# $L$-functions at the origin and annihilation of class groups in multiquadratic extensions 

by

Jonathan W. Sands (Burlington, VT)
I. Introduction. Fix an abelian Galois extension of number fields $K / F$ and let $G$ denote the Galois group. Also fix a finite set $S$ of primes of $F$ which contains all of the infinite primes of $F$ and all of the primes which ramify in $K$. Since it is fixed throughout, we will often suppress $S$ in the notation. Associated with this data is an equivariant $L$-function, $\theta_{K / F}(s)=\theta_{K / F}^{S}(s)$, a meromorphic function of $s \in \mathbb{C}$ with values in the group ring $\mathbb{C}[G]$. When the real part of $s$ is greater than 1 it is defined as a product over the (finite) primes $\mathfrak{p}$ of $F$ that are not in $S$. Let Np denote the absolute norm of the ideal $\mathfrak{p}$ and $\sigma_{\mathfrak{p}} \in G$ denote the Frobenius automorphism of $\mathfrak{p}$. Then

$$
\theta_{K / F}^{S}(s)=\prod_{\text {prime } \mathfrak{p} \notin S}\left(1-\frac{1}{\mathrm{~Np}^{s}} \sigma_{\mathfrak{p}}^{-1}\right)^{-1}
$$

Each component of this function extends meromorphically to all of $\mathbb{C}$, and its behavior at $s=0$ is connected with the arithmetic of $K$.

The ring of $S$-integers $\mathcal{O}_{F}^{S}$ of $F$ is defined to be the set of elements of $F$ whose valuation is non-negative at every prime not in $S$. When $K=F$, the function $\theta_{F / F}^{S}(s)$ is simply the identity automorphism of $F$ times $\zeta_{F}^{S}(s)$, the Dedekind zeta-function of $F$ with Euler factors for the primes in $S$ removed. The function $\zeta_{F}^{S}(s)$ may be viewed as the zeta-function of the Dedekind domain $\mathcal{O}_{F}^{S}$.

Letting $S_{K}$ denote the set of primes of $K$ lying above those in $S$, we define $\mathcal{O}_{K}^{S}$ to be the ring of $S_{K}$-integers of $K$. Then $\mathrm{Cl}_{K}^{S}$ denotes the $S_{K}$-class group of $K$, which may be identified with the group of non-zero fractional ideals of $\mathcal{O}_{K}^{S}$ modulo principal fractional ideals. Denote the order of $\mathrm{Cl}_{K}^{S}$ by $h_{K}^{S}$. Let $\mu_{K}$ denote the group of all roots of unity in $K$, and $w_{K}$ de-

[^0]note its order. When the Brumer-Stark conjecture holds, it implies that $w_{K} \theta_{K / F}^{S}(0)$ annihilates $\mathrm{Cl}_{K}^{S}$ as a module over the group-ring $\mathbb{Z}[G]$. However, this conjecture is vacuous when $\theta_{K / F}^{S}(0)=0$. On the other hand, one knows that for $K=F$, the leading term in the Taylor series at $s=0$ for $\zeta_{F}^{S}$ is $\zeta_{F}^{S, *}=-h_{F}^{S} R_{F}^{S} / w_{F}$, where $R_{F}^{S}$ is the regulator of the $S$-units of $F$. One sees that this quantity still provides an annihilator $-h_{F}^{S}$ for $\mathrm{Cl}_{F}^{S}$, upon removing the factors $R_{F}^{S}$ and $w_{F}$ which relate to the group of $S$-units and its torsion subgroup. In this paper, we obtain results on the annihilation of $\mathrm{Cl}_{K}^{S}$ by what may be considered the leading term of $\theta_{K / F}^{S}(s)$ at $s=0$. Indeed, we obtain a non-trivial annihilator associated with each irreducible character of $G$, regardless of the order of vanishing of the corresponding $L$-function. Such results are clearly related to the refined Stark conjectures of Rubin and Popescu, but those do not directly concern annihilators for $\mathrm{Cl}_{K}^{S}$. The connection between leading terms of equivariant $L$-functions and annihilators of class groups appears in more recent conjectures of Burns [2] growing out of his work with Flach on the Equivariant Tamagawa Number Conjecture [3], and results of Buckingham [1] which had their origins in ideas of Snaith [6].

To state our results, let $\hat{G}$ denote the group of characters of $G$ and recall that the $S$-imprimitive Artin L-function for a character $\psi \in \hat{G}$ is defined as

$$
L_{K / F}^{S}(s, \psi)=\prod_{\operatorname{prime} \mathfrak{p} \notin S}\left(1-\frac{1}{\mathrm{~Np}^{s}} \psi\left(\sigma_{\mathfrak{p}}\right)\right)^{-1}
$$

so that using the idempotents $e_{\psi}=|G|^{-1} \sum_{\sigma \in G} \psi(\sigma) \sigma^{-1}$, we have

$$
\theta_{K / F}^{S}(s)=\sum_{\psi \in \hat{G}} L_{K / F}^{S}\left(s, \psi^{-1}\right) e_{\psi}
$$

Defining $L_{K / F}^{*}(\psi)=L_{K / F}^{S, *}(\psi)$ to be the first non-zero coefficient in the Taylor series for $L_{K / F}^{S}(s, \psi)$ at $s=0$, one then puts

$$
\theta_{K / F}^{*}=\theta_{K / F}^{S, *}=\sum_{\psi \in \hat{G}} L_{K / F}^{S, *}\left(\psi^{-1}\right) e_{\psi}
$$

Next define a regulator as in Burns [2]. For each prime $w \in S_{K}$, let $\left|\left.\right|_{w}\right.$ denote the corresponding normalized absolute value on $K$. Let $U_{K}=$ $U_{K}^{S}=\left(\mathcal{O}_{K}^{S}\right)^{*}$, the multiplicative group of $S_{K}$-units in $K$. Let $Y_{K}^{S}$ be the free abelian group on primes in $S_{K}$. This has a natural $G$-action which makes it a $\mathbb{Z}[G]$-module. The submodule $X_{K}=X_{K}^{S}$ is the kernel of the augmentation homomorphism $Y_{K}=Y_{K}^{S} \rightarrow \mathbb{Z}$ which sends each element to the sum of its coefficients. Then $\mathbb{R} U_{K}^{S}=\mathbb{R} \otimes_{\mathbb{Z}} U_{K}^{S}$ is known to be isomorphic to $\mathbb{R} X_{K}^{S}=\mathbb{R} \otimes_{\mathbb{Z}} X_{K}^{S}$ by the $\mathbb{R}$-linear extension $\lambda_{K, \mathbb{R}}=\lambda_{K, \mathbb{R}}^{S}$ of the map
$\lambda_{K}=\lambda_{K}^{S}: U_{K}^{S} \rightarrow \mathbb{R} X_{K}^{S}$ defined by

$$
\lambda_{K}(u)=-\sum_{w \in S_{K}} \log |u|_{w} \cdot w
$$

Any $\mathbb{Z}[G]$-module homomorphism $f: M \rightarrow N$, determines an $\mathbb{R}[G]$ module homomorphism

$$
f_{\mathbb{R}}: \mathbb{R} M \rightarrow \mathbb{R} N
$$

by extension of scalars. In particular, suppose that we fix a $\mathbb{Z}[G]$-module homomorphism $f: U_{K}^{S} \rightarrow X_{K}^{S}$. Since $\mathbb{R}[G]$ is a semisimple commutative ring and $\mathbb{R} U_{K}^{S}$ is finitely generated as a module over this ring, there exists a complementary $\mathbb{R}[G]$-module $P$ such that $\mathbb{R} U_{K}^{S} \oplus P$ is a finitely generated free module. Using the identity map $1_{P}$ on $P$, one then obtains a well-defined regulator of $f$ in $\mathbb{R}[G]$ :

$$
R(f)=\operatorname{det}_{\mathbb{R}[G]}\left(\lambda_{K, \mathbb{R}}^{-1} \circ f_{\mathbb{R}}\right)=\operatorname{det}_{\mathbb{R}[G]}\left(\left(\lambda_{K, \mathbb{R}}^{-1} \circ f_{\mathbb{R}}\right) \oplus 1_{P}\right)
$$

Let $r^{S}(\psi)=r(\psi)$ denote the dimension of the $\mathbb{R}$-vector space $e_{\psi} \mathbb{R} U_{K}^{S}$.
Our main result is the following theorem, proved in a slightly stronger form as Theorem 4.5 at the end of this paper. Remark 4.6 indicates how it may be strengthened further.

