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1. Introduction. It is well known that over a ring R, which is finitely
generated over Z, a Thue equation has only finitely many solutions in R (see
e.g. [6, Chap. 8.4]). In principle, this can be shown by the original ideas of
A. Thue. By an application of Baker’s method, this result was made effective
by K. Győry ([5, §2.3]).

On the other hand, these methods do not apply to rings whose unit group
is not finitely generated, e.g. to polynomial rings over an infinite field. If R
is a holomorphy ring of a function field K of characteristic 0 (i.e. the ring
of S-integers for some finite set S of places), using methods developed by
C. F. Osgood [11], W. M. Schmidt [13] established an effective bound for
the height of the solutions of a Thue equation in R. Soon afterwards R. C.
Mason [9], [10] strengthened this result and showed that all solutions of a
Thue equation can be determined effectively. He analyzed the case of an
infinite set of solutions, supposing that the binary form splits into linear
factors over the function field under consideration and that the constant
field is algebraically closed.

From the viewpoint of algebraic geometry, the results of Yu. I. Manin [8]
and H. Grauert [4] on Mordell’s conjecture over function fields imply that
any Thue equation defining a curve of genus g ≥ 2 (i.e. any Thue equation
of degree n ≥ 4) has only finitely many solutions in K ×K—as far as the
curve cannot be defined over a constant field.

It is the aim of the present paper to investigate the set of solutions in just
this exceptional case. On the one hand we impose an integrality condition
(i.e. restrict to S-integral solutions), on the other hand most of our results
hold for Thue equations of degree n ≥ 3.

In principle, we follow Mason’s ideas and adapt them to our more gen-
eral situation. For a Thue equation F (X,Y ) = b we will define a set L of
special solutions, and first show that there exist only finitely many solu-
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tions outside L (Proposition 3) and that a nonempty set L already implies
that F (X,Y ) = b can be transformed into a Thue equation with constant
coefficients (Proposition 4(b)). Using Faltings’s theorem on Mordell’s con-
jecture [3] we deduce that in case the constant field is a finite extension
of Q, any Thue equation of degree n ≥ 4 has only finitely many solutions
(Corollary 1(b)).

In what follows we obtain conditions for the finiteness of the solution set,
which are independent of b and of constant field extensions (Corollary 2), or
which are independent ofK (Corollary 3). Over the splitting field of F (X,Y )
we give a complete description of the set L of special solutions (Corollary 4).
In the last section we show how to construct cubic Thue equations with
infinitely many solutions, supposing that the cubic form F (X,Y ) splits into
linear factors, or is irreducible, resp., in K[X,Y ]. So there are cubic Thue
equations over Q(T ) which have infinitely many solutions in Q[T ], but (by
the result mentioned at the beginning) only finitely many solutions in Z[T ].

Finally, the author wants to thank E. Bombieri and K. Győry for very
fruitful discussions about this topic, and A. Pethő for some quick and useful
calculations concerning elliptic curves.

2. Notations and auxiliary results. We will use the notions and def-
initions as explained e.g. in the textbooks of H. Stichtenoth [16] or M. Rosen
[12]. Throughout this paper let K be an algebraic function field in one vari-
able over the field of constants K0 of characteristic char(K0) = 0, and let
g = gK denote its genus.

A place P of K is the valuation ideal of a valuation ring OP with K0 ⊂
OP $ K; vP : K → Z ∪ {∞} denotes the normed, discrete valuation given
by P , and degP := [OP /P : K0] the degree of P . Let PK denote the set of
all places of K and Div(K) the group of divisors of K, i.e. the free abelian
group generated by PK . For any divisor D ∈ Div(K), supp(D) ⊂ PK denotes
the support of D, i.e. the set of all places occurring in D. For u ∈ K× (1),
let (u) = (u)0 − (u)∞ be the decomposition of the divisor of the function u
into its divisor of zeroes and poles, resp. For a nonempty, finite set of places
S ⊂ PK put

o := oK,S = {x ∈ K | vP (x) ≥ 0 for all P 6∈ S} ⊂ K,
the ring of S-integers of K.

We recall two fundamental arithmetical results for function fields, the
second of which we will apply to Thue equations in a well known way.
Proposition 1 is the ABC-theorem for function fields, as proved e.g. in [12,
Theorem 7.17], or under more special suppositions already in [10, Lemma 2

(1) For any ring R (commutative, with 1) we denote its group of units by R×.
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on p. 14]. Proposition 2 is the theorem on S-unit equations for function
fields—and indeed a direct consequence of Proposition 1, which again can
be found in [12, Theorem 7.19] or [10, Corollary on p. 15]. Be aware that
both results require a perfect constant field, and that Proposition 2 only
holds for separable solutions (i.e. K/K0(u), K/K0(v) are both separable).

Proposition 1. Let u, v ∈ K× with u + v = 1 and put A = (u)0,
B = (v)0, C = (u)∞ = (v)∞. Then

degA = degB = degC ≤ max
{

0, 2gK − 2 +
∑

P∈supp(A+B+C)

degP
}
.

The max in Proposition 1 is only needed to cover the case where u and
v are constants and gK = 0.

Proposition 2. For any nonempty , finite set of places S ′ ⊂ PK of K
there exist only finitely many (u, v) ∈ (o×K,S′ \K0)2 with u+ v = 1.

