE)1+τ |.
Finally,

β(1− τ) = (m+ nτ)(1− τ) = (m− n)(1− τ) = d|(µE)1+τ |(1− τ).

Combining this with the first displayed equation gives the result.

Proposition 4.4. If ψ 6= ψ0 and the integer b is an exponent for CEψ/F ,

then b|G|eψ annihilates ClSK . Indeed, if a is an ideal of OSK , then ab|G|eψ =
δOSK for some δ ∈ (Eψ)1+τψ .

Proof. Let H = Gal(K/Eψ) and let τψ be a fixed lift of a generator of
Gal(Eψ/F ) to G. Then

b|G|eψ = bNH(1− τψ).

Any element of ClSK is represented by an ideal aK of OSK . Then

aNHK = aEOSK
for some ideal aE of OSEψ , while

abE = γaFOSEψ
for some ideal aF of OSF and 0 6= γ ∈ Eψ, since b annihilates ClSEψ modulo

the image of ClSF . Finally,

(γaF )1−τψ = γ1−τψa
1−τψ
F = γ1−τψOSE .

Since δ = γ1−τψ ∈ (Eψ)1+τψ , combining the displayed equations gives the
result.

Theorem 4.5. Let K be a composite of a finite number of quadratic exten-
sions of a number field F . Let S contain the infinite primes of F and those
which ramify in K/F . Suppose ker(f) is finite and α∈Z[G] annihilates µK .
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Let ψ be an irreducible character of G. Then |G|rS(ψ)+1αR(f)θS,∗K/F eψ lies in

Z[G] and annihilates ClSK . Indeed, if a is an ideal of OSK , then

a
|G|rS(ψ)+1αR(f)θS,∗

K/F
eψ = δOSK

for some δ ∈ F when ψ = ψ0, and for some δ satisfying δ ∈ (Eψ)1+τψ when
ψ 6= ψ0.

Proof. First consider ψ = ψ0. Note that |G|eψ0 = NG and rS(ψ0) =
|S| − 1. Using Proposition 4.1 and Corollary 4.3(1) yields

|G|rS(ψ0)+1αR(f)θS,∗K/F eψ0

= |G||S|−1R(f)θS,∗K/F eψ0α|G|eψ0 =
hF (XF : πK/F (f(UF )))

wF
αNG

=
hF (XF : πK/F (f(UF )))

wF
cwFNG = hF (XF : πK/F (f(UF )))cNG,

which clearly lies in Z[G]. Now any element of ClSK is represented by an ideal
aK of OSK , and

aNGK = aFOSK
for some ideal aF of OSF . Then

ahFF = γOSF ,
for some γ ∈ F . Thus the result follows from the displayed equations, with
δ = γ(XF :πK/F (f(UF )))c.

Next consider ψ 6= ψ0. Put H = Gal(K/Eψ) and let τψ be a fixed lift of a
generator of Gal(Eψ/F ) to G. Then |G|eψ = NH(1− τψ). Using Proposition
4.1 and Corollary 4.3(2) yields

|G|rS(ψ)+1αR(f)θS,∗K/F eψ = |G|rS(ψ)R(f)θS,∗K/F eψα|G|eψ

= 2|S|−1|CEψ/F |
((XEψ)1+τψ : πK/Eψ(f((UEψ)1+τψ)))

|(µEψ)1+τψ |
eψα|G|eψ

= 2|S|−1|CEψ/F |
((XEψ)1+τψ : πK/Eψ(f((UEψ)1+τψ)))

|(µEψ)1+τψ |
eψd|(µEψ)1+τψ | |G|eψ

= 2|S|−1|CEψ/F |((XEψ)1+τψ : πK/Eψ(f((UEψ)1+τψ)))d|G|eψ.

Since this is an integer multiple of |CEψ/F | |G|eψ = |CEψ/F |NH(1− τψ), the
result follows from Proposition 4.4.

Remark 4.6. It is clear from the proof of Theorem 4.5 that in fact
(|G|rS(ψ)+1/2|S|−1)αR(f)θS,∗K/F eψ annihilates ClSK when ψ 6= ψ0. Further-

more, in this situation, if rSF denotes the 2-rank of ClSF , one can show by an
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argument similar to that in [4, Proposition 2] that the 2-rank of CEψ/F is al-

ways at least rSF −1. Thus |CEψ/F |/2
rSF−2 suffices as an exponent for CEψ/F ,

and this allows one to modify the proof of Theorem 4.5 to conclude that
(|G|rS(ψ)+1/2|S|+r

S
F−3)αR(f)θS,∗K/F eψ annihilates ClSK when ψ 6= ψ0, and that

(|G|rS(ψ)+1/2r
S
F−1)αR(f)θS,∗K/F eψ does so when ψ = ψ0. Finally, [4, Corol-

lary 2] shows that 2|S|+r
S
F is an integer multiple of |G|, so that for ψ 6= ψ0,

we see that 23|G|rS(ψ)αR(f)θS,∗K/F eψ annihilates ClSF .

Remark 4.7. By analogy with the Brumer–Stark conjecture, one may
also be interested in further properties of the generator δ in Theorem 4.5.
The conditions given there guarantee that K(

√
δ)/F is an abelian Galois

extension in all cases. If F has a real embedding, and ψ 6= ψ0, the condition

δ ∈ (Eψ)1+τψ suffices to imply that K(δ
1/wEψ )/F is an abelian Galois ex-

tension, by application of [7, Proposition IV.1.2]. Indeed, Eψ(δ
1/wEψ )/F is

abelian by the criterion there since 1 + τψ annihilates µEψ in this case and

δ1+τψ = 1, which is a wEψ -power.
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