Main Theorem. Let $K$ be a composite of a finite number of quadratic extensions of a number field $F$. Let $S$ contain the infinite primes of $F$ and those which ramify in $K / F$. Suppose that $f: U_{K}^{S} \rightarrow X_{K}^{S}$ is a $\mathbb{Z}[G]$-module homomorphism with $\operatorname{ker}(f)$ finite. Let $\alpha \in \mathbb{Z}[G]$ annihilate $\mu_{K}$, and let $\psi$ be an irreducible character of $G$. Then $|G|^{r^{S}(\psi)+1} \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}$ lies in $\mathbb{Z}[G]$ and annihilates $\mathrm{Cl}_{K}^{S}$.

REMARK 1.1. Burns [2] obtains more general results of this form, considering components of the units and of $X_{K}^{S}$ for each character separately. His Conjecture 2.6.1 and evidence for it (which includes the multiquadratic extensions considered here) then involves an additional factor of $|G|^{2}$ in the resulting annihilator. Macias Castillo [5] obtains stronger results specifically for multiquadratic extensions such as those considered here, but not for all characters. We have chosen to show what can be done working with $U_{K}^{S}$; Burns and Macias Castillo (and others) formulate their results in terms of certain torsion-free subgroups of $U_{K}^{S}$. In a subsequent paper, we will detail the connections between their work and ours more fully.

Remark 1.2. The principal Stark conjecture [7] states that

$$
|G|^{r^{S}(\psi)+1} \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}
$$

lies in $\mathbb{Q}[G]$, and is already known in the case of multiquadratic extensions.
II. Computing $\theta_{K / F}^{*}=\theta_{K / F}^{S, *}$. From now on, we will omit the set of primes $S$ from our notation. So $Y_{K}=Y_{K}^{S}, X_{K}=X_{K}^{S}, U_{K}=U_{K}^{S}, h_{F}=h_{F}^{S}$, $r(\psi)=r^{S}(\psi), R_{F}=R_{F}^{S}, L_{K / F}=L_{K / F}^{S}, \zeta_{F}=\zeta_{F}^{S}$, and $\theta_{K / F}=\theta_{K / F}^{S}$, etc.

Proposition 2.1. For the principal character $\psi_{0}$ of $\operatorname{Gal}(K / F)$, we have

$$
\theta_{K / F}^{*} e_{\psi_{0}}=\frac{-h_{F} R_{F}}{w_{F}} e_{\psi_{0}}
$$

Proof. Since $\psi_{0}$ is the inflation of the trivial character on $\operatorname{Gal}(F / F)$, the functorial properties of Artin $L$-functions give

$$
\theta_{K / F}^{*} e_{\psi_{0}}=L_{K / F}^{*}\left(\psi_{0}\right) e_{\psi_{0}}=\zeta_{F}^{*} e_{\psi_{0}} .
$$

The result then follows from the analytic class number formula.
Now assume that $G=\operatorname{Gal}(K / F)$ has exponent 2 , and let $\psi$ be a nontrivial character of $G$. The image of $\psi$ is a non-trivial cyclic group of exponent 2, hence of order 2. So $\operatorname{ker}(\psi)$ has index 2 in $G$. Let $E_{\psi}$ denote the fixed field of $\operatorname{ker}(\psi)$, a relative quadratic extension of $F$. Let $C_{E_{\psi} / F}$ denote the cokernel of the natural map from $\mathrm{Cl}_{F}$ to $\mathrm{Cl}_{E_{\psi}}$ that is induced by extension of ideals. Let $\tau_{\psi}$ denote the generator of $\operatorname{Gal}\left(E_{\psi} / F\right)$. We will have occasion to fix a lift of $\tau_{\psi}$ to an element of $G$, which we also denote by $\tau_{\psi}$. If $M$ is a $\mathbb{Z}[G]$-module and $\alpha \in \mathbb{Z}[G]$, we let $M^{\alpha}$ denote the image of $M$ under multiplication by $\alpha$, and $M_{\alpha}$ denote the kernel of multiplication by $\alpha$.

Proposition 2.2.

$$
\theta_{K / F}^{*} e_{\psi}=\frac{\left|C_{E_{\psi} / F}\right|}{\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}:\left(U_{E_{\psi}}\right)^{\left.1-\tau_{\psi}\right)}\right.} \frac{R_{E_{\psi}}}{R_{F}} \frac{w_{F}}{w_{E_{\psi}}} e_{\psi} .
$$

Proof. First, $\psi$ is induced from the non-trivial character of $\operatorname{Gal}\left(E_{\psi} / F\right)$, and this character is the difference between the regular representation of $\operatorname{Gal}\left(E_{\psi} / F\right)$ and the trivial character. The functorial properties of Artin $L$-functions and the analytic class number formula then give

$$
\theta_{K / F}^{*} e_{\psi}=L_{K / F}^{*}(\psi) e_{\psi}=\frac{\zeta_{E_{\psi}}^{*}(0)}{\zeta_{F}^{*}(0)} e_{\psi}=\frac{h_{E_{\psi}}}{h_{F}} \frac{R_{E_{\psi}}}{R_{F}} \frac{w_{F}}{w_{E_{\psi}}} e_{\psi} .
$$

A computation of Tate ([7, Thm. IV.5.4]) then shows that

$$
\frac{h_{E_{\psi}}}{h_{F}}=\frac{\left|C_{E_{\psi} / F}\right|}{\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}:\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}}\right)},
$$

and this completes the proof.