For any extension field L/K let L0 = {x ∈ L | x is algebraic over K0}
denote the constant field of L.

3. Thue equations over K. As above, o denotes the ring of S-integers
of the function fieldK with constant fieldK0. We choose an algebraic closure
K of K and denote the algebraic closure of K0 inside K by K0. For n ≥ 3
let

F = F (X,Y ) = Xn + a1X
n−1Y + · · ·+ an−1XY

n−1 + anY
n ∈ o[X,Y ]

be a normed, binary form of degree n (not necessarily irreducible) such that
F (X, 1) has no multiple roots in K. We are interested in the solutions of
the Thue equation

F (X,Y ) = b(1)

over o, where 0 6= b ∈ o. Obviously, if b and all coefficients of F are in K0 and
K0 is algebraically closed, then (1) has infinitely many solutions in K0 ⊂ o.

Let L ⊂ K be the splitting field of F (X, 1) over K and O ⊂ L be the
integral closure of o in L. Thus F splits over L into linear factors

F (X,Y ) =
n∏

i=1

(X − αiY )

with pairwise different αi ∈ O. Put

S′ =
{
P ′ ∈ PL

∣∣P ′ |P for some P ∈ S or P ′ | (b)0 + (discF (X, 1))0
}
,

the set of all places of L lying over S or occurring as zeroes of b or of the
discriminant of F (X, 1), and OS′ := oL,S′ .
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For any solution (x, y) ∈ o2 of (1) we put, for pairwise different indices
i, j, l ∈ {1, . . . , n},

βi(x, y) = x− αiy,
γi,j,l(x, y) = βi(x, y)(αj − αl) = (x− αiy)(αj − αl),

δi,j,l(x, y) =
γi,j,l(x, y)
γj,l,i(x, y)

.

From 0 6= b =
∏n
i=1 βi(x, y) we obtain 0 6= βi(x, y) ∈ O, and furthermore

βi(x, y), γi,j,l(x, y) and δi,j,l(x, y) all belong to O×S′ . It is immediate to check
that

γi,j,l(x, y) + γj,l,i(x, y) + γl,i,j(x, y) = 0,

which usually is called Siegel’s identity and from which we deduce

− 1 = δi,j,l(x, y) + δj,l,i(x, y)−1 = δi,j,l(x, y) + δl,j,i(x, y).(2)

The set of special solutions of (1), defined by

L = {(x, y) ∈ o2 | F (x, y) = b, and

for all pairwise different 1 ≤ i, j, l ≤ n, δi,j,l(x, y) ∈ L0},
will play a central role in our investigations. It is well known and very easy
to derive from Proposition 2 that there are only finitely many solutions of
(1) outside L.

Proposition 3. There are only finitely many (x, y) ∈ o×o with F (x, y)
= b and (x, y) 6∈ L.

Proof. Let (x, y) be any such solution, so δi,j,l(x, y) ∈ O×S′ \L0 for some
i, j, l and from (2) we have

1 = −δi,j,l(x, y)− δl,j,i(x, y).

By Proposition 2, this equation has only finitely many solutions δi,j,l(x, y) ∈
O×S′ \ L0. On the other hand, δi,j,l(x, y) uniquely determines x/y by

δi,j,l(x, y)
αl − αi
αj − αl

=
x/y − αi
x/y − αj

.

From yn = b F (x/y, 1)−1 we see that for given x/y there exist at most n
solutions of (1), thus for any triple of indices we get only finitely many
solutions (x, y) with δi,j,l(x, y) 6∈ L0.

From Proposition 3 we see that (1) has finitely many solutions if and
only if L is finite. On the other hand, Proposition 4(b) below will show that
whenever we have L 6= ∅, (1) can be transformed into a Thue equation over
the constant field L0.

Proposition 4. Suppose that L 6= ∅. Then:
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(a) There exists a divisor A ∈ Div(L) of a function in O such that for
any choice of ji ∈ {2, . . . , n} \ {i}, 2 ≤ i ≤ n, and for any solution
(x, y) ∈ L one has

(i) n ·A =
(
b

(αj2 − α1)(αj3 − α1) · · · (αjn − α1)
(α2 − αj2)(α3 − αj3) · · · (αn − αjn)

)
,

(ii) (β1(x, y)) = A =: A1,
(βi(x, y)) = A+ (αi − αji)− (αji − α1) =: Ai,

(iii) for any pairwise different 1 ≤ i, j, l ≤ n,

(γi,j,l(x, y)) = Ai + (αj − αl) = Aj + (αl − αi) = (γj,l,i(x, y)).

(b) For any fixed solution (x, y) ∈ L, the substitution

X = −C1
β1(x, y)α2

α1 − α2
+ C2

β2(x, y)α1

α1 − α2
,

Y = −C1
β1(x, y)
α1 − α2

+ C2
β2(x, y)
α1 − α2

,

(3)

transforms the Thue equation (1) into the Thue equation in the vari-
ables C1, C2,

G(C1, C2) := C1C2

n∏

j=3

(−1)(δ1,j,2(x, y)C1 + δ2,j,1(x, y)C2) = 1(4)

with coefficients in the constant field L0.