## III. Computing $R(f)$

Lemma 3.1. Suppose that $\phi$ is an endomorphism of a finitely generated projective $R$-module $M$.
(a) If $R^{\prime}$ is an overring of $R$, let $M^{\prime}=R^{\prime} \otimes_{R} M$ and $\phi^{\prime}=1_{R^{\prime}} \otimes_{R} \phi$, an endomorphism of $M^{\prime}$. Then $\operatorname{det}_{R^{\prime}}\left(\phi^{\prime}\right)=\operatorname{det}_{R}(\phi)$.
(b) If $R=R_{1} \oplus R_{2}$, then consequently $M=M_{1} \oplus M_{2}$ where $M_{1}$ is a finitely generated projective $R_{1}$-module and $M_{2}$ is a finitely generated projective $R_{2}$-module, and $\phi=\phi_{1} \oplus \phi_{2}$ for $\phi_{1}$ an endomorphism of $M_{1}$ and $\phi_{2}$ an endomorphism of $M_{2}$. Then $\operatorname{det}_{R}(\phi)=$ $\left(\operatorname{det}_{R_{1}}\left(\phi_{1}\right), \operatorname{det}_{R_{2}}\left(\phi_{2}\right)\right) \in R_{1} \oplus R_{2}=R$. Using $1=e_{1}+e_{2}$ where $e_{1}$ and $e_{2}$ are idempotents of $R$ lying in $R_{1}$ and $R_{2}$ respectively, this may be written as $\operatorname{det}_{R}(\phi)=\operatorname{det}_{R_{1}}\left(\phi_{1}\right) e_{1}+\operatorname{det}_{R_{2}}\left(\phi_{2}\right) e_{2}$.
Proof. (a) Choose $P$ so that $M \oplus P$ is a finitely generated free $R$-module with basis $\left\{b_{1}, \ldots, b_{k}\right\}$, and let $P^{\prime}=R^{\prime} \otimes_{R} P$. Then $M^{\prime} \oplus P^{\prime} \cong R^{\prime} \otimes_{R}(M \oplus P)$ is a finitely generated free $R^{\prime}$-module with basis $\left\{b_{1}^{\prime}=1 \otimes b_{1}, \ldots, b_{k}^{\prime}=1 \otimes b_{k}\right\}$. Using these bases, it is clear that the matrix of $\phi \oplus 1_{P}$ is the same as the matrix of $\phi^{\prime} \oplus 1_{P^{\prime}}$, as the latter may be identified with $1_{R^{\prime}} \otimes\left(\phi \oplus 1_{P}\right)$. Thus $\operatorname{det}_{R^{\prime}}\left(\phi^{\prime}\right)=\operatorname{det}_{R^{\prime}}\left(\phi^{\prime} \oplus 1_{P^{\prime}}\right)=\operatorname{det}_{R}\left(\phi \oplus 1_{P}\right)=\operatorname{det}_{R}(\phi)$.
(b) Note that $M_{1}=e_{1} M$ and $M_{2}=e_{2} M$. After choosing $P$ so that $M \oplus P$ is a finitely generated free $R$-module, we see that $e_{1}(M \oplus P)=$ $e_{1} M \oplus e_{1} P=M_{1} \oplus e_{1} P$ is a finitely generated free $R_{1}$-module, making $M_{1}$ a finitely generated projective $R_{1}$-module, and similarly $M_{2}$ is a finitely generated projective $R_{2}$-module. Choosing a basis $\left\{b_{1}, \ldots, b_{k}\right\}$ for $M \oplus P$ over $R$ clearly gives a basis $\left\{e_{1} b_{1}, \ldots, e_{1} b_{k}\right\}$ for $e_{1} M \oplus e_{1} P$ over $R_{1}$, and the case of $e_{2} M \oplus e_{2} P$ is similar. Now if $\left(r_{i, j}\right)=\left(e_{1} r_{i, j}\right)+\left(e_{2} r_{i, j}\right)$ is the matrix of $\phi \oplus 1_{P}$, then $\left(e_{1} r_{i, j}\right)$ is the matrix of $\phi_{1} \oplus 1_{P_{1}}$ over $R_{1}$, and similarly for $\phi_{2} \oplus 1_{P_{2}}$. Thus

$$
\begin{aligned}
\operatorname{det}_{R}(\phi) & =\operatorname{det}\left(r_{i, j}\right)=\left(e_{1}+e_{2}\right) \operatorname{det}\left(r_{i, j}\right) \\
& =\operatorname{det}\left(e_{1} r_{i, j}\right)+\operatorname{det}\left(e_{2} r_{i, j}\right)=\operatorname{det}_{R_{1}}\left(\phi_{1}\right) e_{1}+\operatorname{det}_{R_{2}}\left(\phi_{2}\right)
\end{aligned}
$$

Proposition 3.2.
(a) The following are equivalent:
(1) $\operatorname{ker}(f)$ is finite,
(2) $\operatorname{ker}(f)=\mu_{K}$,
(3) $\operatorname{coker}(f)$ is finite,
(4) $f_{\mathbb{R}}$ is an isomorphism,
(5) $R(f) \in \mathbb{R}[G]^{*}$.
(b) We have the following equalities, the last one requiring that one of the equivalent conditions in (a) hold (note that $\mathbb{C}[G] e_{\psi}=\mathbb{C} e_{\psi} \cong \mathbb{C}$ ):

$$
\begin{aligned}
& R(f)=\operatorname{det}_{\mathbb{R}[G]}\left(f_{\mathbb{R}} \circ \lambda_{\mathbb{R}}^{-1}\right)=\operatorname{det}_{\mathbb{C}[G]}\left(f_{\mathbb{C}} \circ \lambda_{\mathbb{C}}^{-1}\right) \\
& \quad=\sum_{\psi \in \hat{G}} \operatorname{det}_{\mathbb{C}[G] e_{\psi}}\left(\left.f_{\mathbb{C}} \circ \lambda_{\mathbb{C}}^{-1}\right|_{e_{\psi} \mathbb{C} X_{K}^{S}}\right)=\sum_{\psi \in \hat{G}} \operatorname{det}_{\mathbb{C}[G] e_{\psi}}\left(\left.\lambda_{\mathbb{C}} \circ f_{\mathbb{C}}^{-1}\right|_{e_{\psi} \mathbb{C} X_{K}^{S}}\right)^{-1}
\end{aligned}
$$

(c) When $G$ has exponent 2 , we have
$R(f)=\sum_{\psi \in \hat{G}} \operatorname{det}_{\mathbb{R}[G] e_{\psi}}\left(\left.f_{\mathbb{R}} \circ \lambda_{\mathbb{R}}^{-1}\right|_{e_{\psi} \mathbb{R} X_{K}^{S}}\right)=\sum_{\psi \in \hat{G}} \operatorname{det}_{\mathbb{R}[G] e_{\psi}}\left(\left.\lambda_{\mathbb{R}} \circ f_{\mathbb{R}}^{-1}\right|_{e_{\psi} \mid \mathbb{R} X_{K}^{S}}\right)^{-1}$.
Proof. (a) These are clear because $\mu_{K}$ is the torsion subgroup of $U_{K}^{S}$, while $U_{K}^{S} / \mu_{K}$ and $X_{K}^{S}$ are free abelian groups of the same rank.
(b) This follows from Lemma 3.1.
(c) This follows from part (b) and Lemma 3.1(a).

When $G$ has exponent 2, it remains for us to compute

$$
\operatorname{det}_{\mathbb{R}[G] e_{\psi}}\left(\left.\lambda_{\mathbb{R}} \circ f_{\mathbb{R}}^{-1}\right|_{e_{\psi} \mathbb{R} X_{K}}\right)
$$

for each $\psi \in \hat{G}$. To do this, suppose that $E$ is an intermediate field between $F$ and $K$, and $H=\operatorname{Gal}(K / E)$. Let $N_{H}=\sum_{\sigma \in H} \sigma$. For $w \in S_{E}$, let $\tilde{w} \in S_{K}$ be a choice of a prime above $w$ in $K$. There is a natural injective $\mathbb{Z}[G]$-module map $Y_{E} \rightarrow Y_{K}$ which sends each $w \in S_{E}$ to $N_{H} \tilde{w}$. We let $\gamma_{K / E}: X_{E} \rightarrow$ $X_{K}$ denote the restriction of this map to $X_{E}$. Similarly, let $\pi_{K / E}$ be the restriction to $X_{K}$ of the $\mathbb{Z}[G]$-module map which sends each prime $\tilde{w} \in S_{K}$ to the corresponding prime $w$ of $E$, and note that the image of $\pi_{K / E}$ lies in $X_{E}$. It is easy to see that $\gamma_{K / E}$ gives an isomorphism between $X_{E}^{S}$ and $N_{H}\left(X_{K}^{S}\right)$, and that for $u \in U_{E}$, we have $\lambda_{K}(u)=\gamma_{K / E, \mathbb{R}}\left(\lambda_{E}(u)\right)$.

Lemma 3.3. Suppose that $\operatorname{ker}(f)$ is finite. Let $\pi_{G / H}: \mathbb{R}[G] \rightarrow \mathbb{R}[G / H]$ be the natural projection map. If $\chi$ is a first degree character of $\bar{G}=G / H$ and $\psi \in \hat{G}$ is its inflation, recall that $r(\chi)$ denotes the dimension of $e_{\chi} \mathbb{R} X_{E}$ as a real vector space. Then

$$
\pi_{G / H}\left(R(f) e_{\psi}\right)=|H|^{-r(\chi)} R\left(\left.\pi_{K / E} \circ f\right|_{U_{E}}\right) e_{\chi} .
$$

Proof. (See [7, I.6.4(3)].) By Proposition 3.2(c),

$$
\pi_{G / H}\left(R(f)^{-1} e_{\psi}\right)=\pi_{G / H}\left(\operatorname{det}_{\mathbb{R}[G] e_{\psi}}\left(\left.\lambda_{K, \mathbb{R}} \circ f_{\mathbb{R}}^{-1}\right|_{e_{\psi} \mathbb{R} X_{K}}\right)\right) .
$$

Since $\gamma_{K / E}\left(X_{E}\right) \subset N_{H}\left(X_{K}\right)$, and $f_{\mathbb{R}}^{-1}$ is an $\mathbb{R}[G]$-homomorphism, we see that the image of $f_{\mathbb{R}}^{-1} \circ \gamma_{K / E, \mathbb{R}}^{S}$ is contained in $N_{H}\left(\mathbb{R} U_{K}\right) \subset \mathbb{R} U_{E}$. Thus we may follow this map with $\gamma_{K / E, \mathbb{R}} \circ \lambda_{E, \mathbb{R}}=\left.\lambda_{K, \mathbb{R}}\right|_{\mathbb{R} U_{E}}$ and obtain

$$
\gamma_{K / E, \mathbb{R}} \circ \lambda_{E, \mathbb{R}} \circ f_{\mathbb{R}}^{-1} \circ \gamma_{K / E, \mathbb{R}}=\lambda_{K, \mathbb{R}}^{S} \mid \mathbb{R U}_{E} \circ f_{\mathbb{R}}^{-1} \circ \gamma_{K / E, \mathbb{R}} .
$$

Restricting the isomorphism $\gamma_{K / E, \mathbb{R}}: \mathbb{R} X_{E} \rightarrow N_{H}\left(\mathbb{R} X_{K}\right)$ gives an isomorphism between $e_{\chi} \mathbb{R} X_{E}=e_{\psi} \mathbb{R} X_{E}$ and $e_{\psi} N_{H}\left(\mathbb{R} X_{K}\right)=|H| e_{\psi} \mathbb{R} X_{K}=$ $e_{\psi} \mathbb{R} X_{K}$. So, restricting the functions in the last displayed equation to $e_{\chi} \mathbb{R} X_{E}$ and noting that $\pi_{G / H}\left(e_{\psi}\right)=e_{\chi}$, we get
$\operatorname{det}_{\mathbb{R}[G] e_{\chi}}\left(\lambda_{E, \mathbb{R}} \circ\left(f_{\mathbb{R}}^{-1} \circ \gamma_{K / E, \mathbb{R}}\right) \mid e_{e_{\chi} \mathbb{R} X_{E}}\right)=\pi_{G / H}\left(\operatorname{det}_{\mathbb{R}[G] e_{\psi}}\left(\lambda_{K, \mathbb{R}} \circ f_{\mathbb{R}}^{-1} \mid e_{e_{\psi}} \mathbb{R} X_{K}\right)\right)$.

Since $\left.\gamma_{K / E, \mathbb{R}}\right|_{e_{\chi} \mathbb{R} X_{E}}: e_{\chi} \mathbb{R} X_{E} \rightarrow e_{\psi} \mathbb{R} X_{K}$ has the inverse $\left.|H|^{-1} \pi_{K / E, \mathbb{R}}\right|_{e_{\psi}} \mathbb{R} X_{K}$, we deduce from Proposition 3.2(c) again that

$$
\begin{aligned}
\operatorname{det}_{\mathbb{R}[\bar{G}] e_{\chi}}\left(\lambda_{E, \mathbb{R}} \circ\right. & \left.\left.\left(f_{\mathbb{R}}^{-1} \circ \gamma_{K / E, \mathbb{R}}\right)\right|_{e_{\chi} \mathbb{R} X_{E}}\right) \\
& =\operatorname{det}_{\mathbb{R}[\bar{G}] e_{\chi}}\left(\left.\lambda_{E, \mathbb{R}} \circ\left(\left.\frac{1}{|H|} \pi_{K / E} \circ f\right|_{U_{E}}\right)_{\mathbb{R}}\right|_{e_{\chi} \mathbb{R} X_{E}}\right) \\
& =|H|^{r(\chi)} R\left(\left.\pi_{K / E} \circ f\right|_{U_{E}}\right)^{-1} e_{\chi}
\end{aligned}
$$

Combining the displayed equations gives the result.
Lemma 3.4. Suppose that $E / F$ is relative quadratic and $\tau$ is the nontrivial automorphism of $E$ over $F$. Let $\chi$ be the non-trivial character of $\bar{G}=\operatorname{Gal}(E / F)=\langle\tau\rangle$. If $\bar{f}: U_{E} \rightarrow X_{E}$ is a $\mathbb{Z}[\bar{G}]$-module homomorphism with finite kernel, then

$$
R(\bar{f}) e_{\chi}=\left(\left(X_{E}\right)_{1+\tau}: \bar{f}\left(\left(U_{E}\right)^{1-\tau}\right)\right) \frac{R_{F}}{R_{E}} \frac{w_{E}}{w_{F}} \frac{2^{|S|-1-r(\chi)}}{\left|\mu_{E} \cap\left(U_{E}\right)^{1-\tau}\right|}
$$

Proof. Let $M=\left(X_{E}: \bar{f}\left(U_{E}\right)\right)$, and let $\bar{f}_{0}: U_{E} / \mu_{E} \rightarrow \bar{f}\left(U_{E}\right)$ be the induced isomorphism. Then the composite

$$
g: X_{E} \xrightarrow{M} \bar{f}\left(U_{E}\right) \xrightarrow{\bar{f}_{0}^{-1}} U_{E} / \mu_{E} \xrightarrow{w_{E}} U_{E}
$$

is an injective $\mathbb{Z}[G]$-module map. For such a map, Tate ([7, I.6.3]) defines $R(\chi, g)$, and it is easy to see that the definition is equivalent to

$$
R(\chi, g) e_{\chi}=\operatorname{det}_{e_{\chi} \mathbb{R}[\bar{G}]}\left(\left.\lambda_{E, \mathbb{R}} \circ g_{\mathbb{R}}\right|_{e_{\chi} \mathbb{R} X_{E}}\right)
$$