Proof. (a) Fix (x, y) ∈ L and put Ai = (βi(x, y)) ∈ Div(L). From

δi,j,l(x, y) =
βi(x, y)(αj − αl)
βj(x, y)(αl − αi)

∈ L×0
we deduce Ai + (αj − αl) = Aj + (αl − αi), and in particular for j = 1,
2 ≤ i ≤ n and l = ji ∈ {2, . . . , n} \ {i},
Ai+(α1−αji) = A1+(αji−αi) and (βi(x, y)) = A1+(αi−αji)−(αji−α1).

Using b =
∏n
i=1 βi(x, y), for the divisor of b we obtain

(b) =
n∑

i=1

(βi(x, y)) = A1 +
n∑

i=2

(A1 + (αi − αji)− (αji − α1)),

thus

n ·A1 =
(
b

(αj2 − α1)(αj3 − α1) · · · (αjn − α1)
(α2 − αj2)(α3 − αj3) · · · (αn − αjn)

)
.

Since A := A1 is independent of the choice of (x, y) ∈ L, all assertions
immediately follow from the above calculations.

(b) From (3) we calculate

(5) X−αiY =
{
Ciβi(x, y) for i = 1, 2,

(−1)(δ1,i,2(x, y)C1 + δ2,i,1(x, y)C2)βi(x, y) for 3 ≤ i ≤ n
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and obtain

b =
n∏

i=1

(X − αiY )

=
n∏

i=1

βi(x, y) ·C1C2

n∏

i=3

(−1)(δ1,i,2(x, y)C1 + δ2,i,1(x, y)C2)

= bG(C1, C2),

which yields (4).

Corollary 1. (a) If L 6= ∅, the inverse map of (3) defines an injection
from L into

L0 = {(c1, c2) ∈ L0 × L0 | G(c1, c2) = 1},
the set of solutions in L0 × L0 of the Thue equation (4).

(b) If [K0 : Q] <∞ and n ≥ 4 then (1) has only finitely many solutions
in o× o.

Proof. (a) Fix any (x, y) ∈ L and note that (3) defines an automorphism
of the vector space L2 with determinant β1(x, y)β2(x, y) 6= 0. From Propo-
sition 4(a)(ii) we see that for any solution (x̃, ỹ) ∈ L we have βi(x̃, ỹ) =
ciβi(x, y) with some ci ∈ L×0 . The calculations (5) show that (3) maps (x̃, ỹ)
onto (c1, c2) ∈ L0.

(b) One checks easily that no linear factor of G(C1, C2) is a constant
multiple of another, thus (4) defines a smooth curve of genus

(
n−1

2

)
≥ 2 over

the algebraic number field L0. By Faltings’s theorem on Mordell’s conjecture
(Satz 7 in [3]), L0 is finite, and by (a), L is finite as well.

4. Further analysis of the solution set L. In this section we will
show that an infinite solution set L implies very restrictive conditions on
(the right hand side b of) the Thue equation and on the splitting field L of
F (X, 1) over K.

Proposition 5. Suppose that (1) has infinitely many solutions in o×o.
Then for the splitting field L of F (X, 1) over K we have

L = KL0

= K({δi,j,l(x, y) | (x, y) ∈ L and pairwise different 1 ≤ i, j, l ≤ n});
i.e. L/K is a constant field extension.

As an immediate consequence of Proposition 5 we obtain

Corollary 2. If F (X,Y ) has a nonlinear , irreducible factor in
K0K[X,Y ] then the Thue equation (1) has only finitely many solutions in
o× o.
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Proof of Proposition 5. Put

Kδ = K({δi,j,l(x, y) | (x, y) ∈ L and pairwise different 1 ≤ i, j, l ≤ n}),
so obviously K ⊂ Kδ ⊂ KL0 ⊂ L.

Assume that Kδ $ L and let G0 ≤ Gal(L/K) denote the nontrivial
Galois group of L/Kδ. We consider each element σ ∈ Gal(L/K) as a permu-
tation of the indices of the roots of F (X, 1) via σ(αi) = ασ(i) for 1 ≤ i ≤ n.

Now choose σ ∈ G0 with σ 6= id and i, j, l ∈ {1, . . . , n} with σ(i) 6= i,
j 6= i, σ(i) and l 6= i, j. Since σ fixes each element of Kδ, we obtain, for all
(x, y) ∈ L,

δi,j,l(x, y) = σ(δi,j,l(x, y)) = δσ(i),σ(j),σ(l)(x, y).

Abbreviating

0 6= e1 =
αj − αl
αl − αi

and 0 6= e2 =
ασ(j) − ασ(l)

ασ(l) − ασ(i)

we get
(
x

y
− αi

)(
x

y
− ασ(j)

)
e1 =

(
x

y
− αj

)(
x

y
− ασ(i)

)
e2.

Thus, for every (x, y) ∈ L, x/y must be a zero of the polynomial

p = (X − αi)(X − ασ(j))e1 − (X − αj)(X − ασ(i))e2.

Since p(αi) = −(αi − αj)(αi − ασ(i))e2 6= 0, there are at most 2 possibilities
for x/y, and arguing as in the proof of Proposition 3 we get #L ≤ 2n,
contradicting our assumption.