By Proposition 3.2(a), $\bar{f}_{\mathbb{R}}$ is an isomorphism, and it is then clear from our definition of $g$ that $g_{\mathbb{R}}=M w_{E} \bar{f}_{\mathbb{R}}^{-1}$. Since $r(\chi)$ equals the dimension of $e_{\chi} \mathbb{R} X_{E}$ as a real vector space, we see from Proposition $3.2(\mathrm{~b})$ that
$R(\chi, g) e_{\chi}=\left(M w_{E}\right)^{r(\chi)} \operatorname{det}_{\mathbb{R}[\bar{G}] e_{\chi}}\left(\left.\lambda_{E, \mathbb{R}} \circ \bar{f}_{\mathbb{R}}^{-1} \circ\right|_{e_{\chi} \mathbb{R} X_{E}}\right)=\left(M w_{E}\right)^{r(\chi)} R(\bar{f})^{-1} e_{\chi}$.
On the other hand, the proof of [7, Prop. II.2.1] gives

$$
R(\chi, g)=\frac{w_{F}}{w_{E}} \frac{R_{E}}{R_{F}} \frac{\left(\left(U_{E}\right)^{1-\tau}: g\left(\left(X_{E}\right)_{1+\tau}\right)^{2}\right)}{2^{|S|-1}}
$$

As an abelian group, $\left(U_{E}\right)^{1-\tau}$ is the direct product of its torsion subgroup $\left(U_{E}\right)^{1-\tau} \cap \mu_{E}$ and a free abelian group of rank $r(\chi)$. Using this and the definition of $g$, we have

$$
\begin{aligned}
\left(\left(U_{E}\right)^{1-\tau}: g\left(\left(X_{E}\right)_{1+\tau}\right)^{2}\right) & =\frac{\left(\left(U_{E}\right)^{1-\tau}:\left(\left(U_{E}\right)^{1-\tau}\right)^{2 M w_{E}}\right)}{\left(g\left(\left(X_{E}\right)_{1+\tau}\right)^{2}:\left(\left(U_{E}\right)^{1-\tau}\right)^{2 M w_{E}}\right)} \\
& =\frac{\left|\left(U_{E}\right)^{1-\tau} \cap \mu_{E}\right|\left(2 M w_{E}\right)^{r_{s}}(\chi)}{\left(\bar{f}^{-1}\left(M\left(X_{E}\right)_{1+\tau}\right)^{2 w_{E}}:\left(\left(U_{E}\right)^{1-\tau}\right)^{2 M w_{E}}\right)}
\end{aligned}
$$

Now $\bar{f}^{-1}\left(M\left(X_{E}\right)_{1+\tau}\right)^{2 w_{E}}$ is torsion-free and hence $\bar{f}$ is injective on this submodule, so we have
$\bar{f}^{-1}\left(M\left(X_{E}\right)_{1+\tau}\right)^{2 w_{E}} /\left(\left(U_{E}\right)^{1-\tau}\right)^{2 M w_{E}} \cong 2 M w_{E}\left(X_{E}\right)_{1+\tau} / 2 M w_{E} \bar{f}\left(\left(U_{E}\right)^{1-\tau}\right)$.
Then since $X_{E}$ is $\mathbb{Z}$-torsion-free,

$$
\begin{aligned}
& \left(\bar{f}^{-1}\left(M\left(X_{E}\right)_{1+\tau}\right)^{2 w_{E}}:\left(\left(U_{E}\right)^{1-\tau}\right)^{2 M w_{E}}\right) \\
& \quad=\left(2 M w_{E}\left(X_{E}\right)_{1+\tau}: 2 M w_{E} f\left(\left(U_{E}\right)^{1-\tau}\right)\right)=\left(\left(X_{E}\right)_{1+\tau}: \bar{f}\left(\left(U_{E}\right)^{1-\tau}\right)\right) .
\end{aligned}
$$

Combining the displayed equations gives the result.
Proposition 3.5. Suppose that $G=\operatorname{Gal}(K / F)$ has exponent 2 , $\psi$ is a non-trivial character of $G$, and $f: U_{K} \rightarrow X_{K}$ is a $\mathbb{Z}[G]$-module homomorphism with finite kernel. Then

$$
R(f) e_{\psi}=\frac{2^{|S|-1}}{|G|^{r(\psi)}} \frac{w_{E_{\psi}}}{w_{F}} \frac{R_{F}}{R_{E_{\psi}}} \frac{\left(\left(X_{E_{\psi}}\right)_{1+\tau_{\psi}}:\left(\pi_{K / E_{\psi}} \circ f\right)\left(\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}}\right)\right)}{\left|\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}} \cap \mu_{E_{\psi}}\right|} e_{\psi}
$$

Proof. Let $E=E_{\psi}$ and $H=\operatorname{ker}(\psi)=\operatorname{Gal}(K / E)$. Then $\psi$ is the inflation of the non-trivial character $\chi$ on $G / H \cong \operatorname{Gal}(E / F)=\bar{G}$. Since $\pi_{G / H}$ restricts to an $\mathbb{R}$-module isomorphism from $\mathbb{R}[G] e_{\psi}=\mathbb{R} e_{\psi}$ to $\mathbb{R}[\bar{G}] e_{\chi}=\mathbb{R} e_{\chi}$ with $\pi_{G / H}\left(e_{\psi}\right)=e_{\chi}$, the result follows directly from Lemmas 3.3 and 3.4.

Lemma 3.6. For the trivial extension $F / F$, with identity automorphism $\sigma_{0}$, and $\bar{f}: U_{F} \rightarrow X_{F}$ with finite kernel, we have

$$
R(\bar{f})= \pm \frac{\left(X_{F}: \bar{f}\left(U_{F}\right)\right)}{R_{F}} \sigma_{0}
$$

Proof. Let $M=\left(X_{F}: \bar{f}\left(U_{F}\right)\right)$, and let $\bar{f}_{0}: U_{F} / \mu_{F} \rightarrow \bar{f}\left(U_{F}\right)$ be the induced isomorphism. Then the composite

$$
g: X_{F} \xrightarrow{M} \bar{f}\left(U_{F}\right) \xrightarrow{\bar{f}_{0}^{-1}} U_{F} / \mu_{F} \xrightarrow{w_{F}} U_{F}
$$

is an injective $\mathbb{Z}$-module map. Therefore, as in the proof of Lemma 3.4,

$$
\begin{aligned}
R(1, g) & =\operatorname{det}_{\mathbb{R}}\left(\lambda_{F, \mathbb{R}} \circ g_{\mathbb{R}}\right)=\left(M w_{F}\right)^{|S|-1} \operatorname{det}_{\mathbb{R}}\left(\lambda_{F, \mathbb{R}} \circ \bar{f}_{\mathbb{R}}^{-1}\right) \\
& =\left(M w_{F}\right)^{|S|-1} R(\bar{f})^{-1}
\end{aligned}
$$

On the other hand, the proof of [7, Prop. II.1.1] gives

$$
R(1, g)= \pm \frac{R_{F}}{w_{F}}\left(U_{F}: g\left(X_{F}\right)\right)
$$

As an abelian group, $U_{F}$ is the direct product of its torsion subgroup $\mu_{F}$ and a free abelian group of rank $|S|-1$. Using this and the definition of $g$, we have

$$
\left(U_{F}: g\left(X_{F}\right)\right)=\frac{\left(U_{F}:\left(U_{F}\right)^{M w_{F}}\right)}{\left(g\left(X_{F}\right):\left(U_{F}\right)^{M w_{F}}\right)}=\frac{w_{F}\left(M w_{F}\right)^{|S|-1}}{\left(\bar{f}^{-1}\left(M X_{F}\right)^{w_{F}}:\left(U_{F}\right)^{M w_{F}}\right)}
$$