A second look at the above proof shows that one indeed obtains the
following: If L is infinite then there exist infinitely many (x′, y′) ∈ L such
that

L = K({δi,j,l(x′, y′) | 1 ≤ i, j, l ≤ n pairwise different}).
Lemma 1. Let I = {1, . . . , n}, fix any solution (x, y) ∈ L and put βi :=

βi(x, y) = x − αiy ∈ O for all i ∈ I. Then the following assertions are
equivalent :

(i) There exist i, j ∈ I with i 6= j such that βi/(αi − αj) ∈ O.
(ii) For all i, j ∈ I with i 6= j we have βi/(αi − αj) ∈ O.
(iii) There exists a j ∈ I with b/

(
βj

∂F
∂X (αj , 1)

)
∈ O.

(iv) For all j ∈ I we have b/
(
βj

∂F
∂X (αj , 1)

)
∈ O.

Proof. Recall that for any pairwise different i, j, l ∈ I, δi,l,j(x, y) ∈ L×0
yields (

βi
αi − αj

)
=
(

βl
αl − αj

)
∈ Div(L).(6)
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(i)⇒(ii). Suppose that βi/(αi − αj) ∈ O and let i′ 6= j′ ∈ I.
If j′ = j, then (6) with l = i′ yields βi′/(αi′ − αj′) ∈ O.
If j′ 6= j, then (6) with l = j ′ yields βj′/(αj′ − αj) ∈ O, thus also

−βj′/(αj′ − αj) − y = βj/(αj − αj′) ∈ O, and again using (6) we end up
with βi′/(αi′ − αj′) ∈ O.

(ii)⇒(iv)⇒(iii)⇒(i). From

(−1)n−1
∏

i, i6=j

βi
αi − αj

=
b

βj
∂F
∂X (αj , 1)

we immediately obtain the first implication. The second one is trivial, and
the third one also follows from the last formula, since all factors of the
product have the same divisor by (6).

Proposition 6. If there exists a solution (x, y) ∈ L and indices 1 ≤ i 6=
j ≤ n such that

βi(x, y)
αi − αj

6∈ O

then #L ≤ n. More precisely , L ⊂ {(ζmx, ζmy) | 1 ≤ m ≤ n}, where ζ ∈ K0
denotes a root of unity of order n.

Proof. Suppose that λ := βi(x, y)/(αi − αj) 6∈ O. Since

βj(x, y)
αi − αj

− βi(x, y)
αi − αj

= y ∈ o,(7)

also λ′ := βj(x, y)/(αi − αj) 6∈ O. Thus we can find a place P ∈ PL, not
lying over a place of S, such that λ and λ′ have a pole of the same order
at P . Furthermore we see from (7) that the local expansions (with respect
to some local parameter for P ) of λ and λ′ at P have the same leading
coefficient.

For any further solution (x̃, ỹ) ∈ L, we have x̃ − αiỹ = ciβi(x, y) and
x̃ − αj ỹ = cjβj(x, y) with ci, cj ∈ L×0 , which yields ỹ = cjλ

′ − ciλ ∈ o.
Considering again the leading coefficients of the local expansions at P we
deduce that ci = cj, i.e.

1 =
ci
cj

=
x̃/ỹ − αi
x̃/ỹ − αj

· βj(x, y)
βi(x, y)

.

So for any (x̃, ỹ) ∈ L we obtain x̃/ỹ = x/y, and from ỹ n = yn = b/F (x/y, 1)
all assertions of Proposition 6 follow.

Using
n∏

j=1

b

βj(x, y) ∂F
∂X (αj , 1)

=
bn−1

discF (X, 1)

and Lemma 1, we immediately obtain from Proposition 6:



Thue equations over algebraic function fields 115

Corollary 3. If bn−1/discF (X, 1) 6∈ o or b/ ∂F∂X (αj , 1) 6∈ O for some
1 ≤ j ≤ n then #L ≤ n.

Remark. For example, the first condition of Corollary 3 is satisfied if
b ∈ o× (e.g. if b is a constant) and discF (X, 1) is not a unit in o.

As a partial converse to Proposition 6 we can deduce from Proposition 4
the following result for Thue equations which already split in the function
field under consideration.

Corollary 4. Suppose that F splits in K[X,Y ] into linear factors (i.e.
L = K) and that there exist (x, y) ∈ L with β1(x, y)/(α1 − α2) ∈ o. Then

L =
{(

x̃ = −c1
β1(x, y)α2

α1 − α2
+ c2

β2(x, y)α1

α1 − α2
,

ỹ = −c1
β1(x, y)
α1 − α2

+ c2
β2(x, y)
α1 − α2

) ∣∣∣∣ (c1, c2) ∈ L0

}
,

where

L0 =
{

(c1, c2) ∈ K2
0

∣∣∣

G(c1, c2) = c1c2

n∏

j=3

(−1)(δ1,j,2(x, y)c1 + δ2,j,1(x, y)c2) = 1
}
.

In particular , #L = #L0.

Proof. Having fixed (x, y) ∈ L, the substitution (3) is defined over K,
because all αi ∈ o, and maps L injectively into L0 by Corollary 1(a).

On the other hand, any (c1, c2) ∈ L0 corresponds under (3) to a solution
(x̃, ỹ) of (1), which indeed lies in o× o, since β1(x, y)/(α1 − α2) ∈ o and, by
Lemma 1, also β2(x, y)/(α1 − α2) ∈ o.

5. The cubic case. First we will apply Corollary 4 to study Thue
equations of degree n = 3 with infinite solution set, where the form F splits
in K[X,Y ] into linear factors. So let α1, α2, α3 ∈ o be pairwise different,
and (using a linear transformation of the variables) we may suppose α3 = 0,
thus

F (X,Y ) = X3 − (α1 + α2)X2Y + α1α2XY
2.