Now $\bar{f}^{-1}\left(M X_{F}\right)^{w_{F}}$ is $\mathbb{Z}$-torsion-free and hence $\bar{f}$ is injective on this submodule, so we have $\bar{f}^{-1}\left(M X_{F}\right)^{w_{F}} /\left(U_{F}\right)^{M w_{F}} \cong M w_{F}\left(X_{F}\right) / M w_{F} \bar{f}\left(U_{F}\right)$. Then since $X_{F}$ is $\mathbb{Z}$-torsion-free,

$$
\left(\bar{f}^{-1}\left(M X_{F}\right)^{w_{F}}:\left(U_{F}\right)^{M w_{F}}\right)=\left(M w_{F} X_{F}: M w_{F} \bar{f}\left(U_{F}\right)\right)=\left(X_{F}: \bar{f}\left(U_{F}\right)\right) .
$$

Combining the displayed equations gives the result.
Proposition 3.7. Suppose that $G=\operatorname{Gal}(K / F)$ has exponent 2 , $\psi_{0}$ is the trivial character of $G$, and $f: U_{K} \rightarrow X_{K}$ is a $\mathbb{Z}[G]$-module homomorphism with finite kernel. Then

$$
R(f) e_{\psi_{0}}=\frac{\left(X_{F}: \pi_{K / F} \circ f\left(U_{F}\right)\right)}{|G|^{|S|-1} R_{F}} e_{\psi_{0}} .
$$

Proof. Since $\psi_{0}$ is the inflation of the trivial character $\chi_{0}$ on $\operatorname{Gal}(F / F)$, and $\pi_{G / G}$ restricts to an $\mathbb{R}$-module isomorphism from $\mathbb{R}[G] e_{\psi_{0}}=\mathbb{R} e_{\psi_{0}}$ to $\mathbb{R} \sigma_{0}$ with $\pi_{G / G}\left(e_{\psi_{0}}\right)=\sigma_{0}$, the result follows from Lemmas 3.3 and 3.6.

## IV. Class group annihilators

Proposition 4.1. Suppose that $G=\operatorname{Gal}(K / F)$ has exponent 2 and that $f: U_{K} \rightarrow X_{K}$ is a $\mathbb{Z}[G]$-module homomorphism with finite kernel. Then

$$
\begin{aligned}
R(f) \theta_{K / F}^{*}= & \frac{h_{F}\left(X_{F}: \pi_{K / F}\left(f\left(U_{F}\right)\right)\right)}{w_{F}|G| S \mid-1} e_{\psi_{0}} \\
& +\sum_{\psi \neq \psi_{0}} \frac{2^{|S|-1}\left|C_{E_{\psi} / F \mid}\right|}{|G|^{S}(\psi)} \frac{\left(\left(X_{E_{\psi}}\right)_{1+\tau_{\psi}}: \pi_{K / E_{\psi} \psi}\left(f\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}\right)\right)\right)}{\left|\left(\mu_{E_{\psi}}\right)_{1+\tau_{\psi}}\right|} e_{\psi} .
\end{aligned}
$$

Proof. Combining Propositions 2.1 and 3.7 gives the coefficient of $e_{\psi_{0}}$. Using Propositions 2.2 and 3.5 for $\psi \neq \psi_{0}$ yields

$$
\begin{aligned}
& R(f) \theta_{K / F}^{*} e_{\psi} \\
& =\frac{2^{|S|-1}}{|G|^{r^{S}(\psi)}} \frac{\left|C_{E_{\psi} / F}\right|}{\left|\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}} \cap \mu_{E_{\psi}}\right|} \frac{\left(\left(X_{E_{\psi}}\right)_{1+\tau_{\psi}}: \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi} \psi}\right)^{1-\tau_{\psi}}\right)\right)\right)}{\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}:\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}}\right)} e_{\psi} .
\end{aligned}
$$

Then

$$
\begin{aligned}
&\left(\left(X_{E_{\psi}}\right)_{1+\tau_{\psi}}: \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}}\right)\right)\right) \\
&=\left(\left(X_{E_{\psi}}\right)_{1+\tau_{\psi}}: \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}\right)\right)\right) \\
&\left.\quad \times\left(\pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)\right)_{1+\tau_{\psi}}\right)\right): \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}}\right)\right)\right) .
\end{aligned}
$$

Now consider the kernel of $\pi_{K / E_{\psi}} \circ f$ restricted to $U_{E_{\psi}}$. So let $u \in U_{E_{\psi}}$ and $f(u)=\sum_{w \in S_{K}} n_{w} w$. Since $\sigma(u)=u$ for $\sigma \in H=\operatorname{Gal}\left(K / E_{\psi}\right)$, we have $n_{w}=n_{\sigma(w)}$ for each $w$. Fix a set of representatives $\left\{w_{i}\right\}$, one for each distinct orbit of $S_{K}$ under the action of $H$, and write $w_{i} \sim w$ if $w_{i}$ and $w$
lie in the same orbit with cardinality $d_{i}$. Then

$$
f(u)=\sum_{i} \sum_{w \sim w_{i}} n_{w} w=\sum_{i} \sum_{w \sim w_{i}} n_{w_{i}} w=\sum_{i} n_{w_{i}} \sum_{w \sim w_{i}} w
$$

and

$$
\begin{aligned}
\pi_{K / E_{\psi}}(f(u)) & =\sum_{i} n_{w_{i}} \sum_{w \sim w_{i}} \pi_{K / E_{\psi}}(w)=\sum_{i} n_{w_{i}} \sum_{w \sim w_{i}} \pi_{K / E_{\psi}}\left(w_{i}\right) \\
& =\sum_{i} n_{w_{i}} d_{i} \pi_{K / E_{\psi}}\left(w_{i}\right)
\end{aligned}
$$

Since the elements $\pi_{K / E_{\psi}}\left(w_{i}\right)$ are distinct, the above is zero if and only if each $n_{w_{i}}$ is zero and hence $f(u)=0$. Our assumption on $f$ implies that this holds if and only if $u \in \mu_{K}$. So the kernel of $\pi_{K / E_{\psi}} \circ f$ restricted to $U_{E_{\psi}}$ is clearly $\mu_{E_{\psi}}$. Thus $\pi_{K / E_{\psi}} \circ f$ induces a homomorphism from $\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}} /\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}} \quad$ onto $\quad \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}\right)\right) / \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}}\right)\right)$ with kernel $\left(\mu_{E_{\psi}}\right)_{1+\tau_{\psi}} /\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}} \cap\left(\mu_{E_{\psi}}\right)_{1+\tau_{\psi}}$. Consequently,

$$
\begin{aligned}
&\left.\frac{\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}:\right.}{}:\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}}\right) \\
&\left(\left(\mu_{E_{\psi}}\right)_{1+\tau_{\psi}}:\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}} \cap\left(\mu_{E_{\psi}}\right)_{1+\tau_{\psi}}\right) \\
&=\left(\pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}\right)\right): \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)^{1-\tau_{\psi}}\right)\right)\right)
\end{aligned}
$$

Combining the displayed equations then gives the result.
Lemma 4.2. Suppose that $\alpha \in \operatorname{Ann}_{Z[G]}\left(\mu_{K}\right)$ and that $G$ is the direct product of its subgroups $H$ and $J$. Let $M$ be the fixed field of $H$, and identify $J$ with $\operatorname{Gal}(M / F)$ by restriction. Then $\alpha N_{H}=\beta N_{H}$ for some $\beta \in \operatorname{Ann}_{\mathbb{Z}[J]}\left(\mu_{M}\right)$.