Next we look for a suitable right hand side b. Supposing that we have any
(x, y) ∈ L we solve

δ1,3,2(x, y) =
(x− α1y)(−α2)
x(α2 − α1)

= −d

for x/y to obtain
x

y
=

α1α2

dα1 + (1− d)α2
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with some not yet determined d ∈ K0 \ {0, 1}. Putting x = α1α2 and y =
dα1 + (1− d)α2, we obtain a suitable right hand side

b = F (x, y) = −d(1− d)(α1α2(α1 − α2))2 = d(1− d) discF (X, 1).

Applying Corollary 4 we get

Lemma 2. Let α1, α2 ∈ o \ {0} with α1 6= α2 and d ∈ K0 \ {0, 1}. Then
for the Thue equation

(X − α1Y )(X − α2Y )X = −d(1− d)(α1α2(α1 − α2))2

we have

L = {((c1d+ c2(1− d))α1α2, c1dα1 + c2(1− d)α2) |
(c1, c2) ∈ K2

0 with c1c2(dc1 + (1− d)c2) = 1}.
To obtain an infinite L one has to look for d ∈ K0 \ {0, 1} such that the

elliptic curve C1C2(dC1 + (1 − d)C2) = 1 has infinitely many K0-rational
points. Dividing by C3

2 and substituting U = d/C2 and V = d2C1/C2 +
d(1− d)/2, transforms this curve into

Ed : V 2 = U3 +
(
d(1− d)

2

)2

,

containing the point P = (d, d(1 + d)/2).
For d ∈ Z\{0, 1}, P has integral coordinates and infinite order by the re-

sult of Lutz–Nagell (see e.g. [15, VIII, Cor. 7.2]) for d 6= −7,−4,−3,−2,−1,
2, 5. Since Ed = E1−d, only the cases d ∈ {2, 5} remain. From the tables
of J. E. Cremona we find that E2(Q) is finite and E5(Q) is infinite (see
curve “A1” with conductor N = 36 on p. 92 and curve “C1” with conductor
N = 900 on p. 216 in [2]). Thus for any d ∈ Z \ {−1, 0, 1, 2} the solution set
L in Lemma 2 is infinite.

Explicit Example. Taking o = Q[T ], the ring of polynomials in T
over the rationals, α1 = T, α2 = 1, α3 = 0 and d = 3, we find that the Thue
equation

X3 − (T + 1)X2Y + TXY 2 = 6T 2(T − 1)2(8)

has infinitely many solutions in Q[T ], namely

(x, y) = ((3c1 − 2c2)T, 3c1T − 2c2),

where (c1, c2) run through the Q-rational points of the elliptic curve

C1C2(3C1 − 2C2) = 1,

which is isomorphic to E3 : V 2 = U3 + 9. On the other hand, the results of
[5] show that equation (8) has only finitely many solutions in Z[T ].

Now we turn to Thue equations of degree n = 3, where the form F is
irreducible in K[X,Y ]. So L/K is either cyclic cubic or has the full symmet-
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ric group on 3 elements as Galois group. We keep the notations of Section 3
and start with a more precise form of Proposition 5.

Lemma 3. Let the Thue equation (1) be given with an irreducible, cubic
form F ∈ K[X,Y ], and σ ∈ Gal(L/K) with σ(α1) = α2, σ(α2) = α3
and σ(α3) = α1. If [L : K] = 6 let τ ∈ Gal(L/K) with τ(α1) = α3 and
τ(α3) = α1. Then:

(a) For every (x, y) ∈ L,

σ(δ1,3,2(x, y)) = −1− δ1,3,2(x, y)−1,(9)

and furthermore if [L : K] = 6 then

τ(δ1,3,2(x, y)) = δ1,3,2(x, y)−1.(10)

(b) If (x, y) ∈ L such that δ1,3,2(x, y) is not a root of unity of order 3
then L = K(δ1,3,2(x, y)) (in particular , L/K is a constant field ex-
tension).

(c) If #L ≥ 7 then there exist (x, y) ∈ L such that δ1,3,2(x, y) is not a
root of unity of order 3.

Proof. (a) Since x, y ∈ o are fixed by σ (and τ , resp.), the Galois action
on the roots αi and (2) yield

σ(δ1,3,2(x, y)) = δ2,1,3(x, y) = −1− δ1,3,2(x, y)−1,

and even more easily one gets (10).
(b) If δ1,3,2(x, y) were fixed by σ, (9) shows that it would be a root of

X2 +X+1, a contradiction. If δ1,3,2(x, y) were fixed by τ , στ or τσ, (9) and
(10) give that it would equal ±1, 0,−2 or −1/2, thus belong to K0, but this
contradicts the action of σ on δ1,3,2(x, y).

(c) As in the proof of Proposition 3 one can see that for any d ∈ L0 there
exist at most 3 solutions (x̃, ỹ) ∈ L with δ1,3,2(x̃, ỹ) = d. Thus for #L ≥ 7
there always exists an (x, y) ∈ L for which δ1,3,2(x, y) is not a root of unity
of order 3.