Proof. Write

$$
\alpha=\sum_{\rho \in J} \sum_{\sigma \in H} n_{\rho \sigma} \rho \sigma \in \operatorname{Ann}_{\mathbb{Z}[G]}\left(\mu_{K}\right)
$$

Restricting to $M$, we define

$$
\beta=\sum_{\rho \in J}\left(\sum_{\sigma \in H} n_{\rho \sigma}\right) \rho \in \operatorname{Ann}_{\mathbb{Z}[J]}\left(\mu_{M}\right)
$$

Note that

$$
(\alpha-\beta)=\sum_{\rho \in J} \sum_{\sigma \in H} n_{\rho \sigma} \rho(\sigma-1)
$$

Since $(\sigma-1) N_{H}=0$ for each $\sigma \in H$, we have $(\alpha-\beta) N_{H}=0$ and thus $\alpha N_{H}=\beta N_{H}$, as desired.

Corollary 4.3. Suppose that $\alpha \in \operatorname{Ann}_{\mathbb{Z}[G]}\left(\mu_{K}\right)$. Then:
(1) $\alpha N_{G}=c w_{F} N_{G}$ for some $c \in \mathbb{Z}$.
(2) Suppose that $E$ is a quadratic extension of $F$ in $K$, with $H=$ $\operatorname{Gal}(K / E)$, and $H \not \supset J=\langle\tau\rangle$ of order 2 , so that $G$ is the direct product of $H$ and $J$. Then $\alpha N_{H}(1-\tau)=d\left|\left(\mu_{E}\right)_{1+\tau}\right| N_{H}(1-\tau)$ for some integer $d$.

Proof. (1) Applying Lemma 4.2 with $H=G$ and $J$ trivial gives $\alpha N_{G}=$ $\beta N_{G}$ with $\beta \in \operatorname{Ann}_{\mathbb{Z}}\left(\mu_{F}\right)=w_{F} \mathbb{Z}$. So $\beta=c w_{F}$, giving the desired result.
(2) First, applying Lemma 4.2 with $M=E$ gives

$$
\alpha N_{H}=\beta N_{H}
$$

with $\beta \in \operatorname{Ann}_{\mathbb{Z}[J]}\left(\mu_{E}\right)$. Now $\mathbb{Z}[J]=\mathbb{Z}+\mathbb{Z} \tau$, so $\beta=m+n \tau$ with $m, n \in \mathbb{Z}$. Since $\beta$ annihilates $\left(\mu_{E}\right)_{1+\tau}$ on which $\tau$ acts as -1 , we have

$$
1=\left(\left(\mu_{E}\right)_{1+\tau}\right)^{\beta}=\left(\left(\mu_{E}\right)_{1+\tau}\right)^{m+n \tau}=\left(\left(\mu_{E}\right)_{1+\tau}\right)^{m-n}
$$

Therefore $m-n \in \operatorname{Ann}_{\mathbb{Z}}\left(\left(\mu_{E}\right)_{1+\tau}\right)=\left|\left(\mu_{E}\right)_{1+\tau}\right| \mathbb{Z}$, and $m-n=d\left|\left(\mu_{E}\right)_{1+\tau}\right|$. Finally,

$$
\beta(1-\tau)=(m+n \tau)(1-\tau)=(m-n)(1-\tau)=d\left|\left(\mu_{E}\right)_{1+\tau}\right|(1-\tau)
$$

Combining this with the first displayed equation gives the result.
Proposition 4.4. If $\psi \neq \psi_{0}$ and the integer $b$ is an exponent for $C_{E_{\psi} / F}$, then $b|G| e_{\psi}$ annihilates $\mathrm{Cl}_{K}^{S}$. Indeed, if $\mathfrak{a}$ is an ideal of $\mathcal{O}_{K}^{S}$, then $\mathfrak{a}^{b|G| e_{\psi}}=$ $\delta \mathcal{O}_{K}^{S}$ for some $\delta \in\left(E_{\psi}\right)_{1+\tau_{\psi}}$.

Proof. Let $H=\operatorname{Gal}\left(K / E_{\psi}\right)$ and let $\tau_{\psi}$ be a fixed lift of a generator of $\operatorname{Gal}\left(E_{\psi} / F\right)$ to $G$. Then

$$
b|G| e_{\psi}=b N_{H}\left(1-\tau_{\psi}\right)
$$

Any element of $\mathrm{Cl}_{K}^{S}$ is represented by an ideal $\mathfrak{a}_{K}$ of $\mathcal{O}_{K}^{S}$. Then

$$
\mathfrak{a}_{K}^{N_{H}}=\mathfrak{a}_{E} \mathcal{O}_{K}^{S}
$$

for some ideal $\mathfrak{a}_{E}$ of $\mathcal{O}_{E_{\psi}}^{S}$, while

$$
\mathfrak{a}_{E}^{b}=\gamma \mathfrak{a}_{F} \mathcal{O}_{E_{\psi}}^{S}
$$

for some ideal $\mathfrak{a}_{F}$ of $\mathcal{O}_{F}^{S}$ and $0 \neq \gamma \in E_{\psi}$, since $b$ annihilates $\mathrm{Cl}_{E_{\psi}}^{S}$ modulo the image of $\mathrm{Cl}_{F}^{S}$. Finally,

$$
\left(\gamma \mathfrak{a}_{F}\right)^{1-\tau_{\psi}}=\gamma^{1-\tau_{\psi}} \mathfrak{a}_{F}^{1-\tau_{\psi}}=\gamma^{1-\tau_{\psi}} \mathcal{O}_{E}^{S}
$$

Since $\delta=\gamma^{1-\tau_{\psi}} \in\left(E_{\psi}\right)_{1+\tau_{\psi}}$, combining the displayed equations gives the result.

Theorem 4.5. Let $K$ be a composite of a finite number of quadratic extensions of a number field $F$. Let $S$ contain the infinite primes of $F$ and those which ramify in $K / F$. Suppose $\operatorname{ker}(f)$ is finite and $\alpha \in \mathbb{Z}[G]$ annihilates $\mu_{K}$.

Let $\psi$ be an irreducible character of $G$. Then $|G|^{r^{S}(\psi)+1} \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}$ lies in $\mathbb{Z}[G]$ and annihilates $\mathrm{Cl}_{K}^{S}$. Indeed, if $\mathfrak{a}$ is an ideal of $\mathcal{O}_{K}^{S}$, then

$$
\mathfrak{a}^{|G|^{r^{S}(\psi)+1} \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}}=\delta \mathcal{O}_{K}^{S}
$$

for some $\delta \in F$ when $\psi=\psi_{0}$, and for some $\delta$ satisfying $\delta \in\left(E_{\psi}\right)_{1+\tau_{\psi}}$ when $\psi \neq \psi_{0}$.