Proposition 7. Let the notations be as in Lemma 3. Assume that [L :K]
= 3, that there exists (x, y) ∈ L such that d := δ1,3,2(x, y) is not a root of
unity of order 3 and β1(x, y)/(α1 − α2) ∈ O. Let

X3 +mX2 + (m− 3)X − 1 ∈ K0[X]

be the minimal polynomial of d over K0. Then

L =
{(

x̃ = −c1
β1(x, y)α2

α1 − α2
+ c2

β2(x, y)α1

α1 − α2
,

ỹ = −c1
β1(x, y)
α1 − α2

+ c2
β2(x, y)
α1 − α2

) ∣∣∣∣ (c1, c2) ∈ E
}
,
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where

E = {(c1 = (s− σ(d))t, c2 = (s− σ2(d))t) ∈ L2
0 | (s, t) ∈ K2

0 with

s3 +ms2 + (m− 3)s− 1 = 1/t3} ∪ {(c, c) ∈ K2
0 | c3 = 1}.

Remark. If #L ≥ 7 there exists (x, y) ∈ L such that d is not a root of
unity of order 3 by Lemma 3(c), and if #L ≥ 4 then β1(x, y)/(α1 − α2) ∈ O

for all (x, y) ∈ L by Proposition 6.

Proof of Proposition 7. Throughout this proof we will fix (x, y) ∈ L as
given in the proposition. By (9), σ(d) = −1 − 1/d, and by Lemma 3(b)
and Proposition 9(b) of the appendix, the minimal polynomial of d over K0

indeed has the shape as indicated above.
Since β1(x, y)/(α1 − α2) ∈ O, the set of special solutions of (1) in O×O

(i.e. inside the splitting field L of F (X, 1) over K) is given by Corollary 4.
So we only have to find out which of these solutions are invariant under σ.
Let

(11) x̃ = −c1
β1(x, y)α2

α1 − α2
+ c2

β2(x, y)α1

α1 − α2
, ỹ = −c1

β1(x, y)
α1 − α2

+ c2
β2(x, y)
α1 − α2

with (c1, c2) ∈ L2
0 satisfying c1c2(−dc1 + (1 + d)c2) = 1. From (5) we obtain

(12) for 1 ≤ i ≤ 3 : x̃− αiỹ = ci(x− αiy) with c3 = −dc1 + (1 + d)c2

and

δ1,3,2(x̃, ỹ) =
c1

c3
δ1,3,2(x, y) =

dc1

−dc1 + (1 + d)c2
=: d̃.

Assuming that x̃, ỹ ∈ o, (9) yields σ(d̃) = −(1 + d̃)/d̃, and Proposi-
tion 9(c) of the appendix gives d̃ = d or d̃ = ((1 + s)d+ 1)/(s− d) with
some s ∈ K0. The first case yields c1 = c2 = c3 = c with c3 = 1 and
(x̃, ỹ) = (cx, cy). In the second case we insert the expression for d̃ and ob-
tain

c1d(1 + s(1 + d)) = c2(1 + d)(1 + d(1 + s)),
c1

s− σ(d)
=

c2

s− σ2(d)
.

Since x̃, ỹ ∈ o, (12) shows that the ci are conjugates of each other, so t :=
c1/(s− σ(d)) is invariant under σ and we obtain

c1 = (s− σ(d))t, c2 = (s− σ2(d))t, c3 = (s− d)t, s, t ∈ K0.

From 1 = c1c2c3 = t3(s3 +ms2 +(m−3)s−1) we find that (s, t) ∈ K2
0 must

be a solution of the equation defining the set E .
To prove the other inclusion, let (s, t) ∈ K2

0 satisfy s3+ms2+(m−3)s−1
= 1/t3, i.e. 1 = t3(s− d)(s− σ(d))(s− σ2(d)). Putting c1 = (s− σ(d))t and
c2 = (s−σ2(d))t, we get c3 = −dc1 + (1 + d)c2 = t(s− d), thus (c1, c2) ∈ L2

0
is a solution of C1C2(−dC1 + (1 + d)C2) = 1, and (x̃, ỹ) ∈ O ×O as given
by (11) is a solution of the Thue equation (1). Since the ci’s are conjugates
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of each other, we get

x̃− α2ỹ = c2(x− α2y) = σ(c1(x− α1y)) = σ(x̃− α1ỹ) = σ(x̃)− α2σ(ỹ),

and similarly x̃− α3ỹ = σ(x̃)− α3σ(ỹ), which implies that x̃, ỹ are fixed by
σ, and thus indeed (x̃, ỹ) ∈ L.

In the situation of Proposition 7 we obtain an infinite set L of special
solutions if and only if the elliptic curve

S3 +mS2 + (m− 3)S − 1 =
(

1
T

)3

has infinitely many K0-rational points. This curve can be birationally trans-
formed into

E′m : V 2 = U3 + 16(m2 − 3m+ 9)2,

containing the point P =
(4

9(m+ 3)(m− 6), 4
27(2m− 3)(m2 − 3m+ 63)

)
.

If for m ∈ Z, m2 − 3m + 9 is a 3rd-power free integer, the only torsion
points of E′m(Q) are Q± = (0,±4(m2 − 3m + 9)), which have order 3 (see
e.g. [1, §12, Ex. 3]). Since for m 6= −3, 6 we have P 6= Q±, under these
conditions #E′m(Q) =∞.

On the other hand, if 3 |m for some m ∈ Z, the point P has integral
coordinates, and one can again use the result of Lutz–Nagell as above to
show that #E′m(Q) =∞ for m ∈ 3Z \ {−3, 3, 6}.

Explicit Example. Let us take o = Q[T ], K = Q(T ) and θ a root of
X3−3X−1 = 0, so Q(θ) is a cyclic cubic number field with Galois operation
σ(θ) = −(1 + θ)/θ. The cubic form

F (X,Y ) = X3− 3(T 2− T + 1)XY 2− (T 3 + 3T 2− 6T + 1)Y 3 ∈ Q(T )[X,Y ]

has roots α1 = θT + σ2(θ) and its conjugates, thus L = Q(θ)(T ) is its split-
ting field. Choosing δ1,3,2(x, y) = σ(θ) we calculate that a possible solution
(x, y) ∈ L should satisfy x/y = (1− T 2)/T , which yields an appropriate
right hand side b = F (1− T 2, T ) = (T 3− 3T 2 + 1)2. From Proposition 7 we
conclude that

X3 − 3(T 2 − T + 1)XY 2 − (T 3 + 3T 2 − 6T + 1)Y 3 = (T 3 − 3T 2 + 1)2

has an infinite set of special solutions, namely

L = {(−(s+ 1)tT 2 + 2tT + st, stT + t) | (s, t) ∈ Q2 with s3−3s−1 = 1/t3}.
Finally, let us study the case where [L : K] = 6, and let K ′ ⊂ L denote

the quadratic extension of K inside L.

Proposition 8. Let the notations be as in Lemma 3. Assume that [L :K]
= 6, there exists (x, y) ∈ L such that d := δ1,3,2(x, y) is not a root of unity
of order 3 and β1(x, y)/(α1 − α2) ∈ O. Let K ′0 ⊂ L0 denote the quadratic
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extension of K0 inside L0 and let

p = X3 + µX2 + (µ− 3)X − 1 ∈ K ′0[X]

be the minimal polynomial of d over K ′0. Then the minimal polynomial of d
over K0 is

X6 + 3X5 −
(
m+ 3

4

)
X4 −

(
2m+ 13

2

)
X3 −

(
m+ 3

4

)
X2 + 3X + 1 ∈ K0[X]

with m =
(
µ− 3

2

)2 = µ2 − 3µ+ 9
4 ∈ K0, and

L =
{(

x̃ = −c1
β1(x, y)α2

α1 − α2
+ c2

β2(x, y)α1

α1 − α2
,

ỹ = −c1
β1(x, y)
α1 − α2

+ c2
β2(x, y)
α1 − α2

) ∣∣∣∣ (c1, c2) ∈ E ′
}
,

where
E ′ =

{(
c1 =

(
sm−

(1
2 + σ(d)

)(
µ− 3

2

))
t,

c2 =
(
sm−

(1
2 + σ2(d)

)(
µ− 3

2

))
t
)
∈ L2

0

∣∣ (s, t) ∈ K2
0 with

m2(ms3 +ms2 − 9
4s− 1

4

)
= 1/t3

}
∪ {(c, c) ∈ K2

0 | c3 = 1}.
Proof (sketch). Fix (x, y) ∈ L as in the statement. By Lemma 3(b),

d generates L over K, and by (10) the reciprocals of the roots of p(X)
are also conjugates of d over K, so its minimal polynomial over K0 can be
calculated as −p(X)X3p(1/X). Furthermore, K ′0 = K0(

√
m).

Applying Proposition 7 to the cyclic cubic extension L/K ′ we find that
all special solutions of (1) inside K ′ ×K ′ are given by (11) with

c1 = (s′ − σ(d))t′, c2 = (s′ − σ2(d))t′,(13)

where (s′, t′) ∈ K ′0 ×K ′0 with

s′3 + µs′2 + (µ− 3)s′ − 1 = 1/t′3.(14)

First suppose that (x̃, ỹ) ∈ o× o. Applying (10) to

d̃ = δ1,3,2(x̃, ỹ) =
(1 + s′)d+ 1

s′ − d
we deduce from τ(d̃) = 1/d̃ that 0 = (d2 + d + 1)(τ(s′) + s′ + 1) and
consequently τ(s′) = −1 − s′ and s′ = −1

2 + s
(
µ − 3

2

)
with some s ∈ K0.

Since c1 = (x̃− α1ỹ)/(x− α1y) is fixed by στ , we obtain
(
s′ + 1 + 1

d

)
t′ = (s′ − σ(d))t′ = c1 = στ(c1)

= (τ(s′)− τ(d))τ(t′) =
(
−1− s′ − 1

d

)
τ(t′)

and thus τ(t′) = −t′ and t′ = t
(
µ − 3

2

)
with some t ∈ K0. Inserting these

expressions for s′ and t′ into (13) and (14) yields the description of L as
given in the proposition.
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To prove the other inclusion, note that we know already that x̃, ỹ ∈ K ′.
Checking that c1 (c2, resp.) as given in the definition of E ′ is invariant under
στ (τ , resp.), we obtain x̃ − αiỹ = τ(x̃) − αiτ(ỹ) for i = 1, 2 and therefore
x̃ = τ(x̃) ∈ o and ỹ = τ(ỹ) ∈ o.