Proof. First consider $\psi=\psi_{0}$. Note that $|G| e_{\psi_{0}}=N_{G}$ and $r^{S}\left(\psi_{0}\right)=$ $|S|-1$. Using Proposition 4.1 and Corollary $4.3(1)$ yields

$$
\begin{aligned}
& |G|^{r^{S}\left(\psi_{0}\right)+1} \alpha R(f) \theta_{K / F}^{S, *} e_{\psi_{0}} \\
& \quad=|G|^{|S|-1} R(f) \theta_{K / F}^{S, *} e_{\psi_{0}} \alpha|G| e_{\psi_{0}}=\frac{h_{F}\left(X_{F}: \pi_{K / F}\left(f\left(U_{F}\right)\right)\right)}{w_{F}} \alpha N_{G} \\
& \quad=\frac{h_{F}\left(X_{F}: \pi_{K / F}\left(f\left(U_{F}\right)\right)\right)}{w_{F}} c w_{F} N_{G}=h_{F}\left(X_{F}: \pi_{K / F}\left(f\left(U_{F}\right)\right)\right) c N_{G}
\end{aligned}
$$

which clearly lies in $\mathbb{Z}[G]$. Now any element of $\mathrm{Cl}_{K}^{S}$ is represented by an ideal $\mathfrak{a}_{K}$ of $\mathcal{O}_{K}^{S}$, and

$$
\mathfrak{a}_{K}^{N_{G}}=\mathfrak{a}_{F} \mathcal{O}_{K}^{S}
$$

for some ideal $\mathfrak{a}_{F}$ of $\mathcal{O}_{F}^{S}$. Then

$$
\mathfrak{a}_{F}^{h_{F}}=\gamma \mathcal{O}_{F}^{S}
$$

for some $\gamma \in F$. Thus the result follows from the displayed equations, with $\delta=\gamma^{\left(X_{F}: \pi_{K / F}\left(f\left(U_{F}\right)\right)\right) c}$.

Next consider $\psi \neq \psi_{0}$. Put $H=\operatorname{Gal}\left(K / E_{\psi}\right)$ and let $\tau_{\psi}$ be a fixed lift of a generator of $\operatorname{Gal}\left(E_{\psi} / F\right)$ to $G$. Then $|G| e_{\psi}=N_{H}\left(1-\tau_{\psi}\right)$. Using Proposition 4.1 and Corollary 4.3(2) yields

$$
\begin{aligned}
& |G|^{r^{S}(\psi)+1} \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}=|G|^{r^{S}(\psi)} R(f) \theta_{K / F}^{S, *} e_{\psi} \alpha|G| e_{\psi} \\
& \quad=2^{|S|-1}\left|C_{E_{\psi} / F}\right| \frac{\left(\left(X_{E_{\psi}}\right)_{1+\tau_{\psi}}: \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}\right)\right)\right)}{\left|\left(\mu_{E_{\psi}}\right)_{1+\tau_{\psi}}\right|} e_{\psi} \alpha|G| e_{\psi} \\
& \quad=2^{|S|-1}\left|C_{E_{\psi} / F}\right| \frac{\left(\left(X_{E_{\psi}}\right)_{1+\tau_{\psi}}: \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}\right)\right)\right)}{\left|\left(\mu_{E_{\psi}}\right)_{1+\tau_{\psi}}\right|} e_{\psi} d\left|\left(\mu_{E_{\psi}}\right)_{1+\tau_{\psi}}\right||G| e_{\psi} \\
& \quad=2^{|S|-1}\left|C_{E_{\psi} / F}\right|\left(\left(X_{E_{\psi}}\right)_{1+\tau_{\psi}}: \pi_{K / E_{\psi}}\left(f\left(\left(U_{E_{\psi}}\right)_{1+\tau_{\psi}}\right)\right)\right) d|G| e_{\psi}
\end{aligned}
$$

Since this is an integer multiple of $\left|C_{E_{\psi} / F}\right||G| e_{\psi}=\left|C_{E_{\psi} / F}\right| N_{H}\left(1-\tau_{\psi}\right)$, the result follows from Proposition 4.4.

Remark 4.6. It is clear from the proof of Theorem 4.5 that in fact $\left(|G|^{r^{S}(\psi)+1} / 2^{|S|-1}\right) \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}$ annihilates $\mathrm{Cl}_{K}^{S}$ when $\psi \neq \psi_{0}$. Furthermore, in this situation, if $r_{F}^{S}$ denotes the 2 -rank of $\mathrm{Cl}_{F}^{S}$, one can show by an
argument similar to that in [4, Proposition 2] that the 2-rank of $C_{E_{\psi} / F}$ is always at least $r_{F}^{S}-1$. Thus $\left|C_{E_{\psi} / F}\right| / 2^{r_{F}^{S}-2}$ suffices as an exponent for $C_{E_{\psi} / F}$, and this allows one to modify the proof of Theorem 4.5 to conclude that $\left(|G|^{S^{S}(\psi)+1} / 2^{|S|+r_{F}^{S}-3}\right) \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}$ annihilates $\mathrm{Cl}_{K}^{S}$ when $\psi \neq \psi_{0}$, and that $\left(|G|^{S^{S}}(\psi)+1 / 2^{r_{F}^{S}-1}\right) \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}$ does so when $\psi=\psi_{0}$. Finally, [4, Corollary 2] shows that $2^{|S|+r_{F}^{S}}$ is an integer multiple of $|G|$, so that for $\psi \neq \psi_{0}$, we see that $2^{3}|G|^{r^{S}(\psi)} \alpha R(f) \theta_{K / F}^{S, *} e_{\psi}$ annihilates $\mathrm{Cl}_{F}^{S}$.

Remark 4.7. By analogy with the Brumer-Stark conjecture, one may also be interested in further properties of the generator $\delta$ in Theorem 4.5. The conditions given there guarantee that $K(\sqrt{\delta}) / F$ is an abelian Galois extension in all cases. If $F$ has a real embedding, and $\psi \neq \psi_{0}$, the condition $\delta \in\left(E_{\psi}\right)_{1+\tau_{\psi}}$ suffices to imply that $K\left(\delta^{1 / w_{E_{\psi}}}\right) / F$ is an abelian Galois extension, by application of [7, Proposition IV.1.2]. Indeed, $E_{\psi}\left(\delta^{1 / w_{E_{\psi}}}\right) / F$ is abelian by the criterion there since $1+\tau_{\psi}$ annihilates $\mu_{E_{\psi}}$ in this case and $\delta^{1+\tau_{\psi}}=1$, which is a $w_{E_{\psi}}$-power.

## References

[1] P. Buckingham, The canonical fractional Galois ideal at $s=0$, J. Number Theory 128 (2008), 1749-1768.
[2] D. Burns, On derivatives of Artin L-series, Invent. Math. 186 (2011), 291-371.
[3] D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570.
[4] D. S. Dummit, J. W. Sands, and B. Tangedal, Stark's conjecture in multi-quadratic extensions, revisited, J. Théor. Nombres Bordeaux 15 (2003), 83-97.
[5] D. Macias Castillo, On higher-order Stickelberger-type theorems for multi-quadratic extensions, Int. J. Number Theory 8 (2012), 95-110.
[6] V. P. Snaith, Stark's conjecture and new Stickelberger phenomena, Canad. J. Math. 58 (2006), 419-448.
[7] J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en $s=0$, Birkhäuser, Boston, 1984.

Jonathan W. Sands
Department of Mathematics and Statistics
University of Vermont
Burlington, VT 05401, U.S.A.
E-mail: Jonathan.Sands@uvm.edu


[^0]:    2010 Mathematics Subject Classification: Primary 11R29, 11R42.
    Key words and phrases: Artin $L$-function, class group, multiquadratic extension, Stickelberger ideal.