In the situation of Proposition 8 we obtain an infinite set L of special
solutions if and only if the elliptic curve

m3S3 +m3S2 − 9
4
m2S − 1

4
m2 =

(
1
T

)3

has infinitely many K0-rational points. This curve can be birationally trans-
formed into

E′′m : V 2 = U3 +m3(27 + 4m)2,

containing the point P =
(4

9m
2 − 9m, 8

27m
3 + 18m2

)
.

If m3(27+4m)2 is a 6th-power free integer for some m ∈ Z\{0}, then P
is not a torsion point (see e.g. [1, §12, Ex. 3]), so in this case #E ′′m(Q) =∞.

On the other hand, if 3 |m for m ∈ Z\{0}, then the point P has integral
coordinates, and one can again use the result of Lutz–Nagell as above to
show that for m ∈ 3Z\{−60,−54, 0, 2 ·35, 20 ·35, 182 ·35, 1640 ·35, 14762 ·35}
we have #E′′m(Q) =∞.

Appendix. Auxiliary results on cubic field extensions. Through-
out this appendix let L/K denote an arbitrary field extension of degree 3
and let PGL2(K) = GL2(K)/K× operate on the projective line L∪{∞} via
Möbius transformations, i.e. if

(
a b
c d

)
∈ GL2(K) represents Λ ∈ PGL2(K)

then Λα = aα+b
cα+d for all α ∈ L.

Proposition 9. Let L/K be a field extension of degree 3 and θ ∈ L
with L = K(θ). Then:

(a) For every α ∈ L\K there exists a unique Λ ∈ PGL2(K) with α = Λθ.

Suppose further that L/K is Galois, σ ∈ Gal(L/K) generates the Galois
group and

σ(θ) = −1 + θ

θ
= Tθ with T =

(
1 1
−1 0

)
.

Then:

(b) The minimal polynomial of θ over K is

X3 +mX2 + (m− 3)X − 1 ∈ K[X],

where −m = trL/K(θ) ∈ K is the trace of θ from L to K.
(c) For α ∈ L we have σ(α) = −(1 + α)/α = Tα if and only if α = θ or
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α =
(1 + s)θ + 1
−θ + s

= Σθ with Σ =
(

1 + s 1
−1 s

)
for some s ∈ K.

Proof. (a) Choose any α ∈ L \K, thus α = r0 + r1θ + r2θ
2 with ri ∈ K

and (r1, r2) 6= (0, 0). Equating

r0 + r1θ + r2θ
2 =

aθ + b

cθ + d
,

using the minimal polynomial of θ over K and comparing coefficients with
respect to the K-basis (1, θ, θ2), one obtains a system of linear equations for
(a, b, c, d) of rank 3, and the solutions yield a unique element Λ =

(
a b
c d

)
K× ∈

PGL2(K).
(b) Since the conjugates of θ are −(1 + θ)/θ and −1/(1 + θ), this follows

from a direct calculation.
(c) First suppose that α ∈ K. Since α = σ(α) = −1− 1/α, α must be a

root of unity of order 3 in K, and the assertion holds with s = α2 (the only
values of s for which Σ =

( 1+s 1
−1 s

)
is singular).

Now let α ∈ L \ K. Using part (a) we may put α = Λθ for some Λ ∈
PGL2(K). Therefore σ(α) = Tα if and only if ΛTθ = Λσ(θ) = σ(Λθ) =
TΛθ, i.e. Λ commutes with T in PGL2(K). Let

(
a b
c d

)
∈ GL2(K) represent

Λ, so we have to find all (a, b, c, d) ∈ K4 such that
( a−b a
c−d c

)
equals

( a+c b+d
−a −b

)

up to a nonzero constant.
First observe that b = 0 if and only if c = 0, and if this holds we get

a = d, Λ =
( 1 0

0 1

)
and α = θ. (From the projective point of view, this

corresponds to Σ with s =∞.)
Now we may suppose bc 6= 0 and get the system of equations

(I) b(b− a) = c(a+ c),

(II) −ab = c(b+ d),

(III) −ac = b(d− c).
Adding (II) and (III) gives (a+ d)(b+ c) = 0, so we will consider 2 cases:

Case 1: c = −b (6= 0). Now (III) yields a = b+ d and
(
a b
c d

)
=
(
b+ d b
−b d

)
= b

(
1 + s 1
−1 s

)
with s = d/b ∈ K,

representing an element of PGL2(K), provided s is not a root of unity of
order 3.

Case 2: d = −a. Since b + c = 0 was already considered in Case 1,
we infer from (I) that a = b − c and therefore

(
a b
c d

)
=
(

a b
b−a −a

)
. But this

matrix has determinant −a2 + ab− b2, which equals 0 by (III), and we get
no further solutions in this case.
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Remark. If the special Galois operation as considered in Proposition 9
occurs for K = Q and integral θ, then L is called a “simplest cubic number
field”, a notion going back to D. Shanks [14].

If σ generates the Galois group of a cubic extension K(θ)/K, Propo-
sition 9(a) gives σ(θ) = Λθ, where Λ ∈ PGL2(K) is a torsion element of
order 3. For K = Q, Lemma 1(a) in [7] shows that Λ must be conjugate
to T or T 2, thus any cyclic cubic extension of Q can be generated by a
(not necessarily integral) element with Galois operation given by T as in
Proposition 9.

References

[1] J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Stud. Texts 24,
Cambridge Univ. Press, 1991.

[2] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press,
1992.

[3] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent.
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